
Extracting Vignetting and Grain Filter Effects from Photos

Abdelrahman Abdelhamed1 Jonghwa Yim2,3* Abhijith Punnappurath1

Michael S. Brown1 Jihwan Choe2 Kihwan Kim2

1Samsung AI Center – Toronto 2Samsung Electronics 3NCSOFT

{a.abdelhamed, abhijith.p, michael.b1, jihwan.choe, kihwan23.kim}@samsung.com

jonhwayim@gmail.com

Abstract

Most smartphones support the use of real-time camera

filters to impart visual effects to captured images. Currently,

such filters come preinstalled on-device or need to be down-

loaded and installed before use (e.g., Instagram filters). Re-

cent work [24] proposed a method to extract a camera filter

directly from an example photo that has already had a fil-

ter applied. The work in [24] focused only on the color

and tonal aspects of the underlying filter. In this paper, we

introduce a method to extract two spatially varying effects

commonly used by on-device camera filters—namely, im-

age vignetting and image grain. Specifically, we show how

to extract the parameters for vignetting and image grain

present in an example image and replicate these effects as

an on-device filter. We use lightweight CNNs to estimate the

filter parameters and employ efficient techniques—isotropic

Gaussian filters and simplex noise—for regenerating the fil-

ters. Our design achieves a reasonable trade-off between

efficiency and realism. We show that our method can extract

vignetting and image grain filters from stylized photos and

replicate the filters on captured images more faithfully, as

compared to color and style transfer methods. Our method

is significantly efficient and has been already deployed to

millions of flagship smartphones.

1. Introduction

With the increased usage of personal smartphones as

cameras, most smartphones support camera filters that can

be applied in real time to the camera’s video stream. Such

filters come preinstalled with the smartphone, or can be

downloaded from a third party (e.g., Instagram, Snapseed,

VSCO). The goal of this filter stylizing is to give the cap-

tured photos some desired visual effect. Most image styliz-

ing filters modify the colors, tone, or contrast of the images.

Common examples include changing the color temperature

*This work was done while Jonghwa Yim was at Samsung Electronics.

𝑣 = 6

𝑣 = 7

𝑔 = 0.3

𝑔 = 0.5

Filtered image (input) Content image (input) Filtered image (output)

ො𝑣 = 6

ො𝑣 = 7

ො𝑔 = 0.3

ො𝑔 = 0.5

Figure 1. Four examples of extracting and transferring vignetting

and image grain filters. Top two rows show transfer of vignetting

filters with strength v = 6, 7. Bottom two rows show transfer of

image grain filter with intensity g = 0.3, 0.5. Filter styles are

estimated from filtered images (left) and then reapplied to content

images (middle) to produce the filtered output images (right). The

estimated filter parameter and the regenerated filter are shown on

the output images. Images are better visualized while zooming in.

of the image or using color modifications to give the photo

a nostalgic appearance of old film—for example, sepia. Re-

cent work by Yim et al. [24] described a method to extract a

color filter from an example photo that had been processed

with an unknown filter. This provided an intuitive alterna-

tive to downloading a predefined filter. This idea is similar

in nature to style transfer between images. Many methods

address the problem of transferring styles between images.

Color transfer methods (e.g., [17]) try to transfer the color

distribution from one image to another such that the target

image has a similar color distribution as the source image.

11191



View finder

with effect applied

Color and tonal 

adjustments
Multiplicative effect Additive effect

⊙ +3D LUT 1D LUT

Components of an on-device camera filter

Camera live 

output

Global manipulation Spatially varying manipulation

Figure 2. An illustration of an on-device camera filter integrated

with the imaging pipeline. Our method is targeting the multiplica-

tive (vignetting) and additive (image grain) effects only.

These types of methods basically focus on transferring color

distributions only. Another line of work includes neural im-

age style transfer methods (e.g., [5]) that aim at transferring

general styles from one image to another. Such methods

focus on transferring general styles, such as painting styles

or weather styles, between images. A different approach

to image stylizing is image-to-image translation (e.g., [6]).

However, such approach is intended for transforming im-

ages between predefined image styles or modalities, such

as translating sketches to real images, and not usually de-

signed to handle different styles or different variations of

the same style.

