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Abstract

In this paper, we study fine-grained 3D object identifi-
cation in real-world scenes described by a textual query.
The task aims to discriminatively understand an instance
of a particular 3D object described by natural language
utterances among other instances of 3D objects of the
same class appearing in a visual scene. We introduce the
3DRefTransformer net, a transformer-based neural network
that identifies 3D objects described by linguistic utterances
in real-world scenes. The network’s input is 3D object
segmented point cloud images representing a real-world
scene and a language utterance that refers to one of the
scene objects. The goal is to identify the referred object.
Compared to the state-of-the-art models that are mostly
based on graph convolutions and LSTMs, our 3DRefTrans-
former net offers two key advantages. First, it is an end-
to-end transformer model that operates both on language
and 3D visual objects. Second, it has a natural abil-
ity to ground textual terms in the utterance to the learn-
ing representation of 3D objects in the scene. We fur-
ther incorporate object pairwise spatial relation loss and
contrastive learning during model training. We show in
our experiments that our model improves the performance
upon the current SOTA significantly on Referit3D Nr3D
and Sr3D datasets. Code and Models will be made pub-
licly available at https://vision-cair.github.
io/3dreftransformer/.

1. Introduction

In recent years, A lot of interest has been demonstrated
in connecting vision and language. Improving the perfor-
mance of vision and language-based tasks is essential for a
wide range of applications ranging from 2D image related
applications like image captioning [19, 35, 38, 25, 2], text-
to-image generation [13, 33, 9], and visual question answer-
ing [3, 30] to more complex tasks in robotics like language

Figure 1. Our model takes a 3D point cloud visual input of M ob-
jects. These objects includes target object; objects of the same
class as the target object, i.e distractors, and objects of another
class as target object. Simultaneously, the model takes a language
input of an utterance describing the target object. 3DRefTrans-
former Net distinguishes target object from other objects in the
scene.

guided navigation [20, 22, 10].
The task of visual grounding has attracted a lot of at-

tention [16, 14, 24, 8]. The goal of visual grounding is to
localize an object in an image given its natural language de-
scription. However, the majority of work focuses on form-
ing a relationship between language and 2D images, which
despite commendable progress, fails to capture 3D reality.
Additionally, there is a lack of research identifying fine-
grained 3D objects, despite numerous applications, such as
autonomous driving, and navigation [37, 31].

Solving vision and language tasks where we operate di-
rectly on 3D visual representations (like 3D point clouds)
has seen considerable interest in recent years. The reason
behind this interest is the abundance of 3D sensors like Li-
DARs, and it would be more plausible to operate directly on
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the 3D modality. However, modeling language to operate
on real 3D scenes is significantly less explored, and despite
its importance, it lacks large-scale benchmarks compared
to other 3D problems. Tasks like object identification or lo-
calization in a 3D point cloud scene using natural language
started to grab attention in the community. Referit3D [1]
and ScanRefer [5] works provided datasets suited to these
kinds of tasks. In Referit3D, the authors proposed solving
the object identification task using DGCNN networks [36].
They assume that the input is object-segmented point clouds
and assume that the 3D object bounding box proposals are
provided. While the authors in ScanRefer [5] remove this
assumption and the input to their proposed model is just
the complete 3D scene point cloud. There is a follow-up
by [18], where they replaced the 3D object proposals with
instance segmentation masks, where each semantic mask
represents a 3D object in the scene.

