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Abstract

This paper introduces UDIVA, a new non-acted dataset

of face-to-face dyadic interactions, where interlocutors per-

form competitive and collaborative tasks with different be-

havior elicitation and cognitive workload. The dataset con-

sists of 90.5 hours of dyadic interactions among 147 par-

ticipants distributed in 188 sessions, recorded using multi-

ple audiovisual and physiological sensors. Currently, it in-

cludes sociodemographic, self- and peer-reported person-

ality, internal state, and relationship profiling from par-

ticipants. As an initial analysis on UDIVA, we propose a

transformer-based method for self-reported personality in-

ference in dyadic scenarios, which uses audiovisual data

and different sources of context from both interlocutors to

regress a target person’s personality traits. Preliminary re-

sults from an incremental study show consistent improve-

ments when using all available context information.

1. Introduction

Human interaction has been a central topic in psychol-

ogy and social sciences, aiming at explaining the complex

underlying mechanisms of communication with respect to

cognitive, affective, and behavioral perspectives [13, 12].

From a computational point of view, research in dyadic

and small group interactions enables the development of

automatic approaches for detection, understanding, mod-

eling, and synthesis of individual and interpersonal social

signals and dynamics [79]. Many human-centered applica-

tions for good (e.g., early diagnosis and intervention [27],

augmented telepresence [3], and personalized agents [29])

strongly depend on devising solutions for such tasks.

In dyadic interactions, we use verbal and nonverbal com-

munication channels to convey our goals and intentions [58,

∗These authors contributed equally to this work.

78] while building a common ground [19]. Both interlocu-

tors influence each other based on the cues we perceive [13].

However, the way we perceive, interpret, react, and adapt to

them depends on a myriad of factors. Such factors, which

we refer to as context, may include, but are not limited

to: our personal characteristics, either stable (e.g., personal-

ity [21], cultural background, and other sociodemographic

information [69]) or transient (e.g., mood [20], physiologi-

cal or biological factors); the relationship and shared history

between both interlocutors; the characteristics of the situa-

tion and task at hand; societal norms; and environmental

factors (e.g., temperature). What is more, to analyze indi-

vidual behaviors during a conversation, the joint modeling

of both interlocutors is required due to the existing dyadic

interdependencies. While these aspects are usually contem-

plated in non-computational dyadic research [41], context-

and interlocutor-aware computational approaches are still

scarce, largely due to the lack of datasets providing contex-

tual metadata in different situations and populations [26].

Here, we introduce UDIVA, a highly varied multimodal,

multiview dataset of zero- and previous-acquaintance, face-

to-face dyadic interactions. It consists of 188 interaction

sessions, where 147 participants arranged in dyads per-

formed a set of tasks in different circumstances in a lab set-

ting. It has been collected using multiple audiovisual and

physiological sensors, and currently includes sociodemo-

graphic, self- and peer-reported personality, internal state,

and relationship profiling. To the best of our knowledge,

there is no similar publicly available, face-to-face dyadic

dataset in the research field in terms of number of views,

participants, tasks, recorded sessions, and context labels.

As an initial analysis on the UDIVA dataset, we also

propose a novel method for self-reported personality in-

ference in dyadic scenarios. Apart from its importance

in interaction understanding, personality recognition is

key to develop individualized, empathic, intelligent sys-
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tems [61]. Our proposal is based on the Video Action Trans-

former [34], which classifies people’s actions in a video

by taking advantage of the spatiotemporal context around

them. Inspired by [66], we extend query, key, and value

from [34] with the other interlocutor’s scene, audio, and fur-

ther context metadata. The latter includes stable and tran-

sient characteristics from each interlocutor, as well as ses-

sion, task, and relationship information. Finally, we exper-

imentally evaluate the usefulness of each additional input

incrementally, showing consistent improvements when us-

ing all the available context sources and modalities.

2. Related work

This section reviews related work on dyadic scenarios

along three axes: social signals and behaviors in context,

personality recognition, and human interaction datasets.

Social signals and behaviors in context. Dyadic inter-

actions are a rich source of overt behavioral cues. They can

reveal our personal attributes and cognitive/affective inner

states dependent upon the context in which they are situated.

Context can take many forms, and in the case of recognition

of an individual state or attribute, the interaction partner’s

attributes and behaviors can be considered part of the target

person’s context. From a computational perspective, spa-

tiotemporal and multiview information can be referred to

as context as well. For the measurement of interpersonal

constructs (e.g., synchrony [22], rapport [87]), individual

social behaviors (e.g., engagement [23]) and impressions

(e.g., dominance [86], empathy [61]), the joint modeling of

both interlocutors and/or other sources of context has been

frequently considered. However, for the task of recognizing

individual attributes such as emotion and personality, con-

text has often been misrepresented, despite recurrent claims

on its importance [9, 81, 76, 56].