Unlike most existing methods, we focus on spatially

varying filter effects—in particular, vignetting and image

grain. These types of filters do not necessarily change the

color distribution of the image; instead they change pixel

intensities in specific ways. A vignetting filter decreases

pixel intensities as we move away from the center of the

image and approach the corners of the image. An image

grain filter applies an effect similar to film grain on old film

cameras, which consists of random optical textures of the

processed photographic film. See Figure 1 for examples.

An important aspect of our method is that it can be eas-

ily integrated with the camera imaging pipeline, as shown

in Figure 2, which illustrates the main components of an

on-device camera filter. Most previous methods focus on

the color manipulation part, while our method focuses on

the spatially varying multiplicative or additive filter effects,

specifically vignetting and image grain.

Contribution We propose a method for extracting two

common spatially varying filter effects from an image—

vignetting and image grain. Our method works by detecting

the existing filters in a user-supplied stylized image, esti-

mating the filter parameters, and then constructing a new

on-device filter. The extracted filter can then be selected by

the user and applied to any input image or video feed in real

time. Our method is efficient, requiring only a small amount

of processing resources, which made it suitable for integra-

tion and deployment to millions of flagship smartphones.

2. Related Work

There have been many approaches to image style trans-

fer, with some methods being specific to color filter transfer.

However, there are few methods targeting filter style extrac-

tion, especially for spatially varying types of filters.

Color transfer A pioneering work in color transfer between

images is [17], where the input image’s color distribution is

matched to a stylized one by applying simple scaling and

shifting operations. The simplicity of this method makes it

limited to simple color variations only. Other color transfer

methods [16, 20, 21, 23] attempt to match colors based on

clusters or objects; however, these methods are still limited

to similar color clusters or objects in both images.

Neural style transfer With deep neural networks, many

methods were proposed for image-to-image style trans-

fer. Style transfer neural networks [5] enabled the trans-

fer of colors, textures, and even shapes between images.

Such methods usually target generic styles, such as paint-

ing styles, and are not specifically designed for transferring

specific image filters, such as a vignetting filter.

Photo-realistic style transfer Instead of learning styles

from distributions of images, follow-up approaches to neu-

ral style transfer focused on transferring photorealistic

styles from a single style image [10, 19, 12, 25]. Such

methods require large datasets for training, leading to a high

computational cost. Even with the high processing time,

they usually produce distorted or undesirable transfers of

colors and textures.

Image-to-image translation Recent methods [6, 11, 28]

addressed the problem of image-to-image translation or im-

age domain transfer—that is, transferring image styles be-

tween different image domains, such as sketch to photo or

aerial image to map image. However, most domain trans-

fer approaches try to map between distributions of images,

which makes their output images not explicitly reflect the

style of a single image.

Filter style transfer Recently, a method for filter style

transfer [24] proposed to estimate a filter from a single

image and reapply the estimated filter to the input image.

While this method is well suited to use on-device, it is

focused only on color filters (white part in Figure 2) and

does not address spatially varying filters (green part in Fig-

ure 2). Addressing such lack, we propose a new method

that can handle the extraction of spatially varying filters—

particularly, vignetting and grain—from photos.

3. Vignetting and Grain Filter Extraction

The goal of our method is to estimate the filter parame-

ters from a filtered input or stylized image y, use the esti-

mated filter parameter p̂ to regenerate the filter, and apply it

to an input content image x. We formulate this as follows:

p̂ = f (y) , (1)

x̃ = h (x, p̂) , (2)

where f(·) is a function to estimate the filter parameter and

h(·) is a function that regenerates the filter and applies it to

the input content image x to produce the filtered image x̃.