In this work, we mainly focus on the fine-grained ob-
ject identification problem. We address the Referit3D task,
choosing or identifying the target object described by one
of its language descriptions (called utterances) that de-
scribe this target object in the 3D scene. Each utterance in
Referit3D, Nr3D, and Sr3D datasets uniquely describes an
object in the 3D scene, where each scene has at least one ob-
ject of the class of interest among other objects. Such com-
plex tasks require the model to reason about how the scene
objects are arranged with respect to each other in the scene.
To that end, We propose a transformer-based model that
achieved the state of the art performance with significant
improvement. Adopting off-the-shelf transformer models
from the 2D domain can be limiting. Transformer models
require a huge amount of data to perform well. For exam-
ple, LXMERT [32], a transformer model for visual and lan-
guage cross-modality encoder representation, is pre-trained
on a set of large-scale datasets in terms of million image and
text pairs. To sum up, our contributions in this paper are the
following:

• We proposed 3DRefTransformer, a transformer-based
network that contains uni-modal and cross-modal at-
tention mechanisms. The model inherits a natural abil-
ity to ground the textual terms to their corresponding
objects. However, due to the scarcity of data in the
3D domain, adopting transformer models from the 2D
domain remains difficult.

• To alleviate the scarcity of (vision/language) datasets
in a 3D domain, we propose a pairwise object spatial
relation prediction loss and also adopt a contrastive
learning approach to improve the performance of the
model.

• To incorporate the spatial relation loss, We generate
scene graphs for ScanNet [7] dataset in a synthetic way
and show that it can improve the performance.

2. Related Work

Point Cloud Processing Methods. Recent works have
proposed point-based methods for point cloud feature rep-
resentation that can be used for 3D shape classification and
semantic segmentation tasks. PointNet [27] and PointNet++
[28] are point-wise based methods. PointNet incorporates
symmetric operations and shared MLP layers to generate
global feature representation for the point cloud. Instead,
PointNet++ uses a hierarchical feature representation of lo-
cal regions to describe a point cloud. Guo et al. [11] are the
first to incorporate transformer encoders to process point
clouds. Since self-attention is permutation invariant to in-
put sequences, the authors find the transformer well suited
for point cloud processing.

2D Vision and Language. Significant progress has been
in 2D vision, and natural language achieving strong per-
formance on tasks ranging from image captioning [19, 35,
38, 25, 2], visual grounding [17], text-to-image generation,
and visual question answering [23, 3, 30]. Recent meth-
ods tackling these tasks are based on transformer networks
(e.g., [34, 32, 21, 12, 29]), demonstrating state-of-the-art
performance in a variety of tasks. What drove their suc-
cess in most of these methods in 2D vision and NLP is the
availability of large-scale datasets. However, in natural 3D
world scenes, it is challenging to incorporate transformer-
based methods trivially. Hence, proper design of the 3D
visiolinguistic extension in our case is critical for good re-
sults.

Language Guided 3D Object Localization. Vision and
language in 3D domain have recently gained a lot of at-
tention, and it is still considered a not well-explored area,
unlike the 2D domain. Chen et al. introduced the task of
localizing an object in a 3D scene using natural language
[5]. The authors in [5] introduce ScanRefer dataset for such
task. The input to their proposed model is a language de-
scription and a point cloud of a 3D scene. Their proposed
model was based on a previous work [26], where the net-
work first generates 3D region proposals (which are can-
didate objects), then the proposals’ visual features are con-
catenated with the language description features to compute
a score for each proposal. The proposal with the highest
score is the output prediction. Concurrently, Achlioptas et
al. [1], propose another two datasets Referit3D Nr3D and
Sr3D. These two datasets can be used to distinguish an ob-
ject in a 3D scene from the others (including objects with
the same class type). Chen et al. [6] introduced a caption-
ing model for 3D objects in point cloud scenes using the
ScanRefer dataset.

3. Method

Given a 3D real-world scene S represented as an RGB-
colored point cloud, it is segmented into a set of M objects
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Oi such that S = {O1, ..., OM}. Also, an utterance U is
provided, and it uniquely describes a target object in the
scene S. The goal of the model is to identify the referred
target object OT ∈ S by the utterance U . For the model
to solve this task, it should first classify the 3D objects in
the scene. Then it has to learn how the objects are spatially
arranged in the scene with respect to each other, i.e., context
and spatial relation information is crucial for solving the
task successfully.

In this paper, we investigate the effect of using a self-
attention transformer encoder on the model performance.
In the following subsections, we discuss our network’s
architecture that achieves state-of-the-art performance on
Referit3D benchmark, outperforming existing methods by
1.7% and 2.0% on Nr3D and Sr3D datasets, respectively.