Recent years have seen a small surge in interlocutor-

aware approaches for utterance- or turn-based emotion

recognition in conversation [64] and sentiment analysis.

Early works were based on handcrafted nonverbal, spa-

tiotemporal dyadic features [44, 54]. Nowadays, most ap-

proaches rely on deep learning, using conversation tran-

scripts as input with contextualized word or speaker em-

beddings [47] and considering past and/or future parts of

the conversation as additional context. Temporal model-

ing of those feature representations has been widely per-

formed via recurrent approaches [50], and more recently

with BERT/Transformer-like architectures [88, 46]. Some

works have further proposed to enrich models with addi-

tional modalities, such as raw audiovisual data to enhance

the representation of interlocutors’ influences and dynam-

ics [83, 36], or speech cues in addition to the personality of

the target speaker [45]. Context-aware personality recog-

nition has followed a similar trend as for emotion, but the

literature is even scarcer. We discuss it next.

Automatic personality recognition. Personality is

widely defined as the manifestation of individual differ-

ences in patterns of thought, feeling, and behavior, that re-

main relatively stable during time [70]. In the personality

computing field [77], it is usually characterized by the ba-

sic Big Five traits [51] (Openness to Experience, Conscien-

tiousness, Extraversion, Agreeableness, and Neuroticism),

often referred to as OCEAN, based on self-reported assess-

ments. Most works focus on personality recognition from

the individual point of view, even in a dyadic or small group

conversational context [6], using only features from the tar-

get person. Preliminary studies tended to use handcrafted

features from gestures and speech [59], while more recent

works rely on deep learning approaches from raw data [52].

To our knowledge, few methods propose interlocutor-

or context-aware methods for personality recognition. The

work of [72] was one of the first, leveraging turn-taking

temporal evolution from transcript features but focusing

on apparent personality recognition (i.e., personality re-

ported by external observers [39]). With respect to self-

reported personality inference in small group interactions,

[30] regressed individual and dyadic features of personality

and social impressions utilizing handcrafted descriptors of

prosody, speech and visual activity. Later, [48] proposed

an interlocutor-modulated recurrent attention model with

turn-based acoustic features. Finally, [85] predicted per-

sonality and performance labels by correlation analysis of

co-occurrent key action events, which were extracted from

head and hand pose, gaze and motion intensity features. Re-

garding context, just one previous approach added person

metadata (e.g., gender, age, ethnicity, and perceived attrac-

tiveness) to audiovisual data [65]. However, their goal was

to better approximate the crowd biases for apparent person-

ality recognition in one-person videos. Contrary to previ-

ous works, we use different sources of context, including

both interlocutors, scene, and task information to infer per-

sonality, using for the first time a video-based transformer

adapted to include audio and further context as metadata.

Human interaction datasets. Research on human be-

havior and communication understanding has fostered the

creation of a plethora of human interaction datasets [42, 62,

26, 71]. Here, we focus on publicly available datasets con-

taining at least audiovisual data, which enable the fusion of

multiple modalities and the creation of more complete rep-

resentations. In the literature, we can find examples of rich,

non-acted datasets focused on computer-mediated dyadic

settings [16, 43], face-to-face triadic [40, 17], or small

group interactions [5]. A number of TV-based datasets with

acted interactions also exist [63]. However, in such cases,

the interlocutors’ internal states are artificially built.

One of the advantages of face-to-face settings is that the

full overt behavioral spectrum can be observed and mod-

eled. Existing publicly available face-to-face dyadic inter-
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Table 1. Publicly available audiovisual human-human (face-to-face) dyadic interaction datasets. “Interaction”, Acted (actors improvising

and/or following an interaction protocol, i.e. given topics/stimulus/tasks), Acted∗ (Scripted), Non-acted (natural interactions in lab environ-

ment) or Non-acted∗ (non-acted but guided by interaction protocol); “F/M”, number of participants per gender (Female/Male) or number

of participants if gender is not informed; “Sess”, number of sessions; “Size”, hours of recordings;“#Views”, number of RGB cameras used,

and D is RGB+D, E is Ego, M is Monochrome. The φ symbol is used to indicate missing/incomplete/unclear information on the source.
Name / Year Focus Interaction Modality Annotations F/M Sess Size #Views Lang.

IEMOCAP [14],

2008
Emotion recognition

Acted∗ &

Acted

Audiovisual, face &

hands MoCap.
Emotions, transcripts, turn-taking 5/5 5 ∼12h 2 English

CID [11], 2008
Speech & conversation

analysis

Non-acted &

Non-acted∗
Audiovisual Speech features, transcripts 10/6 8 8h 1 French

HUMAINE†

[24, 25], 2011
Emotion analysis Non-acted∗ Audiovisual Emotions 34 18 ∼12h 4 English

MMDB [67], 2013
Adult-infant

interaction analysis
Non-acted∗

Audiovisual, depth,

physiological

Social cues (gaze, vocal affects,

gestures...)
121 160 ∼13.3h 8 + 1D English

MAHNOB [10],

2015
Mimicry Non-acted∗

Audiovisual, head

MoCap.

