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Abstract

The task of detecting morphed face images has become
highly relevant in recent years to ensure the security of au-
tomatic verification systems based on facial images, e.g.
automated border control gates. Detection methods based
on Deep Neural Networks (DNN) have been shown to be
very suitable to this end. However, they do not provide
transparency in the decision making and it is not clear how
they distinguish between genuine and morphed face images.
This is particularly relevant for systems intended to assist a
human operator, who should be able to understand the rea-
soning. In this paper, we tackle this problem and present
Focused Layer-wise Relevance Propagation (FLRP). This
framework explains to a human inspector on a precise pixel
level, which image regions are used by a Deep Neural Net-
work to distinguish between a genuine and a morphed face
image. Additionally, we propose another framework to ob-
Jjectively analyze the quality of our method and compare
FLRP to other DNN interpretability methods. This eval-
uation framework is based on removing detected artifacts
and analyzing the influence of these changes on the deci-
sion of the DNN. Especially, if the DNN is uncertain in its
decision or even incorrect, FLRP performs much better in
highlighting visible artifacts compared to other methods.

1. Introduction

A morphed face image is a synthetically generated face
image that resembles two different subjects. The similarity
is so strong that even biometric verification systems match
the face of both subjects with this synthetic image. If such
a picture was to be used in an identification document, two
subjects could claim the ownership of this document and
thus share one identity. Ferarra et al. [4] raised awareness
about this problem and its consequences for automatic face

verification, especially for automatic border control sys-
tems.

The threat arising from morphed face images has prompted
researchers to investigate this problem and to develop meth-
ods to detect them. A comprehensive overview on work
on face morphing attacks and detectors can be found in
[20, 13, 28].

The existing detection methods can be divided into blind
and non-blind face morphing attack detectors. The non-
blind detectors make use of reference data, e.g. a trusted
image [5, 21] or a 3D-model [22] of the subject. In con-
trast to that, blind detectors use only the image that needs
to be checked. Most of them are based on analysis of
statistical characteristics such as image quality (e.g. gradi-
ent distribution or spacial frequency distribution) [15, 16],
Benford Features [12] or camera noise pattern [2], using
handcrafted features, or on statistical [18] or learned fea-
tures [19], e.g. Deep Neural Networks (DNNs). While it is
clear what information the methods based on handcrafted
features use for their decision, this is not the case for meth-
ods based on learned features. The later are, without further
investigations, black-box detection systems: i.e. they are
not transparent in their decision-making. Even though in-
terpretability of DNNs is a prominent research topic, the
studies about its applicability to DNN-based face morph-
ing attack detectors are scarce. A recent research regarding
this topic has been done by Seibold et al. [25]. They use
Layer-wise Relevance Propagation (LRP) [1] to analyze on
which coarse regions their DNN-based detectors focus and
propose a training method that forces their DNNSs to include
information from all of these regions in the decision-making
process. They also showed that in this case LRP cannot
be used directly to understand this decision-making process
without additional investigations.

In this paper, we present FLRP, which is an extension
to LRP that determines which regions in an image can be
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Figure 1: Morphed face image (left) and visualization of different interpretability methods of a DNN-based face morphing
detector. The interpretability methods LRP, Sensitivity Maps and FLRP (left to right) assign a relevance score to each pixel.
A low score is visualized in blue and a large score in yellow. The input images for the morphed face image are from the Face

Research Lab London Set [3]

used by a Deep Neural Network to distinguish between a
genuine and a morphed face image. It focuses on large
activations of neurons in the last layer of the feature extrac-
tor that are caused exclusively by morphed face images.
It is intended to support a human in explaining why an
image is a morphed face image by adding transparency to
the decision-making process of DNN-based detectors. In
contrast to LRP, it does not directly show which regions
lead to a strong activation of a neuron that represents a
class. Rather, it focuses on neurons in an intermediate layer
for which activation values are large, if the input image is a
morphed face image, and the sources of these activations.
In order to access whether our approach succeeds in
detecting the relevant pixels, we propose an additional
framework for evaluation of interpretability methods for
DNN-based face morphing attack detectors. Finally, we
compare FLRP with other interpretability methods for
DNNss (Sensitivity Maps [26] and LRP [1]). Figure 1 shows
an example for the interpretability methods that are studied
within this paper.

