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Abstract

The use of latent variable models has shown to be a

powerful tool for modeling probability distributions over

sequences. In this paper, we introduce a new variational

model that extends the recurrent network in two ways for the

task of video frame prediction. First, we introduce 3D con-

volutions inside all modules including the recurrent model

for future frame prediction, inputting and outputting a se-

quence of video frames at each timestep. This enables us to

better exploit spatiotemporal information inside the varia-

tional recurrent model, allowing us to generate high-quality

predictions. Second, we enhance the latent loss of the vari-

ational model by introducing a maximum likelihood esti-

mate in addition to the KL divergence that is commonly

used in variational models. This simple extension acts as

a stronger regularizer in the variational autoencoder loss

function and lets us obtain better results and generalizabil-

ity. Experiments show that our model outperforms existing

video prediction methods on several benchmarks while re-

quiring fewer parameters.

1. Introduction

Generating the future frames given the past has been a

long standing problem in Computer Vision. Currently, re-

current neural networks, specifically a variant with Long

Short Term Memory (LSTM) cells [12], hold the state-of-

the-art results in a wide range of sequence based tasks in-

cluding future frame prediction [25, 16, 29, 28]. At a high

level, they belong to the family of autoregressive models

where the predicted element is conditioned on the history of

inputs received thus far. From video analysis [5] to speech

recognition [9], text generation [23], machine translation

[24] and image captioning [27], the versatility of recurrent

networks has proven to be an indispensable tool for machine

learning practitioners.

There is evidence that the introduction of uncertainty

into the hidden states of a recurrent network can signifi-

cantly improve its performance when modelling complex

sequences such as speech and music [1, 4, 7, 8]. These

methods integrate the Variational Autoencoder (VAE) [15]

to infer the latent variables which is shown to capture some

form of semantic abstraction such as the thickness or orien-

tation of an MNIST digit from the observed data by better

capturing the input distribution.

Despite so, the state-of-the-art in future frame prediction

using recurrent networks have come from purely determin-

istic auto-encoder type models [29, 28]. We believe this to

be the consequence of 2 factors: (a) that the use of latent

random variables to model sequential data for generation

often result in blurry reconstructions as evidenced in the lit-

erature [31], perhaps due to the lack of a proper temporal

model and (b) that the regularizer employed is not sufficient

for capturing the properties of the encoded distribution. In

particular, a VAE is an autoencoder where the training pro-

cess is regularized to ensure that the latent space captures

the input distribution accurately. This regularization is usu-

ally employed by minimizing the Kullback-Liebler (KL) di-

vergence between the encoded posterior and prior distribu-

tions. Here, the posterior is assumed to be a standard Gaus-

sian distribution and the encoder is then trained to return the

mean and the covariance of the posterior Gaussian distribu-

tion.

In this paper, we address the above mentioned problems

and propose a new architecture for the prediction of future

frames. We extend the Variational Recurrent Neural Net-

work (VRNN) [4] firstly by replacing all fully-connected

and 2D convolutions in the architecture with 3D convolu-

tions to increase its capacity to model temporal informa-

tion. We use a truncated ResNet [11, 10] with 3D convo-

lutions for both the image encoder and decoder, a shallow

3D convolutional network to generate the prior and poste-

rior distributions and, a 3D Convolutional LSTM (ConvL-

STM) [20] as the recurrent model. Since the architecture

is fully fitted with 3D convolutions that share parameters

across both space and time, it can now better exploit spa-

tiotemporal dependencies and more importantly, preserve

temporal information across each component and operation
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thereby removing the LSTM’s complete dependency on the

hidden states for motion information. Similarly, using 3D

convolutions in the image decoder allows it to generate high

quality predictions by considering the spatiotemporal cor-

relations of the 4D feature maps in contrast to 2D convo-

lutions. Finally, we choose to truncate our 3D-ResNet in

order to leverage its power as a spatiotemporal feature ex-

tractor while minimizing the total number of parameters.

We argue that features extracted by the lower layers of a

3D-ResNet are already abstract enough for the ConvLSTM

to further learn on and would therefore rather reallocate the

freed space to the ConvLSTM. This is in contrast to [3] that

uses the full 2D-ResNet for feature extraction. On the other

hand, we want to avoid forgoing the image encoder as in

[29, 28] since it puts too much reliance on the ConvLSTM

to jointly learn short-term spatiotemporal features and long

term dynamics from a raw sequence of images.