3.1. Input Embeddings

Object-level Embedding. To be closer to Referit3D [1]
model, we choose PointNet++ [28] for point clouds encod-
ing. For each object point cloud oi in the input scene S
having M objects where S = {o1, ..., oM} and i = 1...M ,
we encode its point cloud as a feature vector fi where
F = (f1, ..., fM ). We then use F as the objects’ point cloud
embeddings as input to the object transformer mentioned in
Section. 3.2. Since the point cloud by nature has the po-
sition information, we don’t use the positional embedding
that is necessary in case of language embeddings.

Word-level Embedding. To embed the utterance U , we
generate a sequence of word embedding vectors using a
trainable embedding layer. We then sum each embedding
vector with its positional embedding as in [34]. The result-
ing word embedding vectors W are passed to the language
transformer discussed in Section. 3.2.

3.2. A Transformer Encoder for Each Modality

Our proposed model employs a transformer architecture
for each modality, i.e., for both visual and textual data. In
contrast to several contemporary approaches that also fuse
different modalities with transformer blocks [32, 21, 15],
firstly, we allow the tokens of each of the two modalities to
self attend only on themselves in a separate transformer en-
coder. Then only we allow the enhanced token representa-
tions coming out from both uni-modal transformer encoders
to do cross-modal attention. Using a separate transformer
encoder for each modality enables the following: In the vi-
sual transformer, each visual object first gets a better scene-
aware visual representation of itself without dissipating at-
tention weights on textual tokens. Also, it is more suitable
to apply some of the auxiliary losses (i.e., Spatial Relation
Loss 3.7) on the uni-modal representations than after the
multi-modal transformer. The same idea applies to the ut-
terance sequence as well. We encode the utterance words
W using a transformer encoder to get an output sequence

W̃ . Both uni-modal transformers have the same number of
layers L. The feature in each output sequence in both trans-
formers has the same dimension dh.

3.3. Positional Embedding For Object Features

PointNet++ feature representation carries some informa-
tion about where the object is. In addition to that, we in-
vestigate whether the positional information in PointNet++
features is sufficient by itself or not. We implemented two
different types of positional embedding.

Absolute Positional Embedding. For each object in O,
we encode its bounding box centers and scales using MLP,
and we add this positional embedding to the object features.

Poi = fi +MLP (bbox centeroi , bbox dimoi) (1)

Relative Positional Embedding. We compute the pair-
wise distances between the bounding boxes centers of the
scene objects. We incorporate them in a different way than
the absolute positional embedding. Instead, we pass each
pair-wise through an MLP[3,32,1] and we add the result
value to the computed self-attention weights before doing
the softmax in the self-attention layer. Consider the input
for a self attention layer in the object transformer: queries
Q of size Mxdf , keys K of size Mxdf , and values V and
the pair-wise object distances are the matrix P of dimen-
sions MxM . Then the output of the self-attention layer is:

A =
QKT + P√

df
(2)

3.4. Multi-modal (MM) Transformer Encoder)

After we get enhanced features from each modality
transformer encoder layer, we use a multi-modal trans-
former to further encode both modalities together. The input
sequence to this MM transformer is the union of output se-
quences from both uni-modal transformers Z = F̃ ∪W̃ . To
provide better interaction between the object features and
the language features, We allow all the input tokens in Z
to self-attend on each other. This type of MM transformers
showed outstanding performance in the TextVQA problem
as proposed in [15]. This kind of attention allows contrast-
ing each object with each word in the utterance. The MM
transformer is a stack of L self-attention layers. After pass-
ing the input sequence Z, We obtain Z̃ that consists of the
final feature representations for each object point cloud and
language word.