Head, face and hand gestures,

personality scores (self-reported)
29/31 54 11.6h 2 + 13M English

MIT Interview

[57], 2015
Hirability analysis Non-acted∗ Audiovisual

Hirability, speech features, social

& behavioral traits, transcripts
43/26 138 10.5h 2 English

Creative IT [55],

2016
Emotion recognition Acted

Audiovisual, body

MoCap.

Transcripts, speech features,

emotion
9/7 8 ∼1h 2 English

MSP-IMPROV

[15], 2017
Emotion recognition

Acted &

Non-acted
Audiovisual Turn-taking, emotion 6/6 6 9h 2 English

DAMI-P2C [18],

2020

Adult-infant

interaction analysis
Non-acted∗ Audiovisual

Emotion, sociodemographics,

parenting assessment, child

personality (peer-reported)

38/30 65 ∼21.6h 1 φ English

UDIVA (ours),

2020

Social interaction

analysis

1

5
Non-acted

&
4

5
Non-acted∗

Audiovisual, heart

rate

Personality scores (self- & peer-

reported), sociodemographics,

mood, fatigue, relationship type

66/81
188×5

(tasks)
90.5h 6 + 2E

Spanish,

Catalan,

English
† Here we consider the Green Persuasive and the EmoTABOO [84] databases together.

action datasets are summarized in Table 11. As it can be

seen, most of them are limited in the number of partici-

pants, recordings, views, context annotations, language, or

purpose. The UDIVA dataset has been designed with a mul-

tipurpose objective and aims at filling this gap.

3. UDIVA dataset

This section introduces the UDIVA dataset (Under-

standing Dyadic Interactions from Video and Audio sig-

nals), consisting of time-synchronized multimodal, multi-

view videos of non-scripted face-to-face dyadic interactions

based on free and structured tasks performed in a lab setup2.

3.1. Motivation

UDIVA wants to move beyond automatic individual be-

havior detection and focus on the development of automatic

approaches to study and understand the mechanisms of in-

fluence, perception and adaptation to verbal and nonverbal

social signals in dyadic interactions, taking into account in-

dividual and dyad characteristics as well as other contextual

factors. One of our research questions centers on the feasi-

bility of developing systems able to unravel the personality

and internal processes of an individual by the social signals

they convey, and to understand how interaction partners per-

ceive and react to those cues directed to them. By publicly

releasing the dataset to the research community, we encour-

age data sharing and collaboration among different disci-

plines, reuse, and repurposing of new research questions.

1The complete table is included in the supplementary material.
2Additional details regarding design, participants recruitment, techni-

cal setup, and descriptive statistics will be provided in a follow-up paper.

3.2. Main statistics

The dataset is composed of 90.5h of recordings of dyadic

interactions between 147 voluntary participants3 (55.1%

male) from 4 to 84 years old (mean=31.29), coming from

22 countries (68% from Spain). The majority of partic-

ipants were students (38.8%), and identified themselves

as white (84.4%). Participants were distributed into 188

dyadic sessions, with a participation average of 2.5 ses-

sions/participant (max. 5 sessions). To create the dyads,

three variables were taken into account: 1) gender (Female,

Male); 2) age group (Child: 4-18, Young: 19-35, Adult:

36-50, and Senior: 51-84); and 3) relationship among in-

terlocutors (Known, Unknown). Participants were matched

according to their availability and language while trying to

enforce a close-to-uniform distribution among all possible

combinations between variables (60 combinations). A min-

imum age of 4 years and the ability to maintain a conversa-

tion in English, Spanish or Catalan were the only inclusion

criteria. In the end, the most common interaction group is

Male-Male/Young-Young/Unknown (15%), with 43% of the

interactions happening among known people. Spanish is the

majority language of interaction (71.8%), followed by Cata-

lan (19.7%). Half of the sessions include both interlocutors

with Spain as country of origin.

3.3. Questionnairebased assessments

Prior to their first session, each participant filled a so-

ciodemographic questionnaire, including: age, gender, eth-

3Participants gave consent to be recorded and to share their collected

data for research purposes, in compliance with GDPR https://ec.

europa.eu/info/law/law-topic/data-protection_en.
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(a) (b)

Figure 1. Recording environment. We used six tripod-mounted cameras, namely GB: General Rear camera, GF: General Frontal camera,

HA: individual High Angle cameras and FC: individual Frontal Cameras, and two ego cameras E (one per participant, placed around their

neck). a) Position of cameras, general microphone and participants. b) Example of the time-synchronized 8 views.

