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Abstract

Convolutional Neural Networks (CNNs) are being in-

creasingly used to address the problem of iris presentation

attack detection. In this work, we propose an explainable

attention-guided iris presentation attack detector (AG-PAD)

to augment CNNs with attention mechanisms and to pro-

vide visual explanations of model predictions. Two types of

attention modules are independently placed on top of the

last convolutional layer of the backbone network. Specif-

ically, the channel attention module is used to model the

inter-channel relationship between features, while the posi-

tion attention module is used to model inter-spatial relation-

ship between features. An element-wise sum is employed to

fuse these two attention modules. Further, a novel hierar-

chical attention mechanism is introduced. Experiments in-

volving both a JHU-APL proprietary dataset and the bench-

mark LivDet-Iris-2017 dataset suggest that the proposed

method achieves promising detection results while explain-

ing occurrences of salient regions for discriminative feature

learning. To the best of our knowledge, this is the first work

that exploits the use of attention mechanisms in iris presen-

tation attack detection.

1. Introduction

Iris recognition systems are vulnerable to various types

of presentation attacks (PAs), where an adversary presents a

fabricated artifact or an altered biometric trait to the iris sen-

sor in order to circumvent the system [5]. Commonly dis-

cussed attacks include cosmetic contacts, printed eyes, and

artificial eye models [3]. To address these challenges, con-

volutional neural networks (CNNs) are being increasingly

used for addressing the problem of iris presentation attack

detection (PAD) [10, 19, 31, 30, 17, 14, 22, 8], which is of-

ten formulated as a binary-classification task. The output

of the network is a presentation attack (PA) score indicat-

ing whether the input image should be classified as “live”

or “PA”.1 Existing work in the literature have shown re-

1Sometimes, the term “bonafide” is used instead of “live”, and the term

“spoof” is used instead of “PA”, in the biometrics literature.

markable performance on known or seen presentation at-

tacks, where attacks encountered in the test set are observed

in the train set [16]. Detecting unknown or unseen presen-

tation attacks remains a very challenging problem [34, 6].

Further, degraded iris image quality can significantly affect

detection accuracy [31].

Attention networks [26, 12] model the interdependencies

between channel-wise features and/or spatial-wise features

on CNN feature maps. Feature maps are obtained when

a series of convolution filters are applied to outputs from

a previous layer in a CNN. The dimensionality of feature

maps is channel×height×width. The channel corresponds

to the number of convolution filters. The height×width de-

fines the spatial dimension. Channel-wise features are de-

rived from channel-wise convolution that operates along the

direction of the channel of feature maps, whereas spatial-

wise features are derived from spatial convolution that op-

erates along the direction of the width and height of fea-

ture maps. Attention networks have been appropriated in

the context of the face modality [25, 4], but have not yet

been exploited by other biometric modalities. Wang et

al. [25] proposed a multi-modal fusion approach by sequen-

tially combining the spatial and channel attention modules

to improve the generalization capability of face PAD sys-

tems. Chen et al. [4] developed an attention-based fusion

scheme that can effectively capture the feature complemen-

tarity from the outputs of two-stream face PAD networks.

However, attention mechanisms have not been leveraged for

use in iris presentation attack detection. Furthermore, effec-

tively integrating such attention modules within the CNN

architecture is yet to be systematically studied for presenta-

tion attack detection as well as model explanation.

In this paper, we present an explainable attention-guided

iris presentation attack detector (AG-PAD) that improves

both the generalization and explanation capability of ex-

isting PAD networks. This is due to the capability of at-

tention mechanisms to model long-range pixel dependen-

cies such that they can refine the feature maps to focus

on regions of interests. Here, long-range dependencies are

modeled via the receptive fields formed by a series of se-

quential convolutional operations. Given a set of convo-
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lutional feature maps obtained from a backbone network,