The reason behind using multi-modal transformer was
to form a relation between the two modalities in way that
we can interpret different language descriptions over all the
objects present in the scenes based on the adjectives and
location-identifying words.
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Figure 2. Our 3DRefTransformer proposed model: The model takes two input sequences: a visual sequence of 3D point clouds of M objects
and a sequence of the utterance words. Each object’s point cloud is encoded using PointNet++ then passes through an object transformer
where each object feature self-attends on other objects in the scene to encode its context. For each word in the input sequence, we embed
it using a trainable embedding layer. Then it is passed through a language transformer, where a linguistic self-attention occurs. Both
transformers’ output goes through a multi-modal transformer layer that applies self-attention between the linguistic and visual features.
Finally, to identify the target object, we apply scaled normalized cosine similarity to compute the logits.

3.5. Contrastive Learning

We incorporated contrastive learning signals during
training. Contrastive learning losses help the model bet-
ter distinguish between similar language utterances and ob-
jects. For example, a (positive utterance, target object) pair
should be away from other (negative utterance, distractor
object) pairs. To implement such training signals, we do it
in two ways:

Target object to negative utterances COU . We do a
scaled cosine similarity between the target object feature
and a vector containing the positive utterance in addition to
sampled negative utterances in the current mini-batch. The
similarity between the positive utterance and the target ob-
ject should be the maximum.

L(yi, yi) =
1

NU

∑
i=1

− log
(
pi =

euTi oi∑K
j=1 e

uTi oj

)
(3)

Where N is number of objects in the 3D scene, and yi is a
one-hot encoding that represents the target object label.

Positive utterance to negative objects CUO. Similarly,
we sample from the current mini-batch object features that
are not referred to by the positive utterance, and we do
scaled dot product between the positive utterance and a vec-
tor containing the target object feature as well as the sam-
pled negative object features in the current mini-batch. The

similarity between the positive utterance and the target ob-
ject should be the maximum.

L(ui, yi) =
1

N

N∑
i=1

− log
(
pi =

euTi oi∑K
j=1 e

uTi oj

)
(4)

Where N is number of objects in the 3D scene, and yi is a
one-hot encoding that represents the target object label.

3.6. Output: Object Identification

To identify the target object, we further used scaled co-
sine distance to compute the similarity between each object
feature in Z̃ and a single feature Ũ that represents the whole
utterance, where Ũ is the mean of all words features in Z̃.
The scale factor η is used as a temperature factor. We apply
such an operation as we want the target object visual feature
to be as close as possible to the utterance language feature.

Y = ηZ̃Ũ⊤ (5)

3.7. Training Objectives

In our experiments, we train all models from scratch in
an end-to-end manner. The model was trained on 4 objec-
tive functions. The first loss Lref is the target object ref-
erential cross-entropy loss, which maintains that the model
has a high similarity between the utterance and the target
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object features. The second term Lc is object classification
cross-entropy loss, which operates directly on the Point-
Net++ [28] features. The third loss Lt is a classification
cross-entropy loss applied on the utterance feature forcing
the language representation to learn the referred class label.

Spatial Relation Prediction. Given the input ob-
jects sequence O, the task of the object transformer
encoder is to predict the spatial relationship for some
annotated object pairs (oi, oj). The goal of this task is
to encourage the object transformer to understand the
spatial relationship between the objects in the 3D scene.
Having spatially aware transformers, we allow better
performance in the main referential task. To achieve
this, we synthesized some scenes to have the object
transformer better understand the importance of spatial
relations between various objects present in the scene.
Synthesis of this scene was a randomized process where
we place objects in the scene with one of the pre-defined
spatial configurations relative to already present objects.
In total, we have eight unique spatial relations Rspa =
{left, right, front, back, above, below, closest, farthest}.
During training, we pass at most 200 random sampled
tuples where each tuple can be represented as (oi, oj , ri,jspa).
oi and oj are two different objects present in the same scene
S and we apply the cross-entropy classification loss on the
concatenated object features representations improved by
the object transformer.

Lspa = crossentropy(MLP ([oi, oj ]), r
i,j
spa) (6)

To sum up, in Equation. 7, we show the weighted sum of
the four loss terms used during training. Empirically, we set
γ = 3.3 using the performance on the validation set.