1192



8 x 8 x 32

Fully connected 

+ ReLU

Convolution + ReLU

16 x 16 x 32

Max pooling

Generate 

grain filter
(Simplex noise)

128 x 128 x 64

64 x 64 x 32

32 x 32 x 16

11
Grain 

intensity

ො𝑔
Grain filter 𝐧

with intensity ො𝑔

Input 

content image𝐱Input grainy image 𝐲g

Grain intensity classifier 𝑓g

Output grainy image ෤𝐱g
+…

Divide into 

128 x 128 

patches

Median

Fully connected 

+ ReLU

Convolution + ReLU

16 x 16 x 32

Max pooling

Generate 

vignette 

filter
(2D Gaussian)

128 x 128 x 32

64 x 64 x 32

32 x 32 x 32

64
32

5 Vignette 

strength

ො𝑣
Vignette filter 𝐠
with strength ො𝑣

Input 

content image𝐱Input vignette image 𝐲v

Vignette strength classifier 𝑓v

Output vignette image ෤𝐱v⨂Concatenate ⊙Resize to 128 x 128

128 x 128

Compute radial 

intensity bands

Multiply

Add

(A) Vignetting

(B) Grain

16

Figure 3. Our method for (A) vignetting and (B) grain filter extraction and transfer to other photos. For both filters, we use lightweight

CNNs to classify vignetting filter strength v̂ and grain filter intensity ĝ. Then, we regenerate the filters and apply them to the input content

image. Images are best visualized while zooming in.

For efficiency, we treat the filter parameter estimation as

a classification problem. We choose a set of parameters for

each filter type and train a lightweight convolutional neural

network (CNN) to predict the closest parameter value. With

that formulation, we address two common types of spatial

image filter styles: (1) vignetting and (2) grain.

3.1. Vignetting Filter Extraction

Vignetting model Image vignetting filters decrease pixel

intensities as they move away from the center or approach

the corners of the image. There are different models to sim-

ulate image vignetting (e.g., [26, 27, 14]). However, for

efficiency, we adopt an isotropic 2D Gaussian filter to sim-

ulate vignetting. See Figure 4 for examples.

Assuming the input content image is x ∈ R
m×n, with

height m and width n, and the vignetting Gaussian filter

is g ∈ R
m×n with values in the range [0, 1], the output

vignetted image x̃v ∈ R
m×n would be generated as

x̃v = g ⊙ x , (3)

gi,j =
1

2πσ2
exp

(

−
i2 + j2

2σ2

)

, (4)

where ⊙ denotes element-wise multiplication and i and j

are pixel coordinates where the point of origin (0, 0) is at

the center of the image.

Vignetting strength prediction To control vignetting

strength (i.e., how much vignetting is in the image), we

𝑣 = 0 1 2 3 4 5 6 7 8
Original 

image

Figure 4. An example of synthesizing vignetted images with dif-

ferent vignetting strengths using Gaussian filters.

re-parameterize σ to define a discrete set of vignetting

strengths v ∈ {0, . . . , 8} as

σ = (1− 0.1 v) z , (5)

z = max (m,n) . (6)

Figure 4 shows an example image and the result of applying

the vignetting filter to the image with strengths 1–8. An

image without vignetting has v = 0.

We use a lightweight CNN fv(·) to predict the vignetting

strength v̂ as follows:

v̂ = fv (yv) , (7)

where yv is the input vignetted image. Since vignetting

strengths below 5 are not visually strong, we train the net-

work to predict strengths v ∈ {0, 5, 6, 7, 8}. The vignetting

classifier fv(·) is shown in Figure 3A. It contains four con-

volutional layers, and each layer contains 32 filters with

3× 3 kernels, followed by three fully connected layers with

1193



Vignetted images Radial intensity bands

Figure 5. Examples of (left) vignetted images and (right) their cor-

responding radial intensity bands computed using six bands.

64, 32, and 16 units. Each of the mentioned layers is fol-

lowed by a rectified linear unit (ReLU) [13]. The last layer

is fully connected with five units to predict the vignetting

strength. Our vignetting classifier network consists of ap-

proximately 162 K parameters.

Radial intensity bands Using images only as input to the

network is not sufficient to achieve high prediction accu-

racy of vignetting strength, especially when using a small

network for the sake of efficiency. To boost the accuracy,

we extract additional features from the images to help with

the vignetting strength prediction. We compute the average

pixel intensity in a set of ring-shaped areas around the im-

age center. We replicate these average intensities in what

we call the radial intensity bands, which have the same

size as the vignetted image. The radial intensity bands are

then concatenated to the vignetted image as input to the vi-

gnetting classification network. Figure 5 shows two exam-

ples of radial intensity bands. Once the vignetting strength

v̂ is estimated, a vignetting filter is generated using Equa-

tion 4, and then applied to the input content image x using

Equation 3 to get the output vignetted image x̃v. The whole

process is depicted in Figure 3A.