The key contributions of our paper are:

* We propose a new interpretability method for DNN-
based blind Morphing Attack Detectors that precisely
determines which regions of an image contain artifacts
caused by face morphing.

* We propose a new framework for evaluation of inter-
pretability methods for Morphing Attack Detectors.

* We evaluate our proposed interpretability method and
show its advantages compared to other approaches
when applied to Face Morphing Attack Detectors.

The structure of our paper is as follows. In the next sec-
tion, we present the popular interpretability methods LRP
and Sensitivity Maps and introduce FLRP. Subsequently,

we describe our framework for evaluation of interpretability
methods for face morphing attack detectors based on DNNs
in Section 3. The experimental setup for our evaluation of
FLRP is described in Section 4 and the results and a com-
parison of FLRP with LRP and Sensitivity Maps in Section
5. We finish our paper with a summary and a discussion
on further planed experiments and extensions to ensure the
transparency and reliability of face morphing attack detec-
tors based on DNNs.

2. Interpretability of DNNs using Backward
Propagation Techniques

Most interpretability methods based on backward prop-
agation assign a start value (relevance) to one neuron in
the last layer, in which each neuron represents exactly one
class. This relevance is then backpropagated into the in-
put image based on the activations in the intermediate lay-
ers of the DNN and a method-dependent set of rules. Two
very common methods that define how the relevance can be
backpropagated into the input image are Sensitivity maps
and LRP. In the following, we present the DNN used in our
experiments, we briefly explain the concepts of Sensitivity
Maps and LRP, and introduce FLRP.

2.1. VGG-A

In our experiments, we use the DNN architecture VGG-
A [27] with an input size of 224 x 224 pixels. The VGG-A
architecture follows the classical scheme for DNNs for im-
age classification. It starts with blocks consisting of convo-
lutional layers followed by a Rectified Linear Unit (ReLU),
each of them ending with a max-pooling layer that reduces
the spatial dimension. This part of the neural networks is
also referred to as feature extractor. The feature extractor
is followed by two fully connected layers, which are re-
ferred to as classification part of the neural network. Fig-
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Figure 2: VGG-A Architecture. The figures in brackets
show the output size of the layer.

ure 2 shows the VGG-A architecture in more detail.

2.2. Sensitivity Maps

Sensitivity Maps [26] are based on the partial derivatives

of the activation function of a selected neuron with respect
to the pixels in the image. They describe the influence of
a change of a pixel on the change of the activation of the
neuron that represents the selected class. This makes them
a suitable means for analyzing the decision-making process
of DNNs. The calculation of the Sensitivity Maps is done
by using the concept of error backpropagation in the same
way it is used for training of DNNs. A fictional error is
defined for the class of interest and this error is backpropa-
gated into the input image. The final relevance score for a
pixel can now be calculated by applying a vector norm on
the backpropagated errors of the color channels.
In this paper, we use the L; norm and apply it already after
the second convolutional layer. In oder to propagate the rel-
evance from this layer into the input image, it is uniformly
distributed over all pixels that are reached by the size of the
convolutional filter. This approach is similar to our setting
for LRP, prevents noise maps and leads to a more smoothed
relevance distributions.