L = Lref +
1

2
(LCUO

+LCOU
)+

1

2
(Lc+Lt)+γLspa (7)

4. Experiments

4.1. Datasets

We focus mainly on Referit3D problem that emphasizes
on distinguishing a target object among its same-class dis-
tractors and other objects in a 3D scene. We evaluate our
model on the Referit3D Nr3D and Sr3D datasets and com-
pare it with the state-of-the-art models.

Nr3D dataset. It consists of 41.5k human utterances
covering 76 fine-grained object classes. Each utterance
uniquely describes a target object in a 3D ScanNet Scene.

Sr3D dataset. It consists of 83.5k template-based syn-
thesized utterances.

Train/Val Splits. We use the same train/val splits as in
ReferIt3D[1].

4.2. Implementation Details

Each transformer module in our model consists of two
transformer layers. While positional embedding is essential
when encoding sequential linguistic inputs using a trans-
former model, it is not necessary for point cloud represen-
tation. Point cloud representation of 3D objects is naturally
defined as a set where each feature f is a vector holding the
spatial position of the object. Hence, we do not need to ap-
ply positional encoding for point cloud objects. In section
4.3, we ablate the performance when using different posi-
tional embeddings.

Following [1], for each training example (utterance,
ScanNet [7] scene objects), we consider at most 52 objects
per scene during training. During testing, we consider at
most 89 objects per scene. In both training and testing, we
sample 1024 points from every object’s point cloud.

The language random embedding for the input utterance
has a dimensionality of 128. Similarly, the dimension of
the hidden features, the language token embedding (Point-
Net++), and the objects’ feature dimension are all set to 128.
Empirically, the scale factor in the normalized scaled cosine
similarity is 3.3. We refer the reader to the supplementary
material for further ablation on trying different values of
this scale factor.

Optimizer. During training, we used an Nvidia V100
GPU with a batch size of 16 and a base learning rate of
0.0005 with an ADAM optimizer for 60 epochs. We in-
corporated a learning rate scheduler where the learning rate
is reduced to 0.65 of its value when the validation accu-
racy does not increase for five consecutive epochs. For all
the transformer encoders, we used the rezero normalization
trick mentioned in [4] as it was empirically better than layer-
norm.

4.3. Ablation Studies

We compare our proposed model to the current SOTA
methods. In Table. 1, we show that our model outperforms
other approaches. Our model significantly outperforms the
current state-of-the-art. In Referit3DNet [1], their proposed
model uses DGCNN [36] network, which struggles to un-
derstand the spatial relations of objects in the scene with-
out some additional guidance. DGCNN also struggles to
contrast between different objects due to the following rea-
son. At each DGCNN [36] graph layer, the neighborhood
is computed dynamically based on the top K nearest neigh-
bors in the latent space. Hence, most of the time, the neigh-
borhood of each object feature in the first graph layers will
be its same-class distractors features. This behavior will
make it difficult for the later graph networks to understand
the context between the objects in the scene.

We show that our model outperforms other models in
hard contexts. Hard contexts mean that the scene has more
than one object of the same class as the target object. Also,
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Accuracy
Dataset Method Overall VD VID Easy Hard
Nr3D Referit3DNet [1] 35.6% ± 0.7% 32.5% ± 0.7% 37.1% ± 0.8% 43.6% ± 0.8% 27.9% ± 0.7%
Nr3D TGNN [18] 37.3% ± 0.3% 35.8% ± 0.2% 38.0% ± 0.3% 44.2% ± 0.4% 30.6% ± 0.2%
Nr3D Ours w/o LCon 38.2% ± 0.2% 33.3% ± 0.3% 40.5% ± 0.2% 46.0% ± 0.5% 30.6% ± 0.3%
Nr3D Ours 39.0% ± 0.2% 34.7% ± 0.3% 41.2% ± 0.4% 46.4% ± 0.4% 32.0% ± 0.3%
Sr3D Referit3DNet [1] 40.8% ± 0.2% 39.2% ± 1.0% 40.8% ± 0.1% 44.7% ± 0.1% 31.5% ± 0.7%
Sr3D TGNN [18] 45.0% ± 0.2% 45.8% ± 1.1% 45.0% ± 0.2% 48.5% ± 0.2% 36.9% ± 0.5%
Sr3D Ours 47.0% ± 0.2% 44.3% ± 0.3% 47.1% ± 0.2% 50.7% ± 0.1% 38.3% ± 0.5%