a channel-attention module and a position-attention mod-

ule are independently used to capture the inter-channel and

inter-spatial feature dependencies, respectively. After that,

the refined feature maps are input to convolutional blocks

to extract more compact features. Finally, the outputs from

these two attention modules are fused using an element-

wise sum to capture complementary attention features from

both channel and spatial dimensions. This is followed by

global average pooling and softmax operations to com-

pute the class probabilities (“live” or “PA”). The flowchart

of the AG-PAD network is depicted in Figure 1. In or-

der to provide visual explanations for decisions made by

AG-PAD models, we utilize gradient-weighted class acti-

vation mapping (Grad-CAM) to flow the gradients back

from the class output to the convolutional layer to visualize

class-discriminative information. This offers insights on ex-

plaining model decisions by highlighting important regions

of the image that correspond to such predictions. Com-

pared with other explainable techniques such as saliency

maps [23], feature visualization [35], or inverted image rep-

resentations [15], Grad-CAM provides a simple way to vi-

sualize the importance of different input regions for the pre-

dicted class.

The main contributions of this work are summarized

here:

• We propose an attention-guided PAD approach that

can enhance the generalization and explanation capa-

bility of iris presentation attack detection.

• We extend the proposed PAD network by introducing

hierarchical attention to attend to lower-layer feature

representations.

• We evaluate the proposed method on challenging

datasets, involving both unseen and unknown PAs.

Although attention modules have been exploited in the face

PAD literature [25], our proposed method differs in several

different ways: (a) we propose a parallel combination of

these two different modules via an element-wise sum, in-

stead of sequentially combining the attention modules; (b)

we construct a hierarchical attention method to better attend

to the low-layer feature representations; and (c) we provide

better visualizations of the discriminative regions after inte-

grating the attention modules.

The rest of the paper is organized as follows. Sec-

tion 2 presents a literature survey on recent developments

in iris presentation attack detection and attention mecha-

nisms. Section 3 describes the proposed attention-guided

network used in this work, including the hierarchical atten-

tion network. Section 4 discusses the results of the proposed

method on both benchmark datasets and challenging pro-

prietary datasets, and compares it with the state-of-the-art

methods. Conclusions are reported in Section 5.

2. Related Work

In this section, we provide a brief discussion on (a) ex-

isting iris PAD techniques that utilize convolutional neural

networks and (b) the applications of attention mechanisms

in various computer vision tasks.

CNN-based Iris PAD: Development of Iris PAD ap-

proaches using CNN typically operate on either geomet-

rically normalized [10, 19, 30] or un-normalized iris im-

ages [17, 3, 29, 11, 14, 32]. This requires the use of an

iris segmentation or an iris detection method as a prepro-

cessing step [2]. He et al. [10] proposed a multi-patch con-

volutional neural network (MCNN) approach that densely

samples iris patches from the normalized iris image. Each

patch was independently fed into a convolutional neural net-

work and a final decision layer was used to fuse the outputs.

On the other hand, Chen and Ross [3] directly used the

un-normalized iris image. Their proposed method simul-

taneously performs iris localization and presentation attack

detection. Kuehlkamp et al. [14] computed multiple rep-

resentations of binarized statistical image features (BSIF)

of un-normalized iris images by exploiting different filter

sizes, and used these as inputs to the CNNs. An ensemble

model was then used to combine the outputs from the differ-

ent BSIF representations. To handle the problem of unseen

presentation attacks, Yadav et al. [32] used relativistic aver-

age standard generative adversarial network (RaSGAN) to

synthesize iris images in order to train a PAD system that

can generalize well to “unseen” attacks. The relativistic

discriminator (RD) component of the trained RaSGAN was

later extended to design a one-class classifier [33]. How-

ever, all the aforementioned methods do not use attention

modules to enhance presentation attack detection perfor-

mance.