Figure 2. Examples of the 5 tasks included in the UDIVA dataset from 5 sessions. From left to right: Talk, Lego, Animals, Ghost, Gaze.

nicity, occupation, maximum level of education, and coun-

try of origin. To assess personality and/or temperament,

age-dependent standardized questionnaires were adminis-

tered. In particular, parents of children up to 8 years old

completed the Children Behavior Questionnaire (CBQ) [68,

60], participants from 9 to 15 years old completed the Early

Adolescent Temperament Questionnaire (EATQ-R) [28],

while participants aged 16 and older completed both the Big

Five Inventory (BFI-2) [70] and the Honesty-Humility axis

of the HEXACO personality inventory [8].

All participants (or their parents) completed pre- and

post-session mood ([32]) and fatigue (ad hoc 1-to-10 rat-

ing scale) assessments. The mood assessment contained

items drawn from the Post Experimental Questionnaire of

Primary Needs (PEQPN [80]). After each session, partici-

pants aged 9 and above completed again the previous tem-

perament/personality and mood questionnaires, this time

rating the individual they interacted with, to provide their

perceived impression. Finally, participants reported the re-

lationship they had with their interaction partner, if any.

3.4. Structure of a dyadic session

Participants were asked to sit at 90◦ to one another

around a table (see Fig. 1(a)), to be close enough to perform

the administered tasks while facilitating data acquisition. A

session consisted of 5 tasks (illustrated in Fig. 2) eliciting

distinct behaviors and cognitive workload:

Talk. Participants were instructed to talk about any sub-

ject during approx. 5 minutes. This task allows analysis of

common conversation constructs, such as turn-taking, syn-

chrony, empathy and quality of interaction, among others.

“Animals” game. Participants asked 10 yes/no ques-

tions each to guess the animal they had on their forehead.

Animals were classified into 3 difficulty levels. This game

reveals cognitive processes (e.g., thinking, gaze events).

Lego building. Participants built a Lego together fol-

lowing the instructions leaflet, ranging between 4 difficulty

levels. This task fosters collaboration, cooperation, joint at-

tention, and leader-follower behaviors, among others.

“Ghost blitz” card game. Participants had to select,

from a set of 5 figures, the one whose color and shape was

not shown in a selected card. They played 1 card per turn,

competing with each other to be the first at selecting the

correct figure. This task fosters competitive behavior, and

allows cognitive processing speed analysis, among others.

Gaze events. Participants followed directions to look

at other’s face, at static/moving object, or elsewhere, while

moving head and eyes. This task serves as ground truth for

gaze gestures and face modeling with varied head poses.

These tasks were selected along with psychologists due

to the variety of individual and dyadic behaviors they

elicit. In particular, Lego structures have been widely used

in observational settings to assess aspects as communica-

tion [1], social skills [49] or teamwork abilities and per-

formance [31]. Ghost and Animals are examples of board

games, proven to be valid assessments of interpersonal

skills [35, 74]. All these aspects are, in turn, indicators of

personality traits like Extraversion, Agreeableness or Con-

scientiousness [4]. Cognitive methods, such as the tasks

herein used, are routinely used in personality research [7].

The tasks were explained by a lab proctor prior to each

task, who left the recording room while it was taking place.

Only for Gaze the proctor gave the instructions while partic-

ipants performed them. Talk was always administered first

as a warm-up, while Gaze was always last. The rest were

administered randomly. The difficulty of Lego and Animals

4



Figure 3. Proposed method to infer self-reported personality (OCEAN) traits from multimodal synchronized signals and context. Input

consists of visual (face, local context, and extended context chunks), audio (raw chunks), and metadata (both interlocutors’ characteristics,

and session and dyadic features). Feature extraction is performed by a R(2+1)D network for the visual chunks and VGGish for audio. The

visual features from the R(2+1)D’s 3rd residual block are concatenated to spatiotemporal encodings (STE). The VGGish’s audio features

and handcrafted metadata features are incorporated to visual context/query features and the result transformed to the set of Query, Keys,

and Values as input to the Transformer network (Tx). The latter consists of N Tx layers, each equipped with Local and Extended Context

Transformer Tx units. Such units implement multiheaded attention and provide their updated queries, which are combined and fed to the

next Tx Layer. Finally, the output of the N -th Tx layer is fed to a fully-connected (FC) layer to regress per-chunk OCEAN scores.

for each session was selected such that no participants re-

peated the same Lego or animal twice, while forcing a uni-

form distribution on the number of times each item was used

for the total of sessions. To assess their difficulty level, we

conducted an anonymous survey among 19 co-researchers.

3.5. Technical setup

The setup consisted of 6 HD tripod-mounted cameras

(1280 × 720px, 25fps), 1 lapel microphone per participant

and an omnidirectional microphone on the table, as de-

picted in Fig. 1(a). Each participant also wore an egocen-

tric camera (1920× 1080px, 30fps) around their neck and a

heart rate monitor on their wrist. All the capturing devices

are time-synchronized and the tripod-mounted cameras cal-

ibrated. See Fig. 1(b) for an example of the camera views.