Next, we further regularize the latent space of the vari-

ational recurrent model using a novel latent loss that com-

bines the KL divergence and the log-likelihood criterion.

Specifically, we further constraint the latent space by max-

imizing the likelihood of the prior mean with respect to the

posterior distribution assuming that conditionally, the prior

given the posterior also follows a normal distribution. We

will mathematically show in section 3.2 that this additional

constraint lets the prior variance be larger while reducing

the divergence between the prior and posterior mean distri-

butions. Ultimately, we will show in our experiments that

our novel objective function combined with our architec-

tural design choice lets us outperform the state of the art

while requiring fewer parameters.

In summary, we make three contributions. First, we

present a VRNN that uses 3D convolutions across the entire

architecture and show their effectiveness for future frame

prediction. Second, we extend the KL divergence by in-

troducing a novel log-likelihood criterion to the latent loss

used in variational models. This new loss further regular-

izes the latent space and allows us to obtain better results.

Finally, we show through experiments that each individual

contribution improves the model and that their combina-

tion allows the model to outperform existing state-of-the-art

video prediction methods.

2. Related Work

Recurrent Networks used to predict the future frames

can be grouped into two categories: (1) those that are en-

tirely deterministic and (2) those that propagate uncertainty

through the recurrent network via latent random variables.

Recurrent networks were first used for future frame pre-

diction in [18] when Ranzato et al. learnt a model to predict

a quantized space of image patches. Srivastava et al. [22]

proposed a model to predict the future as well as the input

sequence in order to prevent the model from storing infor-

mation only about the last few frames. Shi et al. [20] pro-

posed an extension of the LSTM by replacing the fully con-

nected structure with one that is fully convolutional which

saw popular use to date for learning sequential data with

spatial information. Finn et al. [6] used an LSTM frame-

work to model motion via transformations of groups of pix-

els. Patraucean et al. [17] and Villegas et al. [26] explicitly

injected short term motion information through the use of

optical flow. Xu et al. [30] proposed a two-stream recurrent

network to deal with the high and low frequency content

often present in natural videos. Kalchbbrenner et al. [13]

introduced a model that learns the joint distribution of the

raw pixels to generate them one at a time. Wang et al. [29]

proposed to improve the stacked LSTM by having the mem-

ory and hidden states flow in a zig-zagged manner from the

highest unit of the current timestep to the lowest unit of the

subsequent timestep. This was further improved in [28] by

replacing the 2D convolutions with 3D and a memory at-

tention in the LSTM itself. We also use 3D convolutions

throughout our entire architecture but in contrast, our model

is stochastic.

Stochastic recurrent networks vary in way they propa-

gate uncertainty across time as well as the way inference is

computed. For instance, Bayer et al. [1] and Goyal et al.

[8] conditioned the generation only on the hidden states of

the recurrent network whilst Chung et al. [4] and Fraccaro

et al. [7] have the output be some function over both the

hidden states and the latent vector. Next, the LSTM state

transitions in [1, 4, 8] are additionally conditioned on the

latent vectors whereas in [7] is not. The work of [4] was

later extended in [3] through a hierarchy of latent variables

for future frame prediction. We propagate stochastic infor-

mation in the same way as [4] except that the latent tensors

themselves now contain richer spatial-temporal information

since they are the result of 3D convolutions. For inference,

both [7] and [8] run a deterministic recurrent network back-

wards through the sequence to form the approximate poste-

rior whereas the posterior in [1] and [4] is computed using

only information up till the present. Similarly, our method

for inference follows that of [4] but in contrast to [4] and in

fact all existing methods, we jointly optimize both the KL

divergence and a novel log likelihood criterion.

3. Our model

Given a sequence of frames x1:C−1 as context, our goal

is to learn a model that can predict T frames into the future

i.e. x̂C:C+T . This task is challenging due to the variability

present in video sequences and the fact that there can exist

multiple plausible futures for any given input. To overcome

this, we propose to use a VRNN but with 3D convolutions

in order to better capture both short and long term relations.