Attention Mechanism: The use of an attention mech-

anism has been adopted in a variety of tasks such as im-

age captioning [28], segmentation [9, 24], classification,

and detection [26, 12, 27, 1]. In addition, attention mod-

ules have also been used by generative adversarial networks

(GANs) to allow for long-range pixel-dependency model-

ing for the image generation task [36, 7]. Generally, at-

tention mechanisms can be coarsely divided into two types:

the generation of channel attention module (CAM) and po-

sition attention module (PAM).2 Hu et al. [12] proposed

a novel architecture, termed the “Squeeze-and-Excitation”

(SE) block, to explicitly model the interdependencies be-

tween channels. Their proposed SENet won the ILSVRC

2017 image classification competition and generalized well

across challenging datasets. Though CAM and PAM can

2PAM is sometimes also referred to as spatial attention module.
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Figure 1: Flowchart depicting the proposed AG-PAD developed in this work. GAP and FC refer to the global average

pooling and fully connected layers, respectively. Attention modeling involves both the position attention module (PAM) and

the channel attention module (CAM). ⊕ denotes element-wise sum.

be independently integrated into existing network architec-

tures, they can also be combined together to provide com-

plementary attention information. Woo et al. [18] proposed

a bottleneck attention module (BAM) to first compute the

channel and spatial attentions along two separate network

branches. Then, an element-wise sum was used to combine

these two attention branches. The BAM was demonstrated

to show consistent improvement in both classification and

detection tasks. There are, of course, other ways to compute

the channel and spatial attention modules. Fu et al. [9] uti-

lized the self-attention mechanism to compute the PAM and

CAM. The PAM and CAM were combined via an element-

wise sum. Their proposed dual attention network (DANet)

achieved state-of-the-art performance in image segmenta-

tion. Inspired by the works of [27, 9], we observe that PAM

and CAM are able to capture long-range pixel dependencies

along the spatial and channel dimensions, thereby refining

the feature maps to focus on salient iris regions, which can

improve the generalization capability of iris PAD solutions.

3. Proposed Algorithm

Our proposed AG-PAD network aims to automatically

learn discriminative features from the cropped iris regions

that are relevant to presentation attack detection. However,

there is a need for using attention mechanisms to further en-

hance the feature discrimination along both the spatial and

channel dimensions. This will ensure that the network will

focus more on salient regions during backpropagation learn-

ing. The attention-based CNN model is designed by lever-

aging knowledge via transfer learning. Given a cropped iris

image, I , from a detection network [3], the feature maps are

extracted by a backbone network f , which is formulated as:

A = f(I|θ). (1)

Here, A ∈ R
C×H×W denotes the feature maps of the last

convolution layer, where C, H and W are the number of

channels, height and width of the feature maps, respectively.

θ is a set of parameters associated with the network. With-

out loss of generality, DenseNet121 [13] is chosen as the

backbone network in this study.

3.1. Position Attention Module

Given output feature maps, A ∈ R
C×H×W , obtained

from a backbone network, they are first fed into two dif-

ferent convolution layers to produce feature maps B ∈
R

C/r×H×W and C ∈ R
C/r×H×W , respectively. Here, r

is the reduction ratio. Then, these two feature maps are re-

shaped to R
C/r×N , where N = H × W . After that, C is

transposed to R
N×C/r, and multiplied with B, to obtain a

feature map of size R
N×N . Finally, a softmax layer is ap-

plied to compute the position attention map, P ∈ R
N×N ,

as follows:

Pij =
exp(Ci ·Bj)∑N
i=1

exp(Ci ·Bj)
, (2)

where, Ci denotes the i-th row of C and Bj denotes the j-

th column of B. Pij is a probability value measuring the

position dependency between Ci and Bj , meaning that it

can be considered as a weight to refine a pixel value in the

spatial position of a feature map.

In addition, the feature map A is fed into another convo-

lution layer to obtain a feature map D ∈ R
C×H×W , which

is later reshaped to R
C×N . After that, a matrix multiplica-

tion is performed between the reshaped D and P to obtain

R
C×N . This can be simply reshaped back to the dimensions

of the original feature map: R
C×H×W . The final refined

output is obtained as:

Mij = α

N∑

k=1

(DikPkj) +Aij . (3)

Visually, the procedure to compute the position attention

map can be seen in Figure 2.