2.3. Layer-wise Relevance Propagation

While Sensitivity Maps answer the question of which
region of the input images should be modified to maxi-
mally change the activation of a neuron that represents a
class, LRP indicates what leads to and what inhibits the
activation of this neuron. The activating relevance is also
referred to as positive relevance and the inhibiting one
as negative relevance. The theory behind LRP is based
on a “deep Taylor decomposition” of the neural network
function [1]. Similarly to the case of Sensitivity Maps,
LRP assigns step-by-step (layer-by-layer) relevance from
one selected neuron, which represents one class, through
the DNN back to the image. For each layer, the relevance is
backpropagated into the previous one using a set of rules.
These rules are intended to direct the relevance towards the
neurons in the previous layer that play an important role in
the activation of each of the neurons in the current layer. It
is possible to use LRP with different sets of rules for the
relevance backpropagation. In this paper, we use the rules
that are current best practice for LRP for similar structured
DNNs [10]. These are: e-decomposition for the fully
connected layers, a3-decomposition (with a = 2, 8 = —1)
for the convolutional layers in the blocks 3-5 (see Figure
2) and flat-decomposition for the first two convolutional
layers. While the e-decomposition treats activating and
inhibiting relevance similarly, the a/3-decomposition con-
siders them separately and, with these particular values for
« and 3, focuses more on activating relevance, leading to
more balanced results. The flat-decomposition propagates
the relevance of a neuron equally distributed to all neurons
in the previous layer that have an influence on this neuron.
For a more detailed explanation of these methods, we refer
to [10].

2.4. Focused LRP

Our method, FLRP, is inspired by the results shown in
[25]. The authors used LRP to analyze on which coarse
region a DNN for face morphing attack detection focuses
for its decision-making. They showed that, due to the
complexity of the behavior of the fully connected layers
of a DNN, the relevance scores provided by LRP are not
directly interpretable, requiring further investigations to
understand the overall behavior of the network. They also
showed that LRP often assigns large relevance scores to
artifact-free regions in morphed face images, marking them
as relevant for the decision of labeling the images as a
morph. In contrast to the studies in [25], which focused
on average relevance distributions for a set of images,
our study focuses on the independent processing of single
images and is intended to provide more transparency for
individual decisions of DNNs.
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The main idea behind FLRP is to start the relevance

propagation from neurons in an intermediate layer instead
of those in the final one as it is the case in regular LRP,
and thus to focus on the learned features that characterize
a morphed face image. FLRP starts in the layer right be-
fore the classifier (i.e. in the last max pooling layer) and as-
signs initial relevance scores to pre-selected neurons in this
layer. In the following, we describe how these neurons are
selected. In our experiments, we use a VGG-A architecture
with an input size of 224 x 224 pixels (see Figure 2). Thus,
the last layer of the feature extractor has an output shape of
7 x 7 x 512. Instead of a single neuron that represents a
class, we have to assign an initial relevance score to these
neurons of the feature extractor. Since we are not interested
in what leads to the activation of all of these neurons, but in
what is typical for a morphed face image, we select a set of
neurons that have strong activation values for morphed face
images. It is expected that these will allow distinguishing
between genuine and morphed face images. These neurons
are selected based on the training data as described in the
following.
In a first step, we calculate the output of the feature extrac-
tion part of the DNN for each image in the training data.
This output consists of a 7 x 7 x 512 tensor for each image.
This tensor can be interpreted as an image with 512 chan-
nels and a size of 7 x 7 pixels. For each pixel, we select the
channel that has a larger value when the input is a morphed
face image and is best suited to distinguish between genuine
and morphed face images. To this end, we calculate for
each neuron a threshold such that the number of morphed
face images that lead to activation values above this thresh-
old is equal to the number of genuine face images that lead
to activation values below that threshold. Based on these
thresholds, we select for each pixel in the 512-channel ”im-
age” the channel that is most suitable to separate between
genuine and morphed face images. This yields 49 (7 x 7)
neurons, which we will use to initialize our relevance prop-
agation. In contrast to common LRP or sensitivity maps,
which we start from a single neuron and changing the start-
ing value only scales the result, in FLRP it is necessary to
assign suitable initial values for these neurons. To do so, we
pass the image that should be inspected through the Neural
Network and use the resulting activation values scaled based
on the previously calculated equal error rates of the selected
neurons as start relevance. The idea behind this initializa-
tion method is to assign start relevance mainly to neurons
that did detect face morphing related artifacts and thus have
large activation values. Starting with this assignment of rel-
evance in the last layer of the feature extractor, we use the
af rule from LRP with « = 2 and 8 = —1 for all but
the first two convolutional layers to propagate the relevance
into the input image. For the first two convolutional layers,
we use flat decomposition.