Specifically, in contrast to existing VRNN models, our en-

coder, decoder, prior and posterior networks, and LSTM are
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Figure 1. Graphical illustration of the Variational Recurrent Net-

work. The dotted lines denote the posterior network fq that is only

used during training and is discarded at test time.

all built using 3D convolutions and up-convolutions. We

also further regularize the latent space of the VRNN with

an additional log-likelihood term. We begin the next sec-

tion with a brief review of the VRNN before describing

our novel latent loss function and the architecture of our

3D VRNN.

3.1. Variational Recurrent Neural Network

Figure 1 provides a graphical illustration of the VRNN.

The VRNN uses a latent variable zt at each timestep of a

recurrent network to capture the variations in the observed

data. It contains a VAE at every timestep whose mean µt

and variance σt are conditioned on the hidden unit ht of a

recurrent network. These parameters are then used to sam-

ple the latent variable zt at each timestep. Concisely, the

forward pass can be completely described by the following

set of recurrence equations where the subscripts p and q de-

note the prior and posterior distributions respectively, and

the components fp, fq, fenc, fdec are functions implemented

using neural networks.

µp,t, σp,t = fp(ht−1) (1)

µq,t, σq,t = fq(ht−1, fenc(xt)) (2)

zp,t ∼ N(µp,t, σp,t) (3)

zq,t ∼ N(µq,t, σq,t) (4)

x̂t = fdec(zp,t, ht−1) (5)

ht = LSTM(fenc(xt), ht−1, zp,t) (6)

Here N(µ, σ) is a multivariate Gaussian distribution with

mean µ and co-variance diag(σ2). Note that the posterior

network fq is used only during training and is discarded at

test time. The entire model is then trained end-to-end for

future frame prediction by minimizing a sum of the recon-

struction loss (Lrec), and latent loss (Llatent) expressed as:

L = λrecLrec + λlatentLlatent (7)

where λrec and λlatent are the trade off hyper-parameters and

the latent loss is the timestep-wise KL divergence (LKL) be-

tween the prior (p) and posterior (q) distributions and is ex-

pressed as:

LKL =

T∑

t=1

KL(q(zt|X≤t, Z<t)||p(zt|X<t, Z<t))) = (8)

T∑

t=1

log(σq,t)− log(σp,t) +
σ2

p,t + (µp,t − µq,t)
2

2σ2
q,t

− 0.5 (9)

3.2. New log­likelihood regularized KL divergence

Typically, the KL divergence-based latent loss is used

to regularize the latent space, enforcing it to be a Gaus-

sian distribution with known parameters. We further en-

hance this regularization by appending the negative of the

log-likelihood term to the latent loss. The objective here is

to maximize the likelihood of the prior mean distribution

w.r.t. the posterior. This is done by minimizing the negative

likelihood as shown in Eq. 11 by assuming that the prior,

posterior and the conditional prior mean given the poste-

rior all follow a Gaussian distribution.

−LLL = − log

T∏

t=1

p(µp,t|µq,t, σq,t) (10)

=

T∑

t=1

log(σq,t) + (
µp,t − µq,t

σq,t

)2 (11)

The proposed latent loss is thus expressed together as:

LKL − LLL

= log(σq)− log(σp) +
σ2

p + (µp − µq)
2

2σ2
q

− 0.5

+ log(σq) + (
µp − µq

σq

)2 (12)

= 2 log(σq)− log(σp) +
σ2

p + 3(µp − µq)
2

2σ2
q

− 0.5 (13)

Interestingly, the above equation is similar to the KL di-

vergence (eq 9) but with some of its components weighted

differently. In particular, the log posterior variance, log(σq),
has been scaled by a factor of 2 and the squared difference

of mean, (µp−µq)
2, by a factor of 3. This modification has

2 effects. First, it puts more emphasis on sample diversity

since the log prior variance log(σp) put out by the network

must now be higher in order to match the scaled log pos-

terior variance 2 log(σq). Secondly, the scaled difference

of mean 3(µp − µq)
2 serves to balance out the additional

weight assigned to the variance term and thus encourages
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Figure 2. Our proposed architecture for future frame prediction. The architecture inputs and outputs at each timestep a sequence of M

video frames with the prediction made H timesteps into the future. The entire architecture is fitted with 3D convolutions. The 3D-ENC and

3D-DEC are mirrored versions of the 2-block 3D-ResNet18 as shown in Figure 3. We use 2 LSTM layers and a shallow 3D conv network

to generate µ and σ that are then sampled from to produce z. The block [◦, ◦] indicates a concatenation along the 4th axis. The values

above each component (3D-ENC, CONVLSTM, Z, 3D-DEC) indicate the sizes of the output tensor.

the model to continue generating samples that are represen-

tative of the dataset. As such, the log-likelihood regularized

KL divergence should have no adverse effects on the model

since it is simply the KL divergence with a reweighting of

its components and would argue it to be more forceful if

one needs to have a greater emphasis on sample diversity.