4. Personality traits inference

This section provides a first insight into the UDIVA

dataset by evaluating it in a personality traits inference

task. We present a transformer-based context-aware model

to regress self-reported personality traits of a target person

during a dyadic interaction. Then, we assess its perfor-

mance and the effect of adding several sources of context.

Method, evaluation protocol and results are described next4.

4.1. Method description

The attention mechanism of our transformer-based

method relates an initial query, in this case the target per-

son’s face, to the nonverbal behavior of both interlocutors,

the overall scene, and further contextual metadata, and up-

dates it with relevant context. The process is repeated with

the updated query in consecutive layers to eventually infer

the personality (OCEAN) traits. The proposed method con-

sists of several stages, detailed below. All components and

the information flow among them are illustrated in Fig. 3.

Audiovisual input. Let XL,XE ∈ [0, 255]L×H×W×3

be the pair of time-synchronized full-length videos con-

taining the target person (local context) and the other

interlocutor (extended context), respectively. We divide

them into 32-frame non-overlapping chunks and resize each

chunk’s spatial resolution to 112 × 112 to obtain, respec-

tively, BL,BE ∈ [0, 255]32×112×112×3. The 32 frames

of the chunks are sampled with a stride of 2, such that a

4Additional details are provided in the supplementary material.
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chunk corresponds to approx. 2.5 seconds of the original

videos. Also, we detect the target person’s face regions

in XL, crop, and re-scale them to form the face chunk

BF ∈ [0, 255]32×112×112×3. As face detector, we use a

MobileNet-SSD [38] model pretrained on Widerface [82].

Apart from the visual data, we define an audio chunk bA ∈
R

132 300 consisting of the raw audio frames acquired at 44.1

KHz from the general microphone (or one of the lapels if the

general one was not available for that session), and time-

synchronized to its respective video chunk.

Metadata input. Different sources of context are cap-

tured in the form of input metadata, described in Table 2.

We consider 2 types of metadata: (1) local metadata, con-

taining individual context from the target person and ses-

sion information; and (2) extended metadata, with individ-

ual context from the other interlocutor and dyadic features.

Feature extraction. First, we normalize the pixel values

of {BF ,BL,BE} in the range [0, 1], subtracting and divid-

ing them by the mean and standard deviation of the IG-65M

dataset [33]. Then, we feed them to a R(2+1)D network [73]

backbone, pretrained on that same dataset, and save the

rich spatiotemporal features produced by the R(2+1)D’s 3rd

convolutional residual stack: Z′
F = gF (BF ; θF ), Z′

L =
gL(BL; θC), Z

′
E = gE(BE ; θC), where θF are the weights

of the face network gF (·), and θC are shared weights of

gL(·) and gE(·) networks. Z′
F ,Z

′
L,Z

′
E ∈ R

16×28×28×128

denote the face, local context, and extended context visual

features, respectively. For the audio feature extraction, we

use the VGGish [37] backbone. This VGG-like model, de-

veloped specifically for the audio modality and with pre-

trained weights θA learned on a preliminary version of

the YouTube-8M [2], provides a feature vector a ∈ R
128

encoding information contained in the bA chunk: a =
gA(bA; θA). Finally, input metadata is normalized accord-

ing to Table 2, and encoded in mL ∈ R
20 and mE ∈ R

19

for local and extended metadata features, respectively.

Spatiotemporal encodings (STE). Following other

transformer-like architectures, we need to add positional en-

codings to our audiovisual feature embeddings Z′, which

can be either learned or fixed. We opt to learn them

end-to-end. Being 16 the size of the temporal dimension

of the different Z′, we create a vector of zero-centered

time indices t =
〈

− 16

2
,− 16

2
+ 1, . . . , 16

2
− 1

〉

. The tem-

poral encodings are computed by a two-layered network:

P′
T = ReLU

(

Θ⊤
T1
ReLU

(

Θ⊤
T2
t
))

, where ΘT1
∈ R

1×20

and ΘT2
∈ R

20×10 are learned weights. The spatial en-

codings P′
S are computed by a similar encoding network.

Given that 28 × 28 is the spatial resolution of the fea-

tures, we feed to the spatial encoding network a tensor

of spatially zero-centered position indices S ∈ R
28×28×2,

where Si,j =
〈

i− 28

2
, j − 28

2

〉

, ∀i, j ∈ [0, 28) and weights

ΘS1
∈ R

2×20 and ΘS2
∈ R

20×10. Then, P′
T and P′

S are

reshaped to PT ∈ R
16×1×1×10 and PS ∈ R

1×28×28×10

Table 2. Description of the different sources of context included as

metadata in the proposed personality inference model.

