-
[pdf]
[bibtex]@InProceedings{Li_2022_WACV, author = {Li, Yinxiao and Lu, Zhichao and Xiong, Xuehan and Huang, Jonathan}, title = {PERF-Net: Pose Empowered RGB-Flow Net}, booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, month = {January}, year = {2022}, pages = {513-522} }
PERF-Net: Pose Empowered RGB-Flow Net
Abstract
In recent years, many works in the video action recognition literature have shown that two stream models (combining spatial and temporal input streams) are necessary for achieving state-of-the-art performance. In this paper we show the benefits of including yet another stream based on human pose estimated from each frame --- specifically by rendering pose on input RGB frames. At first blush, this additional stream may seem redundant given that human pose is fully determined by RGB pixel values --- however we show (perhaps surprisingly) that this simple and flexible addition can provide complementary gains. Using this insight, we propose a new model, which we dub PERF-Net (short for Pose Empowered RGB-Flow Net), which combines this new pose stream with the standard RGB and flow based input streams via distillation techniques and show that our model outperforms the state-of-the-art by a large margin in a number of human action recognition datasets while not requiring flow or pose to be explicitly computed at inference time. The proposed pose stream is also part of the winner solution of the ActivityNet Kinetics Challenge 2020.
Related Material