Interestingly, the weights for each component can also be

customized although their individual effects will not be in-

vestigated since it is not the purpose of this paper. All-in-all,

our new loss function for training the VRNN is expressed

together as: L = λrecLrec + λlatent(LKL − LLL).

3.3. Our 3D Convolutional VRNN

The ConvLSTM was proposed in [20] to address the

shortcomings of Fully-Connected LSTM, namely that lat-

ter always ends up decimating any spatial information con-

tained in the input tensor. Intuitively, if the states are viewed

as the hidden representations of moving objects, then a Con-

vLSTM with a larger kernel should be able to capture faster

motions while one with a smaller kernel can capture slower

motions. However, if the input at each timestep is a sin-

gle image, then the hidden states are the only component

that carry motion information in both Fully-Connected and

ConvLSTMs.

In our work, we counteract this limitation by replacing

all 2D convolutions (and de-convolutions) with 3D to en-

able every component to retain motion information instead

of only the hidden states. The benefits of this are two-fold.

First, the 3D ConvLSTM is no longer completely reliant

on the hidden states for motion information since there is

an additional source coming from the 3D image encoder.

Specifically, the use of 3D convolutions on multiple frames

result in an input tensor that carries short-term spatiotempo-

ral information as opposed to a VRNN that run a 2D con-

volution on a single frame at every timestep. Second, we

can now vary the window size and output horizon at each

timestep without needing to redesign the architecture. For

example, let us define M to be the window size, or the num-

ber of input frames to our model at each timestep and H the

output horizon (output frames), or how far into the future

should the model predict. Then, 3D convolutions (and de-

convolutions) allow us to set a large M to efficiently capture

large motions when dealing with datasets where the motion

between frames is prevalently large and conversely, a large

H to predict many frames into the future at once with min-

imal reconstruction errors if said motion between frames is

small. All in all, this upgrade renders our 3D convolutional

VRNN more effective and general than its 2D counterpart.

Our proposed architecture is shown in Figure 2. The en-

coder (3D-ENC) takes at each timestep a clip of M video

frames of shape [M,H,W,C] to produce a tensor of shape

[M/2, H/4, W/4, C/4] where H,W,C denote the height, width

and channels respectively. This tensor is then concatenated

with the latent tensor Z (a zero tensor in the 1st timestep)

along the 4’th channel indicated by [◦, ◦] then passed to the

3D ConvLSTM with 2 hidden layers for motion learning.

The LSTM hidden states at the second level with a shape

of [M/2, H/4, W/4, 128] are then fed through a shallow 3D

CNN with two heads to produce the parameters of the prior

distribution with shape [M/2, H/4, W/4, 16] that are later

sampled to produce the latent tensor Z. This latent tensor is

then concatenated with the hidden states and finally propa-
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(a) 2-block 3D ResNet-18 encoder
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(b) 2-block 3D ResNet-18 decoder
Figure 3. Architecture of our encoder and decoder. The encoder

outputs a 4D tensor with a spatial resolution of (H/4,W/4). Excep-

tion the decoder, each filter output is followed by a 3D batch-norm

and ReLU. An downsampling operation with stride 2 is indicated

by ”//2” and an upsampling with stride 2 by ”x2”.

gated through the decoder (3D-DEC) to predict the frames

H timesteps into the future. The model is applied recur-

sively by using the newly generated frame as input if the

ground truth is not available. Specifically, if the frames are

observed up to time C, then the model will use the ground

truth as input up till time C-M then a combination of the

ground truth and predicted frames between time C-M to C,

and then finally, only the predicted frames as input from

time C onwards. During training, a separate 3D encoder

(not shown in Figure 2) is used to generate the posterior

distribution to optimize the KL divergence.