3.2. Channel Attention Module

Given an output feature map, A ∈ R
C×H×W , obtained

from a backbone network, it is first reshaped to R
C×N .

Then, matrix multiplication is performed between A and the

transpose of A, resulting in R
C×C . The channel attention

map, Q, can be obtained as:
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Figure 2: Flowchart depicting the computation of PAM in

this work. ⊕ denotes element-wise sum and ⊗ denotes ma-

trix multiplication.

Qij =
exp(Ai ·Aj)∑C
i=1

exp(Ai ·Aj)
, (4)

where, Ai and Aj are used to denote the i-th row and j-th

column, respectively. Qij is a probability value measuring

the channel dependency, meaning that it can be considered

as a weight to refine a pixel value in the channel position

of a feature map. After that, the channel attention map Q

is multiplied with A, where the ensuing feature map is re-

shaped back to R
C×H×W . The final refined output from the

channel attention map is computed by rescaling with β and

an element-wise summation with A:

Mij = β

C∑

k=1

(QikAkj) +Aij . (5)

Visually, the procedure to compute the channel attention

map can be seen in Figure 3.

M

CxHxWCxHxW

A

reshape & transpose

Q

CxC

softmax

reshapereshape

reshape

Figure 3: Flowchart depicting the computation of CAM in

this work. ⊕ denotes element-wise sum and ⊗ denotes ma-

trix multiplication.

3.3. Attention­Guided PAD

After utilizing the position attention module and the

channel attention module to generate the refined outputs

from the input feature maps A, the remaining task is to ef-

fectively fuse the attention information from the comple-

mentary modules.

First, we consider performing an element-wise sum to

fuse the two attention modules.

A′ = Mp(A)⊕Mq(A). (6)

Here, Mp(A) and Mq(A) are the refined feature maps after

applying PAM and CAM, respectively, to the input feature

maps A.

Then, we also consider sequentially combining these two

attention modules.

A′ = Mq(A) (7)

A′′ = Mp(A
′). (8)

Here, A′ is the output after applying the channel attention

module to the input feature maps A. A′′ is the output after

applying the position attention module to the input feature

maps A.

In addition, a novel hierarchy-attention architecture is

proposed, which applies PAM and CAM to mid-level fea-

ture maps. Specifically, we have considered feature maps

extracted from the conv3 block and conv4 block, that have

dimensions of 28× 28× 512 and 14× 14× 1024, respec-

tively. In addition, CAM is applied to the last convolutional

block conv5 of size 7 × 7 × 1024. Since the feature di-

mensions from individual convolutional blocks are differ-

ent, max pooling is applied first to reduce both dimensions

of 28 × 28 × 512 and 14 × 14 × 1024 to 7 × 7 × 512 and

7 × 7 × 1024, respectively, prior to feature concatenation.

We demonstrate later that the hierarchy-attention architec-

ture is more superior for iris presentation attack detection on

low-quality samples due to its multi-scale representation.

3.4. Implementation Details

Due to a limited number of training samples in exist-

ing iris presentation attack datasets, our PAD models are

pre-trained on ImageNet [20]. We fine-tune our models us-

ing the feature maps of the last convolutional layer. Un-

less specified otherwise, DenseNet121 [13] is used as the

backbone network in this work. The input spatial size is

224 × 224 pixels. Our models are trained for 50 epochs in

total using Adam optimizer with a learning rate of 0.0001.

A mini-batch size of 32 is used during the training. We

add two convolutional layers right after the attention layers,

prior to the element-wise sum of the refined feature maps.

To better generalize to unseen attacks, extensive data

augmentation is applied to populate the training dataset. A

number of operations, including horizontal flipping, rota-

tion, zooming, and translation are applied. It must be noted

that sensor interoperability is implicitly addressed by glean-

ing iris samples from different datasets in the training phase.

The iris detection module is implemented using the Darknet

framework and the iris PAD is implemented using the Keras

framework.
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4. Experimental Result

4.1. Datasets and Metrics

The proposed AG-PAD is evaluated on the datasets col-

lected by Johns Hopkins University Applied Physics Lab-

oratory (JHU-APL). The datasets are collected across two

different sessions, which are termed as JHU-1 and JHU-2.