3.2. Grain Filter Extraction

Film grain consists of random optical textures of pro-

cessed photographic film due to the presence of small parti-

cles of metallic silver, or dye clouds, developed from silver

halide interacting with light photons [7, 18, 3]. Film grain

is more common in images captured with old film cameras.

Image grain filters try to mimic the film grain effect on dig-

ital images. Camera apps and software programs, such as

Photoshop, typically use random noise to emulate grain ef-

fects on digital images. See Figure 6 for examples.

Grain simulation There is a lack of datasets of paired

grainy and non-grainy images. To alleviate the burden of

collecting such a dataset, we generated synthetic grainy im-

ages from non-grainy ones. There are a number of models

𝑔 = 0 0.2 0.4 0.6 0.8 1.0

Original image

Figure 6. An example of synthesizing grainy images with different

grain intensities using simplex noise.

to simulate image grain (e.g., [15, 14]). We adopt the Open-

Simplex noise model [22] to simulate the image grain effect

with different intensities.

Grain intensity Assuming the input image is x ∈ R
m×n

and the grain layer, generated as Simplex noise with stan-

dard deviation of 1, is n ∈ R
m×n, the output grainy image

x̃g ∈ R
m×n would be generated as

x̃g = clip (x+ g n) , (8)

where clip(·) indicates clipping the image values within

the underlying intensity range (e.g., [0, 255] or [0.0, 1.0])
and g represents grain intensity. Grain intensity indicates

the magnitude of grain values added to the image. Fig-

ure 6 shows an example image and a number of synthesized

grainy images using simplex noise with grain intensities in

the range [0, 1].
Grain intensity classification We used a lightweight CNN

as our grain intensity classifier, as shown in Figure 3. To

detect fine-scale grain intensities, we chose to train the net-

work on 11 grain intensities in the range [0, 0.5] with 0.05
steps. Images where predicted class is 0 are considered as

not having any grain. The grain intensity classifier fg(·) is

shown in Figure 3B. It contains three convolutional layers,

with 64, 32, and 16 filters, with 3 × 3 kernels. Each of

the mentioned layers is followed by a rectified linear unit

(ReLU) [13]. The last layer is fully connected with 11 units

to predict grain intensity. Our grain classifier network con-

sists of approximately 59 K parameters. Once the grain in-

tensity ĝ is estimated, a grain filter is generated using Open-

Simplex noise and then applied to the input content image

x using Equation 8 to get the output grainy image x̃g. The

whole process is depicted in Figure 3B.

4. Results

We evaluate our method for vignetting and grain filter ex-

traction on synthetically generated images and evaluate the

ability to faithfully replicate such filters on other images.

Then, we compare our method to existing methods, and

evaluate our method on real-world images from the web.

4.1. Dataset and Setup

We used the DIV2K [2] dataset for training, validation,

and testing. We used 700 images for training, 100 images

for validation, and 100 images for testing. For training

1194



Table 1. Vignetting strength prediction results.

Vignetting strength

Metric 0 5 6 7 8 Mean

Precision 0.97 0.82 0.83 0.96 1.0 0.92

Recall 0.98 0.85 0.80 0.95 1.0 0.92

F1 score 0.98 0.83 0.82 0.95 1.0 0.92

ො𝑣 = 8 𝑣 = 8

ො𝑣 = 5 𝑣 = 5

ො𝑣 =7 𝑣 = 7

ො𝑣 = 6 𝑣 = 6

Input vignetted image Input content image Our result Ground truth

Figure 7. Examples of vignetting filter extraction and transfer us-

ing our method. Estimated and ground-truth vignetting strengths

along with extracted vignetting filters are shown in the lower right

corner of respective images.

the vignetting strength classifier, we generate synthetic vi-

gnetted images with vignetting strengths v ∈ {0, 5, 6, 7, 8}
using Equation 3. For training the grain intensity classifier,

we generate synthetic grainy images with grain intensities

g ∈ [0, 0.5] with 0.05 steps, using Equation 8. We im-

plement the networks in TensorFlow’s [1] Keras [4] frame-

work. We use a cross-entropy loss function and a learning

rate of 10−4. We train all classifiers for 2000 epochs.