As shown in Figure 3, we use a 2-block 3D ResNet-18

for both the encoder and decoder in contrast to [3] that use

a full ResNet. We find this to be sufficient especially since

the 3D ConvLSTM itself serve as an extension of the 3D

CNN for learning complex spatiotemporal features given a

window of M frames. Furthermore, by truncating the num-

ber of blocks to 2, we reduce the total number of parameters

significantly which allow us to devote additional resources

to our 3D ConvLSTM with 128 hidden units that contains

7m parameters per level. However, we also want to avoid

the other end of not having a feature extractor at all [29, 28]

since they have been shown to extract useful features that

tend to be task specific at the higher blocks and more gen-

eral purpose at the lower blocks. In short, we propose to

use a smaller feature extractor CNN and a larger LSTM. We

show in our experiments that modelling the architecture in

such a manner allows us to outperform the state-of-the-art

while requiring fewer parameters.

4. Experiments

4.1. Comparison to state­of­the­art

We compare our approach to several state-of-the-art

methods using publicly available source code and model

where available with default parameters and using standard

metrics such as frame-wise Mean Squared Error (MSE),

Structural Similarity Index (SSIM) and Peak Signal to

Noise Ratio (PSNR). We sample 50 predictions from the

stochastic models for each ground truth test sequence and

average the metrics across the test set. Note that sampling

is done only for the purpose of evaluation in order to get the

average performance and is not required for deployment.

Training Details: We initialize the weights of our trun-

cated 3D ResNet-18 encoder and decoder with weights

pre-trained on the Kinetics-400 dataset [14] and all other

components using PyTorch’s default initializer. We use the

Adam optimizer with default hyperparameters, a learning

rate of 10−3 with no weight decay, a batch size of 6 and the

L1+L2 reconstruction loss that was also used in [29, 28].

We train the model using beta warm-up [21] and have it

gradually predict into the future using its own predictions

as input [2].

The Moving MNIST dataset [22] consists of two digits

(0 to 9) of size 28 x 28 moving inside a 64 x 64 patch. The

digits are chosen randomly from the MNIST training set and

placed at random locations inside the patch. Each digit is

assigned a velocity whose direction is chosen uniformly at

random on a unit circle and whose magnitude is also chosen

uniformly at random over a fixed range. The digits bounce

off the edges of the 64 x 64 frame and overlap as they move

past each other. The training set contains 10,000 sequences

while the validation and test sets 1,000 sequences each. By

default, the sequences are all 20 frames long and the models

are trained to predict the next 10 frames given the first 5 or

10 as input.

Table 1 shows the performance of the models when us-

ing 5 frames to predict 10 and 15 frames into the future

and when using 10 frames to predict 10 and 20 frames into

the future. Our method demonstrates its promise, outper-

forming both the state-of-the-art deterministic (E3D-LSTM

[28]) and stochastic (VRNN [4]) models, with the latter by

a large margin. We also improve over the E3D-LSTM [28]

despite having fewer parameters. We were only able to train

the smallest variant of the models presented in [3] which

nevertheless contains 62 million parameters. Interestingly,

we also outperform them. These results thus indicate the

impact of our new design and the novel latent loss.
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Figure 4. Prediction on the KTH action dataset. Our method recovers the disappearing man.

Input

GroundTruth

ConvLSTM

VarConvLSTM

E3DLSTM
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Figure 5. Prediction on the moving MNIST dataset. We obtain visually pleasing results even on complex example shown in right. Further-

more, our results indicate less blur.

We present some visual results in Figure 5 where the

first row illustrates the input sequence x1:10, the second the

ground truth for the predicted sequence x11:20 and all sub-

sequent rows the predictions made by the various models

x̂11:20. It can firstly be seen that the injection of stochastic-

ity causes the Variational ConvLSTM to output predictions

that are blurrier than its deterministic counterpart. This

could principally be due to the fact that information coming

from the latent nodes act as noise and thus interferes with

reconstruction. Unlike the ConvLSTM however, the digits

generated by the Variational ConvLSTM are closer to the

ground truth resulting in a performance that is generally

superior as evidenced by the quantitative scores in Table 1.

We can then observe our model producing the best results.

This signals that the blurry reconstructions manifested by

the Variational ConvLSTM are counteracted by replacing

all 2D convolutions with 3D. Intuitively, our novel loss also

acts as a stronger regularizer for the reconstructions.