To facilitate the comparison against state-of-the-art meth-

ods, the proposed method is also evaluated on the bench-

mark LivDet-Iris-2017 datasets [34].

JHU-APL: The training set consists of 7,191 live sam-

ples and 7,214 PA samples that are assembled from a variety

of datasets. JHU-1 consists of 1,378 live samples and 160

PA samples. Types of PAs in JHU-1 include colored con-

tact lenses and Van Dyke/Doll fake eyes. JHU-2 consists

of 1,368 live samples and 227 PA samples. Types of PAs

in JHU-2 include colored contact lenses and Van Dyke/Doll

fake eyes. The colored contact lens in JHU-2 can be fur-

ther divided into Air Optix colored contact lenses, Acuvue

Define colored contact lenses, and Intrigue partial coverage

lenses (some examples are shown in Figure 10). The im-

age quality between JHU-1 and JHU-2 were observed to be

different. Samples collected in JHU-2 have improved cap-

ture quality by minimizing variations such as blur and re-

flection (see Figure 4). The experiments were conducted in

a cross-dataset setting, where training and test subsets are

from different datasets.

Figure 4: Examples of differences in image capture quality

between JHU-1 and JHU-2 datasets. The images in the top

and bottom rows are from JHU-1 and JHU-2, respectively.

The left two columns denote live samples, whereas the right

two columns denote PA samples.

LivDet-Iris-2017: For LivDet-Iris-2017-Warsaw, the

training subset consists of 2,669 print samples and 1,844

live samples. The test subset contains both known spoofs

and unknown spoofs. The known-spoofs subset includes

2,016 print samples and 974 live samples, while the

unknown-spoofs subset includes 2,160 print samples and

2,350 live samples. For LivDet-Iris-2017-ND, the training

subset consists of 600 textured contact lenses and 600 live

samples. The testing subset is split into known spoofs and

unknown spoofs. The known-spoofs subset includes 900

textured contact lenses and 900 live samples. The unknown-

spoofs subset includes 900 contact lens PAs, where the

types of contact lenses are not represented in the training

set, and 900 live samples.

Evaluation Metrics: To report results on the JHU-

APL datasets, we use True Detection Rate (TDR: propor-

tion of PAs that are correctly classified) and False Detec-

tion Rate (FDR: proportion of live images that are misclas-

sified as PAs),3 along with the Receiver Operating Char-

acteristic (ROC) curve. To report results on LivDet-Iris-

2017, we use the same evaluation metrics as outlined in

the LivDet-Iris-2017 competition: (a) BPCER is the rate of

misclassified live images (“live” classified as “PA”); and (b)

APCER is the rate of misclassified PA images (“PA” classi-

fied as “live”). Note that FDR is the same as BPCER and

TDR equals (1-APCER). Evaluations on the JHU-APL and

LivDet-Iris-2017 datasets follow the same training proto-

col described in Section 3.4. The difference lies in what

datasets are used for training and testing.

4.2. Evaluation on JHU­APL Datasets

The purpose of JHU-APL datasets is to evaluate the gen-

eralizability of the iris PAD solutions in practical applica-

tions. In addition to the DenseNet121 backbone network,

we also investigated the use of other backbones, viz., In-

ceptionV3 and ResNet50. The reason for testing various

different backbone networks is to showcase the effective-

ness of attention modules regardless of the choice of the

backbone network. Moreover, an ensemble of multiple

backbone networks may further boost PAD performance.

As can be seen from Figure 5, the obtained TDR accu-

racy at 0.2% FDR on the JHU-1 dataset is not high. This

is due to the degraded iris image quality originating from

blur, reflections and glasses, to name a few. The proposed

method achieved significantly better performance on the

JHU-2 dataset, where image quality is much better (see Fig-

ure 5). Among all the three evaluated backbone networks,

DenseNet121 obtains the best performance (see Table 1).