4.2. Filter Extraction and Transfer

Vignetting extraction and transfer Our vignetting

strength classifier achieves 92% accuracy. The precision,

recall, and F1 scores are shown in Table 1. The perfor-

mance of classifying vignetting strengths 5 and 6 is notice-

ably lower than other strengths because the visual difference

between these two strengths is hardly noticeable. We have

noticed this issue with vignetting strengths lower than 5 as

well; that is why we omitted them from our training setup.

Figure 7 shows examples of vignetting filter extraction and

transfer using our method, along with estimated vignetting

strengths and extracted vignetting filters.

Effect of radial bands Table 2 shows the effect of using

different numbers of radial intensity bands on the testing

accuracy of the vignetting strength classifier. Using four

radial intensity bands yields the best accuracy, while not

using any radial intensity bands yields low accuracy.

Table 2. Effect of using different numbers of radial intensity bands

on testing accuracy of vignetting strength classifier.

Number of radial bands 0 2 4 6 8

Accuracy 0.54 0.74 0.92 0.65 0.68

Input grainy image Input content image Our result Ground truth

ො𝑔 = 0.50 𝑔 = 0.50

ො𝑔 = 0.45 𝑔 = 0.50

ො𝑔 = 0.45 𝑔 = 0.50

ො𝑔 = 0.40 𝑔 = 0.40

ො𝑔 = 0.30 𝑔 = 0.30

ො𝑔 = 0.15 𝑔 = 0.20

ො𝑔 = 0.10 𝑔 = 0.10
Figure 8. Examples of grain filter extraction and transfer using our

method. Estimated and ground-truth grain intensities are shown

in the lower right corner of respective images. Grain details are

better visualized while zooming in.

Grain extraction and transfer Our grain intensity clas-

sifier achieves 95% accuracy. The precision, recall, and

F1 scores are shown in Table 3. Figure 8 shows exam-

ples of grain filter extraction and transfer using our method,

along with estimated grain intensities. Our method per-

forms well in terms of predicting grain intensity; however,

in few cases, the estimated grain intensity is off by ±0.05,

which is hardly noticeable.

1195



Table 3. Grain intensity prediction results.

Grain intensity

Metric 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Mean

Precision 0.97 0.88 0.92 0.94 0.97 0.96 0.96 0.96 0.97 0.91 1.00 0.95

Recall 0.86 0.92 0.95 0.97 0.95 0.96 0.97 0.98 0.98 0.97 0.91 0.95

F1 score 0.91 0.90 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.94 0.95 0.95

4.3. Comparison to Style Transfer

In Figure 9, we compare our method against the con-

ventional color transfer algorithm of Reinhard et al. [17],

the recent filter style transfer (FST) approach of [24], and

various deep learning-based style transfer methods, such

as WCT [9], including photo-realistic methods, such as

LinST [8], PhotoWCT [10], and WCT2 [25]. The first two

examples show vignetting transfer while the last two exam-

ples are for image grain. The color transfer approach of [17]

applies global color transformation and cannot model spa-

tial variations. The FST method [24] tends to carefully

manipulate the image colors while not handling spatial ef-

fects. Existing deep learning-based style transfer meth-

ods [8, 9, 10, 25] are also not well suited to transfer spatial

effects, such as vignette and grain. It can be observed that

they distort the colors (and sometimes even the structure)

of the content image based on the filtered image, and fail to

achieve the intended effect. In contrast, since our method is

focusing on spatial filters, it faithfully transfers the spatially

varying effects of vignetting and grain.

Runtime Table 4 shows a comparison of running time (in

milliseconds) of filter style transfer per 1-megapixel image.

All running times were computed on an Nvidia Tesla V100

GPU with 32 GB of RAM, except for the FST method [24],

which was run on an Nvidia GTX 1080 Ti GPU, and Rein-

hard et al. [17], which was run on an Intel Core i7-8550U

CPU. Our method is significantly faster than other methods

due to two main factors. First, we use much lighter neu-

ral networks to estimate the filter parameters. Second, we

use faster methods to regenerate the filter style effects—that

is, we use an optimized implementation of simplex noise

to generate the grain effect and use 2D isotropic Gaussian

filters to generate the vignetting effect. In addition, our

method currently runs on millions of smartphones within 1

second for initial filter extraction and within 2 milliseconds

for filter application.