Table 1. Comparison with ReferIt3D/TGNN on the accuracy of referential object identification task.

Positional Embedding Accuracy
PNet++ Absolute Relative Overall VD VID Easy Hard

✓ 38.2% ± 0.2% 33.3% ± 0.3% 40.5% ± 0.2% 46.0% ± 0.5% 30.6% ± 0.3%
✓ ✓ 38.0% ± 0.2% 32.8% ± 0.3% 40.5% ± 0.3% 45.6% ± 0.4% 30.6% ± 0.4%
✓ ✓ 38.7% ± 0.3% 33.9% ± 0.3% 41.0% ± 0.3% 45.8% ± 0.4% 31.8% ± 0.3%
✓ ✓ ✓ 38.3% ± 0.4% 34.5% ± 0.3% 40.2% ± 0.5% 45.2% ± 0.3% 31.7% ± 0.5%

Table 2. The effect of adding absolute or relative positional embeddings to the object PointNet++ features on a model variant (trained
without contrastive learning losses). The results suggests that PointNet++ conveys the positional information, However, adding explicitly
absolute positional embeddings slightly improves the performance.

our model outperforms the others in view independent con-
texts. View independent contexts mean that in order to find
the target object, you do not need to be looking from a cer-
tain view. For example, “Facing the couch, the nightstand
on your left”. This performance in hard and view indepen-
dent contexts suggests that our model is more capable of
understanding the spatial relationships between objects and
is better at contrasting hard distractors of the same class as
the target object.

Contrastive Training The available datasets’ size is still
too small compared to the large-scale datasets in the 2D
domain. To alleviate such limited availability of the data,
we investigate the effect of contrastive learning. Table. 1
shows the gain in performance in every type of context by
incorporating the contrastive loss. The most significant im-
provement is in the hard contexts. By moving away from
the feature representation of both the target visual object
and target utterance from their distractor objects and neg-
ative utterances, the model learns how to better determine
the target object among its distractors.

Object Positional Embeddings We investigate the ef-

Layers in MMT Accuracy
LMMT = 2 39.0% ± 0.2%
LMMT = 3 38.4% ± 0.3%
LMMT = 4 37.9% ± 0.3%

Table 3. 3D RefTransformer Performance with different number
of layers in the multi-modal transformer. Using two encoder layers
gave the best results.

fect of incorporating different positional embeddings to ob-
jects’ point cloud features. We want to see how much Point-
Net++ can convey such positional information. We tried
different experiments; (a) we do not add any extra posi-
tional information to the object features, (b) adding rela-
tive positional embeddings as mentioned in section men-
tion section, (c) adding absolute positional embeddings,
and (d) adding both relative and absolute positional embed-
dings. In table. 2, we find that PointNet features carry po-
sitional information by themselves, and adding relative po-
sitional embedding hurt the performance a bit, especially in
the view-dependent scenes. This finding may appear coun-
terintuitive. However, we argue that self-attention can find
more representative positional embedding without explic-
itly adding basic relative positional embeddings.

Spatial Relation Loss To show the effect of introducing
this loss term, we carried two experiments on a variant of
our model with/without using the spatial loss. As shown
in Table. 4. The model performs better by encouraging to
learn such object pair-wise relations, especially in the hard
and view-dependent contexts. Such contexts require a bet-
ter understanding of how same-class distractor objects are
placed in the scene. On the other hand, the spatial relations
data used as ground truth are generated using code, this data
is noisy and not covering all the possible relations, and we
believe it is why it did not cause a significant boost in the
model performance.