Though the average-score fusion of all three backbone net-

works does not improve performance on the JHU-1 dataset,

it shows improved performance on the JHU-2 dataset at a

lower FDR (e.g., 0.1% FDR).

The iris PAD performance was observed to vary with the

nature of the presentation attack. While a presentation at-

tack with patterned contact lenses results in only a subtle

texture change to the iris region, those based on artificial

eye models can extend beyond the iris region and change

the iris appearance significantly. Hence, the latter is much

easier to detect, as evidenced by a higher true detection rate

at 0.2% FDR (see Figure 6). This highlights the necessity

of developing more effective PAD solutions for the cosmetic

3FDR defines how many ‘live” images are misclassified as “PA”. The

TDR at 0.2% FDR was used to demonstrate the performance of this algo-

rithm in practice.
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Figure 5: Evaluation of the proposed AG-PAD method with

different backbone networks on the JHU-APL datasets.

Table 1: Evaluation of the proposed AG-PAD method with

different backbone networks on the JHU-APL datasets.

TDR at 0.2% FDR is used to report the PAD accuracy.

JHU-1 JHU-2

DenseNet121 71.87 100.0

InceptionV3 58.75 98.23

ResNet50 68.12 97.79

Fusion 71.87 100.0

contact PA.

4.3. Architecture Design

Previously, we mentioned three different ways to com-

bine the PAM and CAM. In this section, we show the eval-

uation results for all the three architectures on the JHU-

APL datasets as well. As can be seen from Figure 7, the

parallel combination (AG-PAD) obtains better performance
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Figure 6: Evaluation of the proposed AG-PAD method on

JHU-1 dataset with respect to different presentation attacks.

The backbone network used is DenseNet121.

than the sequential combination of CAM and PAM on both

JHU-1 and JHU-2 datasets. The parallel combination ob-

tains TDRs of 71.87% and 100.0% at 0.2% FDR on JHU-1

and JHU-2 datasets, respectively. The sequential combina-

tion obtains TDRs of 53.75% and 98.23% at 0.2% FDR on

JHU-1 and JHU-2 datasets, respectively. The hierarchy ar-

chitecture, on the other hand, shows more promising results

on the challenging JHU-1 dataset that has more image qual-

ity degradations.

4.4. Ablation Study

To demonstrate the effectiveness of different attention

modules, an ablation study was conducted using both the

JHU-1 and JHU-2 datasets. In particular, four different vari-

ants are considered: w/o Attention, w/ PAM, w/ CAM, and

w/ PAM-CAM. Baseline w/o Attention refers to the results

obtained by retraining the PAD network without any atten-

tion module. w/ PAM and w/ CAM refer to the results ob-

tained by retraining the PAD network with appended PAM

and CAM, respectively. Finally, w/ PAM and CAM refers to

the results obtained by augmenting the PAD network with

both PAM and CAM.

As can be seen in Figure 8, the use of attention mod-

ules significantly improves the accuracy over the base-

line. Without the attention modules, the baseline only gives

58.75% TDR at 0.2% FDR on JHU-1. After integrating

both attention modules, the results improved to 71.87%

TDR (see Table 2). A similar trend was observed in the

JHU-2 dataset. Further, comparing with other state-of-the-

art attention modules [18, 27, 1], the combination of PAM

and CAM achieves the best performance. This justifies the

significance of using the PAM and CAM attention modules

in iris presentation attack detection.
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Figure 7: Evaluation of the proposed methods with different

architectures on the JHU-APL datasets.

Table 2: The TDR at 0.2% FDR when using the PAM and

CAM attention modules with DenseNet121 as the backbone

network on the JHU-1 and JHU-2 datasets. The ablation

study involving the attention module used in this work and

its comparison against other attention modules can be seen

here.

JHU-1 JHU-2

w/o Attention 58.75 95.59

w/ PAM 66.25 98.23

w/ CAM 60.62 98.67

w/ PAM and CAM 71.87 100.0

BAM [18] 68.75 97.35

CBAM [27] 70.0 97.79

GC [1] 66.87 92.95
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Figure 8: Ablation study with different attention mecha-

nisms on the JHU-APL datasets.