The KTH dataset [19] consists of humans performing 6

types of actions: boxing, clapping, waving, jogging, run-

ning, and walking under 4 scenarios: outdoors, outdoors

with scale variation, outdoor with different clothes, and in-

doors with a homogeneous and static background. Each

video is recorded at 25 fps and lasts an average of 4 seconds.

We follow the experimental setup in [26] using persons 1-16

for training and 17-25 for testing and resize each frame to

128x128 pixels. The models are trained to predict the next

10 frames given the first 10 as input. Table 2 presents the

performance of the various models when predicting the next

20, 40 and 60 frames. It can be observed that our model lags

slightly behind the E3D-LSTM when predicting short term

but performs much better when tasked to predict further into

the future. This difference is highlighted on the bar chart

beside Table 2 that shows the performance of our model de-

grading at a slower rate than the E3D-LSTM. The results

can be explained by Figure 4 where each row represents

the output sequence x̂11:50 spaced 2 frames apart. It can be

observed from the figures that the predictions coming from

our model are blurrier than E3D, resulting in metrics that

are inferior although we make up for it by being able to pre-

dict the individual re-entering the scene. The quantitative

scores also show that our variational method is much bet-

ter than the Variational 2D ConvLSTM [4]. These findings

once again demonstrate the effectiveness of our architecture

for modelling spatiotemporal data.
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Type Model
x1:5 → x̂6:15 x1:5 → x̂6:20 x1:10 → x̂11:20 x1:10 → x̂11:30 # Params

SSIM MSE SSIM MSE SSIM MSE SSIM MSE

Deterministic

2D ConvLSTM [20] 0.662 111.1 0.482 154.3 0.763 82.2 0.660 112.3 2.8M

PredRNN++ [29] 0.793 66.2 0.769 79.2 0.870 47.9 0.821 57.7 15.4M

E3D-LSTM [28] 0.853 53.4 0.801 64.1 0.910 41.3 0.872 47.6 38.7M

Stochastic
Variational 2D ConvLSTM [4] 0.733 91.1 0.564 126.4 0.816 60.7 0.773 83.5 2.9M

Improved VRNN [3] 0.772 123.1 0.728 162.2 0.776 129.2 0.699 194.3 62M

Variational 3D ConvLSTM (Ours) 0.864 51.4 0.805 63.2 0.896 39.4 0.874 47.54 12.9M

Table 1. Results on the Moving MNIST dataset when using 5 frames to predict 10 (x1:5 → x̂6:15) and 15 (x1:5 → x̂6:20) frames into the

future, and when using 10 frames to predict 10 (x1:10 → x̂11:20) and 20 (x1:10 → x̂11:30) frames into the future. The metrics are computed

frame-wise. Higher SSIM or lower MSE scores indicate better results. Finally, the rightmost column indicate the number of parameters

for the various models.

Model
x1:10 → x̂11:30 x1:10 → x̂11:50 x1:10 → x̂11:70

SSIM PSNR SSIM PSNR SSIM PSNR

2D ConvLSTM [20] 0.712 23.58 0.639 22.85 0.551 20.13

PredRNN++ [29] 0.865 28.47 0.741 25.21 0.702 23.51

E3D-LSTM [28] 0.879 29.31 0.810 27.24 0.798 26.82

Variational 2D ConvLSTM [4] 0.787 25.76 0.733 24.83 0.672 23.13

Variational 3D ConvLSTM (Ours) 0.866 28.31 0.852 27.89 0.846 27.66

Table 2. Results on the KTH action dataset when using 10 frames to predict 20 (x1:10 → x̂11:30), 40 (x1:10 → x̂11:50), and 60 (x1:10 →
x̂11:70) time steps into the future. The metrics are computed frame-wise. Higher SSIM and PSNR scores indicate better results. The bar

chart on the right highlights the difference between our model and the E3D-LSTM. Our model performs much better for longer predictions.