Context type Source
Value range

normalization

Output

size

In
d

iv
id

u
a

l

Stable
(across

sessions)

Age Self-reported [17, 75] → [0, 1] 1D

Gender Self-reported {F,M} → {0, 1} 1D

Cultural
background

Self-reported

(country of origin)

Recategorization

based on cultural
differences [53]

6D
(one-hot

encoding)

Transient
(per

session)

Session
index

Session
info.

[1, 5] → [0, 1] 1D

Pre-session
mood

Self-reported [32]

(8 categories∗,

Likert scale)

[1, 5] → [0, 1]
(for each category)

8D

Pre-session
fatigue

Self-reported

(Rating scale)
[0†, 10] → [0, 1] 1D

S
es

si
o

n Order of the task

within the session

Session
info. [1, 4] → [0, 1] 1D

Task difficulty† External
survey

[0, 3] → [0, 1] 1D

D
y

a
d

ic

Interlocutors’

relationship

Self-reported {N,Y} → {0, 1} 1D

∗Categories: good, bad, happy, sad, friendly, unfriendly, tense, and relaxed.
† Sessions with fatigue data missing were assigned a value of 0.
‡ Tasks with no difficulty level associated were assigned a value of 0.

and concatenated together by broadcasting singleton dimen-

sions, i.e. P = PS ‖ PT . P ∈ R
16×28×28×20 is con-

catenated to each of the feature embeddings Z′: ZF =
Z′

F ‖ P, ZL = Z′
L ‖ P, ZE = Z′

E ‖ P, resulting in

ZF ,ZL,ZE ∈ R
16×28×28×148. To these features with spa-

tiotemporal encodings, Z, we will later concatenate meta-

data and audio to obtain the face query, local context, and

extended context features.

Query Preprocessor (QP). This small module trans-

forms ZF to a vector-form: f = QP(ZF ), f ∈ R
128.

The QP consists of a 3D max pooling layer of size (1, 2, 2)
and stride (1, 2, 2), a 3D conv layer of size (1, 1, 1) and 16
filters, a ReLU activation function layer, a permutation of

dimensions and reshaping so that the temporal dimensions

and the channels are merged into the same dimension, a 2D

max pooling of size (2, 2), a 2D conv layer of size (1, 1),
a ReLU activation layer, a flattening, and a fully-connected

(FC) layer of size 128, another ReLU, and a dropout layer.

Multimodality: fusing visuals with audio and meta-

data. Both local and extended visual context features along

with encodings, ZL and ZE , are augmented with audio fea-

tures. The original 128-dimensional global audio features

a are linearly projected to a more compact 100-dimensional

representation and reshaped to A ∈ R
1×1×1×100. Then, the

local context features are simply WL = ZL ‖ A. The ex-

tended context features are augmented with the updated au-

dio features and the extended metadata from the interlocu-

tor, reshaping mE ∈ R
19 to ME ∈ R

1×1×1×19 and apply-

ing broadcast concatenation, that is WE = ZE ‖A ‖ME .

Finally, the face query features wQ ∈ R
148 are built from

the combination of the QP output along with the target per-

son’s local metadata: wQ = f ‖mL.

Keys, Values, and Query. To obtain the final input

to the transformer layers, we first need to transform lo-

cal and extended context features into two different 128-

dimensional embeddings (Keys and Values), and also the
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Table 3. Evaluated scenarios. Mean value baseline (B) obtained

from the mean of the per-trait ground truth labels of the train-

ing set; and the proposed method with/without Local (L) and Ex-

tended (E) context, Metadata (m), and Audio (a) information.
Query Key and Value

Face∗ Metadata∗ Frame∗ Frame‡ Metadata‡ Audio

B - - - - - -

L ✓ - ✓ - - -

Lm ✓ ✓ ✓ - - -

LE ✓ - ✓ ✓ - -

LEm ✓ ✓ ✓ ✓ ✓ -

LEa ✓ - ✓ ✓ - ✓

LEam ✓ ✓ ✓ ✓ ✓ ✓
∗ target person and ‡ interlocutor data.

face query features into the query embedding of the same

size. The Local keys and Local values are then KL =
ReLU(Θ⊤

KL
WL) and VL = ReLU(Θ⊤

VL
WL) where

ΘKL
,ΘVL

∈ R
248×128, whereas the Extended keys and

Extended values are KE = ReLU(Θ⊤
KE

WE) and VE =

ReLU(Θ⊤
VE

WE), where ΘKE
,ΘVE

∈ R
267×128. The

input Query representation q0 ∈ R
128 is computed as

q0 = ReLU(Θ⊤
Q0

wQ), where ΘQ0
∈ R

148×128.