4.5. Explainable Visualization

To further identify the important regions of an iris im-

age that is used to render a PA decision, Grad-CAM [21]

is utilized to generate the visualizations before and after

the application of the attention modules in Figure 9. Here,

Grad-CAM is used to calculate the gradient of the presenta-

tion attack detection score with respect to the feature maps

to measure pixel importance. It is evident that the use of

attention modules has enabled the network to shift the

focus on to the annular iris region. By observing the ac-

tivation maps generated for both live and cosmetic contact

samples (see Figure 9), the application of attention modules

has forced the network to attend to the annular iris region in

order to make the final decision. This is consistent with our

intuition that iris texture positioned beyond the pupil region

plays a much more significant role for presentation attack

detection.

In addition, we also visualize the PAD results for both

known PAs and unknown PAs in Figure 10. The bound-

103



Figure 9: Visualization using Grad-CAM before and after

the integration of attention maps for live iris (column 1),

contact lens (columns 2 and 4) and fake eye images (col-

umn 3). The second row is the result before the use of at-

tention module and the third row is the result after the use

of attention module.

ing boxes are obtained from a pre-trained iris detection net-

work. As can be seen, it is much more challenging to per-

form PAD on unknown PAs, such as Acuvue Define colored

contact lenses and Intrigue partial coverage lenses (see Fig-

ure 10). The PA scores for unknown attacks are observed to

be much lower than the PA scores for known attacks.

Figure 10: Evaluation of the proposed AG-PAD method on

JHU-2 dataset with known and unknown presentation at-

tacks. The first and second rows show the PA results for

Air Optix colored contact lenses and Van Dyke fake eye,

respectively (known attack). The third row shows the PA

results for Acuvue Define colored contact lenses (unknown

attack). The last row shows the PA results for Intrigue par-

tial coverage lenses (unknown attack) with both successful

and failure cases when using a threshold of 0.5.

4.6. Comparison with State­of­the­art Methods

We also compare the proposed method against state-of-

the-art methods evaluated on the LivDet-Iris-2017 [34]. Re-

sults of three algorithms that participated in the competi-

tion, under both known presentation attacks and unknown

presentation attacks, were used. According to the evalua-

tion protocol, a threshold of 0.5 was used to calculate the

APCER and BPCER.

As indicated in Table 3, error rates are much higher

for unknown presentation attacks on both Warsaw and

Notre Dame datasets. Nevertheless, the proposed method

achieves excellent performance for both known and un-

known presentation attacks. The proposed AG-PAD

method achieves 1.34% APCER and 0% BPCER for un-

known PAs in the Warsaw dataset. This is expected, since

this dataset is limited to print attacks only.

Table 3: Evaluation of the proposed method on the LivDet-

Iris-2017 dataset. Both known/unknown (K/U) attack re-

sults (%) are reported whenever available. Otherwise, a

combined error rate is reported.

Warsaw Notre Dame

Algorithm APCER (K/U) BPCER (K/U) APCER (K/U) BPCER

CASIA [34] 0.15/6.43 5.74/9.78 1.56/21.11 7.56

Anon1 [34] 0.4/11.44 2.77/6.64 0/15.56 0.28

UNINA [34] 0.1/0 0.62/20.64 0.89/50 0.33

Proposed 0.09/1.34 0/0 0.11/8.33 0.22

5. Conclusions

This paper proposes a novel attention-guided CNN

framework for iris presentation attack detection that en-

ables better generalization and explainability. The proposed

AG-PAD method utilizes attention-guided feature maps ex-

tracted by a channel attention module and a position atten-

tion module to regularize the network to focus on salient

iris regions, thereby improving the generalization capabil-

ity of iris PAD solutions. Experiments on several datasets

indicate that the proposed method is effective in detecting

both known and unknown presentation attacks. Further, a

visualization scheme was used to explain the performance

of the proposed network.
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