4.4. Integration with Filter Pipelines

On camera devices, it is often required to extract a filter

from an image, pre-generate the filter effect, and then apply

the filter effect on the captured images in real time [24]. Our

method is perfectly suitable to be integrated in such image

filtering pipelines. Figure 10 shows how well our vignetting

and grain filter extraction methods can be integrated with

color transfer methods, such as Reinhard et al. [17]. In

Figure 10, the third and fourth columns show the result

Table 4. Comparison of running time of filter style transfer in

milliseconds per 1-megapixel (1024 × 1024 pixels) image. Our

method is significantly faster than other methods.

Method Time (ms) Device

Reinhard et al. [17] 254 Core i7-8550U

FST [24] 218 GTX 1080 Ti

LinST [8] 1021 Tesla V100

WCT [9] 4167 Tesla V100

PhotoWCT [10] 2532 Tesla V100

WCT2 [25] 5120 Tesla V100

Ours (vignetting) 7 Tesla V100

Ours (grain) 77 Tesla V100

of transferring the vignetting effect only and the vignetting

and grain effects together, respectively. The last column

shows the result of transferring the three filter effects—that

is, vignetting, grain, and colors. In combination with a sim-

ple and efficient method, such as Reinhard et al. [17], our

method can faithfully transfer both global color and spa-

tially varying effects (e.g., vignetting and grain).

Results on web images To further evaluate our method,

we apply it on images downloaded from Flickr. Figure 11

shows some results along with the vignetting and grain pa-

rameters estimated from the style images. The estimated

parameters reflect the amount of vignetting or grain found

in the style images. In most cases, the estimated parameters

visually match the actual effects in the style images.

5. Conclusion

In this paper, we proposed an efficient method for ex-

tracting spatially varying filters—namely, vignetting and

image grain—from stylized images. Our method can de-

tect whether these filters exist in the stylized image, esti-

mate the filter parameters, and construct a new filter that

can be applied to any input image or video. To estimate

filter parameters (vignetting strength and grain intensity),

we use lightweight neural networks that contain as few as

162K and 59K parameters. In addition, we adopt simple,

yet effective, methods for regenerating the filters, advocat-

ing for a reasonable trade-off between efficiency and re-

alism. Specifically, we used Gaussian filters and simplex

noise to regenerate the vignetting and grain effects, respec-

tively. Our small networks and efficient filter generation are

computationally efficient and has been deployed to millions

of flagship smartphones. We feel this is a great opportu-

nity for other researchers to see deployed industry solutions.

Code and data will be published.

1196



Filtered image (input) Content image (input) Color transfer [17] LinST [8]

WCT [9] Photo WCT [10] WCT2 [25] Ours Ground truth

FST [24]

Filtered image (input) Content image (input) Color transfer [17] LinST [8]

WCT [9] Photo WCT [10] WCT2 [25] Ours Ground truth

FST [24]

Filtered image (input) Content image (input) Color transfer [17] LinST [8]

WCT [9] Photo WCT [10] WCT2 [25] Ours Ground truth

FST [24]

Filtered image (input) Content image (input) Color transfer [17] LinST [8]

WCT [9] Photo WCT [10] WCT2 [25] Ours Ground truth

FST [24]

Figure 9. Comparisons with the conventional color transfer algorithm of Reinhard et al. [17], the recent filter style transfer approach of [24],

and various deep learning-based style transfer methods, such as LinST [8], WCT [9], PhotoWCT [10], and WCT2 [25].

1197



Input style image 

(vignette + grain)

Input content image Output image

(vignette)

Output image 

(vignette + grain)

Output image 

(vignette + grain + color)

Figure 10. Examples of extraction and transfer of vignetting and grain filters from images in our testing set. We combine our method

combined with Reinhard et al. [17] for color transfer (last column). Grain details are better visualized while zooming in.