3. Evaluation Framework for Interpretability
Methods for DNN-based Face Morphing
Attack Detectors

In this section, we introduce our framework for evalu-
ation of interpretability methods for DNNs-based morph-
ing attack detectors. Our framework is designed for inter-
pretability methods that assign a score to every pixel in the
input image representing the estimated relevance for the de-
cision of the DNN. This is a common approach to explain
the decision-making of DNNs [1], used by the majority of
interpretability methods that are based on backpropagation
such as Sensitivity Maps or LRP.

The goal of our framework is to evaluate whether the pix-
els that have a high relevance score are actually relevant for
the decision-making of the network and whether substitut-
ing these pixels changes the classification score. In contrast
to [14] who also selected regions to be substituted by rel-
evance and set these regions to a default color or random
noise, we apply a more sophisticated substitution method.
Setting regions to a default color or random noise would
shift the image far off the distribution of aligned face im-
ages. Due to the binary nature of the task of face morph-
ing detection, differences in the DNN predictions caused
by such changes are not expected to convey meaningful in-
formation about the quality of the analyzed explainability
methods. We assume that the relevant regions/pixels con-
tain artifacts that are caused by the generation process of the
morphed face images. Thus, removing the artifacts should
change the decision of the network and be, therefore, an
appropriate instrument for the evaluation of the relevance
scores. In order to remove the possible artifacts, we substi-
tute the regions that are marked as relevant in the morphed
face image with the corresponding ones from the original
image. Additionally, we smoothen the transition between
the substituted part and the rest of the image. To this end,
we use the following procedure:

1. For each generated morphed face image, we addition-
ally store aligned input images. These aligned input
images are usually generated as part of a face morph-
ing pipeline, as it is the case in this study (see [24] for
alignment in face morphing pipelines).

2. We create a binary mask that describes which regions
should be substituted. This mask contains a% of the
pixels with the largest relevance score according to the
analyzed interpretability method.

3. We dilate the mask using a filter with a size of 3 x 3.

4. The binary mask is converted to a transparency-mask
and blurred using a 5 x 5 blur kernel.

5. Based on the transparency-mask, we blend in corre-
sponding regions from the aligned input images.
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Figure 3: Visualization of single steps of our interpretabil-
ity evaluation method. First, the interpretability method as-
signs a relevance score to every pixel of the morphed face
image. Based on these relevance scores, a transparency
mask is generated such that the most relevant pixels have
a transparency value of one (here shown in white). This
mask is then blurred to ensure a smooth transition between
the blended images. Finally, the morphed face image and an
aligned genuine image are blended according to the trans-
parency mask. If a pixel in the transparency mask has a
value of one, the color value from the aligned genuine im-
age is used.

The blurring of the mask ensures a smooth transition be-
tween the inserted part and the rest of the morphed face im-
age. Moreover, due to the dilation the relevant pixels are
completely substituted despite of the blurring. For the eval-
uation of the interpretability methods, we do not use a fixed
«, but analyze the change of the DNN’s decision and loss
with respect to «. Figure 3 visualized this proposed algo-
rithm.

4. Experimental Setup
4.1. Data

For our experiments, we have collected genuine face im-
ages from different public available datasets [11, 3, 30,9, 7,
6, 17] and from our internal datasets, yielding about 2,000
genuine face images. We have generated the same amount
of morphed face images using an automatic pipeline de-
scribed in [25]. We split the images into a training set
(70%), a testing set (20%), and a validation set (10%).
When splitting the genuine and morphed face images into
these sets, we ensure that a subject and all morphed face
images based on this subject are always in the same set and
only in that one.