Transformer network. Our transformer network (Tx)

is composed of N = 3 Tx layers with 2 Tx units each, one

for the local context and another one for the extended con-

text. The units consist of a multiheaded attention layer with

H = 2 heads each. Each head computes a separate 128/H-

dimensional linear projection of the query, the keys, and the

values, and applies scaled dot product attention as in [75].

Then, it concatenates the H outputs, and linearly projects

them back to a new 128-dimensional query. After the mul-

tiheaded attention, the resulting query follows the rest of

the pipeline in the Tx unit (as illustrated in Fig. 3) to ob-

tain the updated query. Note that each unit in the i-th layer

provides its own updated query, denoted as qLi
∈ R

128

and qEi
∈ R

128, 0 < i ≤ N . These are next concate-

nated together and fed to a FC layer to obtain the i-th layer’s

joint updated query qi = ReLU
(

Θ⊤
Qi
(qLi

‖ qEi
)
)

, where

ΘQi
∈ R

256×128. Finally, qi is fed as input to the next

(i+ 1-th) layer.

Inference. The per-chunk OCEAN traits are obtained

by applying a FC layer to the updated query from the N -

th (last) layer, i.e. y = Θ⊤
FC

qN where ΘFC ∈ R
128×5.

Final per-trait, per-subject predictions are computed as the

median of the chunks predictions for each participant.

4.2. Experimental setup

This section describes the experimental setup used to as-

sess the performance of the personality inference model.

The evaluation is performed on all tasks except Gaze, in

which very few personality indicators were present due to

the task design. We use frontal camera views (FC1 and

FC2, see Fig. 1), in line with the proposed methodology. As

personality labels, we use the raw OCEAN scores obtained

from the self-reported BFI-2 questionnaire, converted into

z-scores using descriptive data from normative samples.

Data and splits description. We use the subset of

data composed of participants aged 16 years and above, for

which Big-five personality traits are available (see Sec. 3.3).

Subject-independent training, validation and test splits were

selected following a greedy optimization procedure that

aimed at having a similar distribution in each split with re-

spect to participant and session characteristics, while ensur-

ing that no participants appeared in different splits. In terms

of sessions and participants, the final splits respectively con-

tain: 116/99 for training, 18/20 for validation, and 11/15 for

test. Although the validation split is larger than the test split,

the latter contains a better trait balance. Since the duration

of the videos is not constant throughout sessions and tasks,

in order to balance the number of samples we uniformly se-

lected around 120 chunks from each stream, based on the

median number of chunks per video. The final sample of

chunks contains 94 960 instances for training, 15 350 for

validation and 7 870 for test, distributed among the 4 tasks.

Evaluation protocol. We follow an incremental ap-

proach, starting from the local context. Six different sce-

narios are evaluated, summarized in Table 3. We train one

model per scenario and task, since each of the four tasks

can elicit different social signals and behaviors (detailed in

Sec. 3.4), which can be correlated to different degrees with

distinct aspects of each personality trait. Results are evalu-

ated with respect to the Mean Squared Error between the ag-

gregated personality trait score and associated ground truth

label for each individual in the test set. We also compare

the results to a mean value baseline (“B”), computed as the

mean of the per-trait ground truth labels of the training set.

4.3. Discussion of results

Obtained per-task results for the different scenarios are

shown in Table 4. We discuss some of the findings below.

Effect of including extended (E) visual information.

The extended context contains visual information from the

other interlocutor’s behaviors and surrounding scene, allow-

ing the model to consider interpersonal influences during a

chunk. By comparing “L” vs. “LE” we can observe that,

on average, only Talk benefits from the addition of the ex-

tended visual context. Trait-wise, Extraversion improves

for all tasks except for Lego, which performs worse for all

traits. This can be attributed to the fact that the interaction

during this type of collaboration is more slow-paced than in

other tasks. Therefore, interpersonal influences cannot be

properly captured during just one chunk. In contrast, for

more natural tasks such as Talk, or fast-moving games such

as Ghost, there are many instant actions-reactions that can

be observed during a single chunk, the effect of which is

reflected in the improved results for those tasks. This mo-

tivates the need to extend the model to capture longer-time

interpersonal dependencies, characteristic of human inter-
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Table 4. Obtained results on different tasks. Legend: Mean value baseline (B) obtained from the mean of the per-trait ground truth labels of

the training set; and the proposed method with/without Local (L) and/or Extended (E) context, Metadata (m), and Audio (a) information.
Animals Ghost Lego Talk

O C E A N Avg O C E A N Avg O C E A N Avg O C E A N Avg

B 0.731 0.871 0.988 0.672 1.206 0.894 0.733 0.887 0.991 0.674 1.220 0.901 0.738 0.871 0.990 0.676 1.204 0.896 0.731 0.872 0.991 0.673 1.211 0.896

L 0.742 0.879 0.955 0.674 1.133 0.877 0.744 0.891 1.010 0.677 1.242 0.913 0.723 0.852 0.917 0.676 1.164 0.866 0.769 0.769 0.997 0.664 1.177 0.875