Input style image

ො𝑣 = 5

Input content image Vignetting transfer Grain transfer Vignetting + grain 

transfer

ො𝑣 = 0

ො𝑣 = 7

ො𝑔 = 0.10

ො𝑔 = 0.40

ො𝑔 = 0.05 ො𝑣, ො𝑔 = 7, 0.05

ො𝑣, ො𝑔 = 0, 0.40

ො𝑣, ො𝑔 = 5, 0.10

Vignetting + grain + color 

transfer

Figure 11. Examples of extraction and transfer of combined vignetting and grain filters from web images from Flickr. We combine our

method with Reinhard et al. [17] for color transfer. Grain details are better visualized when zoomed in.

1198



References

[1] Martı́n Abadi et al. TensorFlow: Large-scale machine learn-

ing on heterogeneous systems, 2015. Software available

from tensorflow.org.

[2] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-

lenge on single image super-resolution: Dataset and study.

In CVPRW, 2017.

[3] Hans I Bjelkhagen. Silver-halide materials. In Silver-halide

recording materials, pages 13–92. Springer, 1995.

[4] François Chollet et al. Keras. https://keras.io, 2015.

[5] Leon Gatys, Alexander Ecker, and Matthias Bethge. A neu-

ral algorithm of artistic style. Journal of Vision, 16(12):326–

326, 2016.

[6] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017.

[7] Brian Keelan. Handbook of image quality: Characterization

and prediction. CRC Press, 2002.

[8] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.

Learning linear transformations for fast arbitrary style trans-

fer. In CVPR, 2019.

[9] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In NeurIPS, 2017.

[10] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and

Jan Kautz. A closed-form solution to photorealistic image

stylization. In ECCV, 2018.

[11] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsuper-

vised image-to-image translation networks. arXiv preprint

arXiv:1703.00848, 2017.

[12] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.

Deep photo style transfer. In CVPR, 2017.

[13] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010.

[14] Alasdair Newson, Noura Faraj, Bruno Galerne, and Julie De-

lon. Realistic film grain rendering. Image Processing On

Line, 7:165–183, 2017.

[15] Alasdair Newson, Bruno Galerne, and Julie Delon. Stochas-

tic modeling and resolution-free rendering of film grain.

2016.

[16] François Pitié, Anil C Kokaram, and Rozenn Dahyot. Au-

tomated colour grading using colour distribution transfer.

CVIU, 107(1-2):123–137, 2007.

[17] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter

Shirley. Color transfer between images. IEEE Computer

Graphics and Applications, 21(5):34–41, 2001.

[18] Nanette Salvaggio. Basic photographic materials and pro-

cesses. Taylor & Francis, 2009.

[19] Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-

net: Multi-scale zero-shot style transfer by feature decora-

tion. In CVPR, 2018.

[20] Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local

color transfer via probabilistic segmentation by expectation-

maximization. In CVPR, 2005.

[21] Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller.

Transferring color to greyscale images. In Proceedings of

the 29th annual conference on computer graphics and inter-

active techniques, pages 277–280, 2002.

[22] Wikipedia. OpenSimplex noise, 2020 (accessed October 27,

2020).

[23] Xuezhong Xiao and Lizhuang Ma. Color transfer in corre-

lated color space. In Proceedings of the 2006 ACM interna-

tional conference on virtual reality continuum and its appli-

cations, pages 305–309, 2006.

[24] Jonghwa Yim, Jisung Yoo, Won-joon Do, Beomsu Kim, and

Jihwan Choe. Filter style transfer between photos. In ECCV,

2020.

[25] Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu

Kang, and Jung-Woo Ha. Photorealistic style transfer via

wavelet transforms. In ICCV, 2019.

[26] Yuanjie Zheng, Stephen Lin, Chandra Kambhamettu, Jingyi

Yu, and Sing Bing Kang. Single-image vignetting correction.

TPAMI, 31(12):2243–2256, 2008.

[27] Yuanjie Zheng, Stephen Lin, Sing Bing Kang, Rui Xiao,

James C Gee, and Chandra Kambhamettu. Single-image

vignetting correction from gradient distribution symmetries.

TPAMI, 35(6):1480–1494, 2012.

[28] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-

rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-

ward multimodal image-to-image translation. arXiv preprint

arXiv:1711.11586, 2017.

1199