4.2. Detector and Performance

For our experiments, we use a DNN-based detector sim-

ilar to the one described in [24]. It consists of a pre-
processing step to normalize the data and a DNN that clas-
sifies the normalized input image. In order to normalize the
image, we estimate facial landmarks, crop the inner part of
the face and resize it to 224 x 224 pixels. As previously
mentioned, we use the VGG-A architecture as our DNN
and start our training with a model pre-trained for object
classification on the ImageNet dataset. During the training,
we used different image augmentation techniques, similarly
to [25]. We applied random jittering in the range of [-2,
+2] pixels, random flipping, Gaussian and Salt-and-Pepper
Noise and Gaussian and motion blur.
The performance of our detector is reported in table 1
using the metrics Attack Presentation Classification Error
Rate (APCER), Bona-fide Presentation Classification Error
Rate (BPCER) and Equal-Error-Rate (EER). APCER and
BPCER are designed for the evaluation of detection systems
for presentation attacks [8], but can directly be adapted for
evaluation of the face morphing attack detectors. APCER
is defined as the relative amount of attacks that are not de-
tected and BPCER as the relative amount of genuine face
images that are falsely classified as morphed face images.

APCER | BPCER | EER
49% | 2.6% | 33%

Table 1: Performance of our DNN-based face morphing at-
tack detector

5. Results

In this section, we analyze the performance of FLRP
using our proposed evaluation framework on the test data.
Additionally, we compare FLRP to LRP and Sensitivity
Maps. We use the change of the DNN’s decision and loss
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ods.

(negative log-likelihood) with respect to the amount of
substituted pixels in a morphed face image as performance
metrics. It should be noticed that it is not possible to have
ground truth data to compare our results with, since we
cannot know how many and which regions need to be
exchanged in the best case. However, we can compare the
methods to each other. It is expected that the change of
loss and APCER should be proportional to the quality and
accuracy of the relevance predictions of an interpretability
method. In addition, we report the average activation of
the neurons that were chosen for the initialization of FLRP
(in the following referred to as "Morph Neurons”). The

activations of the similarly chosen set of neurons that
are activated by genuine face images (later referred to as
”Bona-fide Neurons”) are also reported.

5.1. General Performance

The evaluation is performed on the morphed face im-
ages from the test data. Morphs that are not detected have
been removed, since our general performance analysis fo-
cuses on the explainability of the causes that lead to a de-
tection. However, they are included in the further analy-
sis in the next subsection, which studies the cases in which
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the relevance distribution between FLRP and LRP strongly
differs. Figure 4 shows the average loss and APCER with
respect to the amount of substituted pixels («) in the mor-
phed face images for the different methods. The Sensitivity
Maps method outperforms LRP and FLRP in terms of Av-
erage Loss and Error Rate changes. The performance of
FLRP is between that of LRP and Sensitivity Maps.

In order to gain a better understanding about what differs
between the regions selected by Sensitivity Maps and the
regions selected by FLRP/LRP, we need to analyze the ac-
tivation of Morph Neurons and Bona-fide Neurons. The av-
erage activation of the Morph Neurons decreases most for
FLRP and least for Sensitivity Maps and the average activa-
tion of the Bona-fide Neurons increases most for Sensitivity
Maps and least for LRP. Even though the selection based on
Sensitivity Maps is most suitable to change the decision and
loss of the DNN, it does not seem to lead to the strongest
deactivation of neurons that are indicating artifacts. This
agrees with the previously mentioned hypothesis that Sensi-
tivity Maps focus on what leads to a change of the decision,
not necessarily pointing to the artifacts typical for morphed
face images, whereas LRP shows which regions are relevant
for the activation of neurons. We believe that focusing on
the morphing artifacts could be more useful when support-
ing the decisions of a human operator.