Lm 0.721 0.874 0.946 0.684 1.154 0.876 0.759 0.859 1.027 0.642 1.208 0.899 0.725 0.798 0.857 0.618 1.101 0.820 0.743 0.798 0.962 0.636 1.168 0.861

LE 0.733 0.832 0.988 0.672 1.221 0.889 0.731 0.905 0.956 0.676 1.291 0.912 0.731 0.885 0.949 0.676 1.230 0.894 0.738 0.793 0.964 0.673 1.094 0.852

LEm 0.736 0.834 0.968 0.669 1.192 0.880 0.743 0.944 0.868 0.657 1.153 0.873 0.727 0.763 0.826 0.611 1.037 0.793 0.825 0.718 0.878 0.639 1.047 0.821

LEa 0.722 0.827 0.954 0.672 1.211 0.877 0.730 0.872 0.950 0.672 1.199 0.885 0.742 0.867 0.941 0.672 1.229 0.890 0.757 0.728 0.970 0.664 1.106 0.845

LEam 0.737 0.756 0.887 0.580 1.023 0.797 0.741 0.893 0.844 0.667 1.139 0.857 0.745 0.839 0.953 0.659 1.099 0.859 0.773 0.790 0.869 0.670 0.985 0.817

actions, across a series of ordered chunks along time, to

truly benefit from this extended information.

Effect of including metadata (m) information. The

inclusion of metadata validates our intuition that personal,

task, and dyadic details provide relevant information to

the model to produce overall better predictions, particu-

larly if the cases “L” vs. “Lm”, “LE” vs. “LEm”, and

“LEa” vs. “LEam” are compared, with the largest im-

provement observed for Lego (11.29%, “LE” vs. “LEm”

case). Considering the high heterogeneity and dimensional-

ity of behaviors revealed in an interaction and their multiple

meanings, these concise features appear to be beneficial to

better guide the model and establish meaningful patterns in

the data. Nonetheless, a systematic study would be needed

to assess the effect of each feature individually.

Effect of including audio (a) information. From com-

paring “LE” vs. “LEa” and “LEm” vs. “LEam”, we observe

that better results are obtained, on average, for all the tasks

when audio information is considered. In line with pre-

vious literature [77], it is clear that paralinguistic acoustic

features are required to better model personality. However,

the observed improvement is smaller for Lego. One plausi-

ble reason would be the noise produced by the Lego pieces

while being moved, or by the instructions book while turn-

ing its pages close to the microphones, which would inter-

fere with the learning process. In the case of more natural

routines like Talk, the influence of audio is not as strong

as we would have expected. In contrast, Animals, another

speaking-based task, obtains the best results for almost all

traits when audio is considered. There is one salient dif-

ference among these two tasks that may explain this pat-

tern. The latter elicits more individual covert thinking and

cognitive processes that cannot be entirely observed from

the visual modality, so most of the overt information comes

from the spoken conversation. In contrast, the former elic-

its a larger range of visual cues which may be more relevant

than acoustic features for certain traits.

Putting everything together. In the last experiment

(“LEam”), the model is aware of the overall contextual in-

formation. We notice that apart from Lego, for which the

audio drawbacks were already commented, all the other

tasks seem to benefit from the provided knowledge, obtain-

ing the lowest error value on average.

Baseline comparison. We observe that Agreeableness,

followed by Openness, obtain the lowest error among mean

value baseline (“B”) results, indicating that ground truth la-

bels for such traits are more concentrated. In those cases,

none of the models achieve a substantial improvement over

the baseline, except for Animals, where “LEam” obtains an

error of 0.58, the lowest overall. At the other end we find

Neuroticism, which is the trait with most spread values, but

also the one for which we obtain the largest benefits with

the evaluated models. In particular, the largest improvement

overall (18.66%) is given by “LEam” for Talk.

5. Conclusion
This paper introduced UDIVA, the largest multiview au-

diovisual dataset of dyadic face-to-face non-scripted inter-

actions. To validate part of its potential, we proposed a mul-

timodal transformer-based method for inferring the person-

ality of a target person in a dyadic scenario. We incremen-

tally combined different sources of context (both interlocu-

tors’ scene, acoustic and task information) finding consis-

tent improvements as they were added, which is consonant

with human interaction research in the psychology field.

UDIVA is currently being annotated with additional la-

bels (e.g., transcriptions, continuous action/intention for

human-object-human interaction) to allow for a more holis-

tic analysis of human interaction from both individual and

dyadic perspectives. From a methodological point of view,

we plan to extend the proposed architecture to better capture

long-term discriminative features. Nevertheless, we are re-

leasing this data5 with the purpose of advancing the research

and understanding of human communication from a multi-

disciplinary perspective, far beyond personality analysis.
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