Number of layers in the multi-modal transformer. We
present the effect of changing the number of layers in the
multi-modal transformer on the overall performance in Ta-
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Overall VD VID Easy Hard
w/o Lspa 37.5% ± 0.2% 33.1% ± 0.2% 39.6% ± 0.4% 39.9% ± 0.3% 29.5% ± 0.3%
w/ Lspa 38.2% ± 0.2% 33.3% ± 0.3% 40.5% ± 0.2% 46.0% ± 0.5% 30.6% ± 0.3%

Table 4. Contrast between using spatial loss or without spatial loss: Using the spatial loss helps especially in hard contexts and view
independent contexts.

Figure 3. Successful qualitative examples from our best performing method. Green means the prediction and ground truth. Red represents
same-class distractor objects. Our method outperforms other methods in the hard contexts.

ble 3. We can observe that when adding any extra layer, the
performance drops. We argue that the reason behind this is
the small size of the dataset currently available.

4.4. Qualitative Results

We have provided some qualitative examples in Figure.
3 from our best performing model. We observe that our
model can successfully and accurately describe the spatial
relations among different objects from the scene. It can also
distinguish between the objects. For example, “The middle
cup in the corner”. It could distinguish the referring cup

from other similar cups and point out its position. We also
demonstrate the object grounding examples in Figure 5. We
show an example of our method’s grounding ability. The
query text is “The lamp next to the window”, and our model
can locate it with high confidence while maintaining atten-
tion on relevant words in the utterance. In Figure. 4, we
show some challenging examples predicted successfully by
our methods, compared to Referit3DNet predictions which
are less accurate. For more qualitative results, please refer
to the supplementary.
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Figure 4. Comparing some examples between Referit3DNet (on the right) and our proposed method (on the left). These examples
Referit3DNet failed to identify the target object while our proposed method successfully identifies the target object.

Figure 5. Example illustration: we show how target object visual
feature (Lamp 50 in this example) attends on the utterance word
tokens. Our model can successfully distinguish which lamp that
the current utterance is referring to.

5. Conclusion

Identifying fine-grained 3D objects in real-world scenes
based on their textual query descriptions is a challenging

task that requires building both context-aware visual rep-
resentations that are robust to distractions and fuse them
with the textual representation of a query. In this paper, we
presented 3DRefTransformer model, which employs Trans-
former blocks to better encode context information into vi-
sual representations for better discrimination between a tar-
get 3D object and possible distractors. Our empirical re-
sults demonstrate that the proposed architecture shows sig-
nificant improvement over the baselines in the overall per-
formance. However, we are still far below the level of hu-
man performance, and our qualitative analysis shows that
the model can be confused in relatively simple cases. We
also did several ablation experiments and demonstrated that
self-attention alone is insufficient to obtain competitive per-
formance on this problem.

3948



References
[1] Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed

Elhoseiny, and Leonidas Guibas. Referit3d: Neural listeners
for fine-grained 3d object identification in real-world scenes.
16th European Conference on Computer Vision (ECCV),
2020.

[2] Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen,
Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, Ste-
fan Lee, and Peter Anderson. nocaps: novel object caption-
ing at scale. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 8948–8957, 2019.

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.
Vqa: Visual question answering. In Proceedings of the IEEE
international conference on computer vision, pages 2425–
2433, 2015.

[4] Thomas Bachlechner, Huanru Henry Majumder, Bod-
hisattwa Prasad Mao, Garrison W. Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large
depth. In arXiv, 2020.

[5] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner.
Scanrefer: 3d object localization in rgb-d scans using natural
language. arXiv preprint arXiv:1912.08830, 2019.

[6] Dave Zhenyu Chen, Ali Gholami, Matthias Nießner, and An-
gel X. Chang. Scan2cap: Context-aware dense captioning in
rgb-d scans, 2020.

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017.