As a summary, LRP, Sensitivity Maps and FLRP seem to
be quite similar when it comes to determining regions that
are relevant for the detection of morphed face images, but
FLRP focuses most on artifacts that lead to an activation of
the Morph Neurons. It should also be mentioned that FLRP
is more suitable compared to LRP to determine the regions
that change the output of the network, even though it does
not consider the network’s classifier.

5.2. FLRP for Uncertain Decisions

If we compare the transparency masks of our evaluation
framework that are generated by the three different meth-
ods, they often cover similar regions, with FLRP and LRP
being more similar to each other. Figure 5 shows histograms
of morphed face images with respect to the average cumula-
tive differences between the transparency maps for the three
interpretability methods. These are calculated as the sum of
the pixel-to-pixel differences for each pair of transparency
maps generated for the evaluated methods using our frame-
work with an « value of 1%. These values are then normal-
ized dividing them by the amount of substituted pixels.

In a more closer inspection of the cases in which the
relevance map predicted by FLRP strongly differs from
those produced by LRP, we can identify another significant
strength of FLRP. In such cases, the DNN is quite often
wrong or uncertain in its decision. This indecision is in-
dicated by a soft-max output for the class “morphed face
image” significantly smaller than 1. Here, LRP seems to

(b) LRP

(a) input image

(c) Sensitivity Map (d) FLRP
(e) magnified right eye (f) magnified left eye

Figure 6: Example of relevance distributions (b)-(d) for a
morphed face image (a) that was not detected as morph by
the DNN.

assign in most cases relevance to image regions without vis-
ible artifacts, while FLRP does still highlight regions with
visible artifacts. For the morphed face image with a soft-
max output smaller than 0.9 for the class morph (6.1% of
all morphed face images from the testing set), the mean
normalized cumulative difference between the transparency
masks for LRP and FLRP is 0.92 with a standard deviation
of 0.13.

Figures 6,7 and 8 show some examples of such scenar-
ios: there is a strong dissent between LRP and FLRP and
the network’s decision is incorrect. This makes FLRP a
suitable tool to support a human in inspecting a face im-
age if the network does not provide a decision with a high
degree of certainty, or to check where suspicious traces are
in an image. All three Figures show examples of a morphed
face image that is falsely classified as genuine face image.
In Figure 6, LRP assigns most relevance to the right eye,
even though the left eye contains clearly visible morphing
artifacts. The morphed face image in Figure 7 contains vis-
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Figure 7: Example of relevance distributions (b)-(d) for a
morphed face image (a) that was not detected as morph by
the DNN.

ible artifacts around the nose, but LRP assigns most of the
relevance to the eyes. The relevance assignment of FLRP
seems to be more reasonable in both cases. In the example
shown in Figure 8, LRP assigns most relevance to the left
eye, whereas FLRP highlights artifacts in the right eye and
the nose.

6. Summary and Discussion

With FLRP, we introduced a method to support human
inspection of possible morphed face image. Especially, in
case of uncertainty in the DNN’s decision, our method has
shown to be able to highlight face morphing artifacts bet-
ter than LRP. Additionally, we proposed a framework for
the evaluation of interpretability methods for DNN-based
face morphing attack detectors. Using this framework, we
showed that the regions that are marked as relevant by the
analyzed methods overlap to a certain extent. However,
LRP and FLRP focus more on the cause of activation of

(b) LRP

(d) FLRP

(a) input image

(c) Sensitivity Map

(e) magnified nose (f) magnified left eye

Figure 8: Example of relevance distributions (b)-(d) for a
morphed face image (a) that was not detected as morph by
the DNN.

neurons that typically respond strongly to the presence of
morphs than the Sensitivity Maps do.

In future work, we plan to analyze the effects of image im-
provement [23] on the detectors using our proposed frame-
work for evaluation of interpretability methods. Moreover,
we plan to extend this framework such that it can be used
without having a reference image. Without having to rely on
a reference image, we would also be able to use the frame-
work for morphed face images generated by Generative Ad-
versarial Networks [29].
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