4.2. Ablation Study

Effectiveness of each component: We quantize the ef-

fect of each contribution in Table 3 on the moving MNIST

dataset. It can be seen that the introduction of stochastic-

ity into the recurrent network allows it to better tackle un-

certainties in the recurrent dynamics which results in bet-

ter predictions, significantly lowering the MSE from 82.2

to 60.7. Additionally, swapping out the 2D convolutions

in place for 3D brings about significant improvements to

the model, lowering the MSE by approximately another 20

points. This makes sense since 3D convolutions operate on

both the spatial and temporal axis, letting the architecture

capture relationships in said dimensions. Finally, it is quite

apparent that the introduction of the log-likelihood criterion

has a noticeable effect, further bringing down the MSE by

approximately 2 points. This can be interpreted in vari-

ous ways: (1) that the resulting loss function empirically

helps the network traverse towards a better local minima

and (2) that the added regularizer helps the recurrent model

strengthen its ability at expressing complex distributions.

Intuitively, appending the log-likelihood criterion to the KL

divergence has some conceptual similarity to the use of the

L1+L2 loss functions that has been empirically shown in

[29, 28] to be better than the individual counterparts. In

conclusion, each component brings a definitive upgrade to

the model and together, lend it the advantage it needs to

outperform the deterministic and stochastic state-of-the-art

models [4, 28, 29, 3].

Window size and output horizon: Recall from section 3.3

that the advantages 3D convolutions have over its 2D coun-

terpart when paired with an LSTM is that (1) the LSTM

state transitions are no longer completely reliant on its hid-

den states for motion information and (2) that one could

vary the window size (M) and the output horizon (H) at

each timestep without having to change the architecture. In

this experiment, we conduct additional studies on our model

where we varied M and H, the number of input frames and

the output horizon respectively at each timestep to study

the effects different design choices have on our model. As

expected, the plots in Figure 6 show a degradation in the

metrics over time regardless of the configuration in use.

The KTH plots exhibits an exponential decay whereas the

moving MNIST is more linear. The plots also show that

a smaller window size is better for the MNIST dataset but

has no clear difference for the KTH action dataset. Inter-

estingly, there are cases that favour a large window size and

output horizon and some other cases, that do not. For longer

predictions however, the plots show that the various config-

urations are quite similar in terms of performance.
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Model
x1:5 → x̂6:15 x1:5 → x̂6:20 x1:10 → x̂11:20 x1:10 → x̂11:30 # Params

SSIM MSE SSIM MSE SSIM MSE SSIM MSE

2D ConvLSTM [20] 0.662 111.1 0.482 154.3 0.763 82.2 0.660 112.3 2.8M

Variational 2D ConvLSTM [4] 0.733 91.1 0.564 126.4 0.816 60.7 0.773 83.5 2.9M

Variational 3D ConvLSTM 0.857 52.1 0.797 63.8 0.887 41.8 0.868 49.7 12.9M

Variational 3D ConvLSTM + LL Criterion (ours) 0.864 51.4 0.805 63.2 0.896 39.4 0.874 47.5 12.9M

Table 3. Ablation study on the Moving MNIST dataset. The metrics are computed frame-wise. Higher SSIM or lower MSE scores indicate

better results.

Figure 6. The effect of M window size and the output horizon H on the performance. The first row shows the SSIM and MSE scores on

the moving MNIST action dataset, while the second row the SSIM and PSNR on the KTH action dataset.

5. Conclusion

We have presented a deep neural network for future

frame prediction that performs well at predicting long term.

Our method uses 3D convolutions throughout the entire ar-

chitecture and is trained using a latent loss that includes a

specific log-likelihood criterion. Theoretically and experi-

mentally, we have shown the effects of these two contribu-

tions. First, the use of latent random variables in a 3D re-

current model enables it to persistently generate predictions

well beyond the time steps it was trained for and second,

the log-likelihood criterion helps direct the model towards

a better solution without an increase in model complexity.

This model outperforms prior stochastic methods by a good

margin while obtaining a performance that is on-par with

the state-of-the-art deterministic models for short-term fu-

ture frame prediction while being superior when generating

even further into the future.

We also proposed the benefits of using a smaller con-

volutional network for encoding and decoding videos as

it alleviates the burden on the ConvLSTM to jointly learn

short-term spatiotemporal features and long-term dynam-

ics, while continuing to keep the total number of parameters

manageable. We use a truncated 3D ResNet-18 (2 blocks)

which reduces the total number of parameters by 60 mil-

lion as the low-level spatiotemporal features captured by the

first few blocks of the 3D ResNet-18 are sufficient for the

ConvLSTM to further learn. We believe these findings are

useful for the development of more efficient and effective

spatiotemporal models with variational recurrent architec-

tures.
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