[8] Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu,
and Mingkui Tan. Visual grounding via accumulated atten-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7746–7755, 2018.

[9] Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, De-
von Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua
Bengio, and Graham W. Taylor. Tell, draw, and repeat: Gen-
erating and modifying images based on continual linguistic
instruction, 2019.

[10] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,
Jacob Andreas, Louis-Philippe Morency, Taylor Berg-
Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.
Speaker-follower models for vision-and-language naviga-
tion. In Advances in Neural Information Processing Systems,
pages 3314–3325, 2018.

[11] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R. Martin, and Shi-Min Hu. Pct: Point cloud
transformer, 2021.

[12] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu
Chen. Deberta: Decoding-enhanced bert with disentangled
attention, 2020.

[13] Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Semantic
object accuracy for generative text-to-image synthesis. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
page 1–1, 2020.

[14] Ronghang Hu, Marcus Rohrbach, and Trevor Darrell. Seg-
mentation from natural language expressions. In European
Conference on Computer Vision, pages 108–124. Springer,
2016.

[15] Ronghang Hu, Amanpreet Singh, Trevor Darrell, and Mar-
cus Rohrbach. Iterative answer prediction with pointer-
augmented multimodal transformers for textvqa. CoRR,
abs/1911.06258, 2019.

[16] Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng,
Kate Saenko, and Trevor Darrell. Natural language object re-
trieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4555–4564, 2016.

[17] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Dar-
rell. Natural language object retrieval. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 4555–4564, 2016.

[18] Pin-Hao Huang, Han-Hung Lee, Hwann-Tzong Chen, and
Tyng-Luh Liu. Text-guided graph neural networks for refer-
ring 3d instance segmentation. 2021.

[19] Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. Deep
fragment embeddings for bidirectional image sentence map-
ping. In Advances in neural information processing systems,
pages 1889–1897, 2014.

[20] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Ba-
tra, and Stefan Lee. Beyond the nav-graph: Vision-and-
language navigation in continuous environments. arXiv
preprint arXiv:2004.02857, 2020.

[21] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vil-
bert: Pretraining task-agnostic visiolinguistic representations
for vision-and-language tasks. In Advances in Neural Infor-
mation Processing Systems, pages 13–23, 2019.

[22] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming
Xiong, and Zsolt Kira. The regretful agent: Heuristic-
aided navigation through progress estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6732–6740, 2019.

[23] Mateusz Malinowski and Mario Fritz. A multi-world ap-
proach to question answering about real-world scenes based
on uncertain input. In Advances in neural information pro-
cessing systems, pages 1682–1690, 2014.

[24] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. Generation
and comprehension of unambiguous object descriptions. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 11–20, 2016.

[25] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang,
and Alan Yuille. Deep captioning with multimodal recurrent
neural networks (m-rnn). arXiv preprint arXiv:1412.6632,
2014.

[26] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. In Proceedings of the IEEE International Conference
on Computer Vision, 2019.

[27] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation, 2017.

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on

3949



point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017.

[29] Di Qi, Lin Su, Jia Song, Edward Cui, Taroon Bharti, and
Arun Sacheti. Imagebert: Cross-modal pre-training with
large-scale weak-supervised image-text data, 2020.

[30] Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring
models and data for image question answering. In Advances
in neural information processing systems, pages 2953–2961,
2015.

[31] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A plat-
form for embodied ai research. In Proceedings of the IEEE
International Conference on Computer Vision, pages 9339–
9347, 2019.

[32] Hao Tan and Mohit Bansal. Lxmert: Learning cross-
modality encoder representations from transformers. In
Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 5103–5114, 2019.

[33] Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Fei Wu, and
Xiao-Yuan Jing. Df-gan: Deep fusion generative adversarial
networks for text-to-image synthesis, 2020.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[35] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3156–3164, 2015.

[36] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019.

[37] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world percep-
tion for embodied agents. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9068–9079, 2018.

[38] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption gen-
eration with visual attention. In International conference on
machine learning, pages 2048–2057, 2015.

3950


