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Abstract

Ill-posed inverse problems appear in many image
processing applications, such as deblurring and super-
resolution. In recent years, solutions that are based on deep
Convolutional Neural Networks (CNNs) have shown great
promise. Yet, most of these techniques, which train CNNs
using external data, are restricted to the observation mod-
els that have been used in the training phase. A recent alter-
native that does not have this drawback relies on learning
the target image using internal learning. One such promi-
nent example is the Deep Image Prior (DIP) technique that
trains a network directly on the input image with the least-
squares loss. In this paper, we propose a new image restora-
tion framework that is based on minimizing a loss function
that includes a ”projected-version” of the Generalized Stein
Unbiased Risk Estimator (GSURE) and parameterization of
the latent image by a CNN. We propose two ways to use our
framework. In the first one, where no explicit prior is used,
we show that the proposed approach outperforms other in-
ternal learning methods, such as DIP. In the second one, we
show that our GSURE-based loss leads to improved perfor-
mance when used within a plug-and-play priors scheme.

1. Introduction

Inverse problems appear in many image processing ap-
plications, where the reconstruction of an unknown latent
image x ∈ Rn from its given corrupted version y ∈ Rm
is required. In many image-restoration tasks the observed
image y can be expressed by the following linear model

y = Hx + e, (1)

where H ∈ Rm×n is a measurement operator with m ≤ n,
and e ∼ N (0, σ2Im) is an additive white Gaussian noise.
For example, when H is a blur operator, it is a deblurring

(a) Orig. image (cropped) (b) Blurred

(c) DIP (d) P-GSURE

(e) DIP-P&P (f) P-GSURE P&P

Figure 1: Deblurring of the baby image from Set5, blurred
using the scenario 2 model from Table 1. (a) The original
image (cropped) (b) The observed blurry and noisy image
(c) Reconstruction using DIP (d) Reconstruction using P-
GSURE (proposed method) (e) Reconstruction using DIP
based P&P-ADMM (with BM3D prior) (f) Reconstruction
using P-GSURE based P&P-ADMM (proposed method).

problem, and when H is an anti-aliasing filtering followed
by sub-sampling it is a super-resolution (SR) problem.

Image restoration problems represented by (1) are usu-
ally ill-posed, in the sense that fitting the measurements y
alone is not enough for a successful reconstruction of x.
Therefore, the use of some prior assumptions on x is in-
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evitable. Accordingly, many reconstruction approaches are
based on a minimization of a cost function formulated as

`(x̃;y) + βs(x̃), (2)

where x̃ is the optimization variable, `(·;y) is the fidelity
term, s(·) is the prior / regularization term, and β > 0 con-
trols the regularization strength. The fidelity term assures
compliance to the measurements y, while the prior term en-
courages the reconstruction to satisfy some prior assump-
tions on x, such as sparsity or non-local repeating patterns.

Over the past decade, CNNs have shown great potential
for solving imaging inverse problems as they circumvent the
hardness of designing priors for natural images [22, 9, 40,
30]. However, in order to perform well, the CNNs require
that the observation model at test time is the exact model
used in the training phase. For instance, in the SR task, it
is common to train the CNNs to reconstruct x from y that
is observed using a bicubic down-sampling kernel [9, 22].
But when examined on other down-sampling kernels these
networks perform very poorly [1, 35, 44].

An alternative to the offline training of CNNs with a pre-
determined observation model (which may not match the
model at test time) is “internal learning”, i.e. training that
is based only on the given observed image [35, 47]. One
popular internal learning method is Deep Image Prior (DIP)
[47], where a CNN with a set of parameters θ (and a fixed
random input) is employed to parameterize the latent image
x̃ = f(θ). It is then used to minimize the Least-Squares
(LS) loss (with no use of an explicit prior s(·)),

`LS(f(θ)) = ‖y −Hf(θ)‖22.

Using such a scheme implicitly benefits from the fact
that the CNN architecture promotes non-local repeating pat-
terns, which are common in natural images. However, be-
cause DIP uses an over-parameterized CNN it may overfit
the noise. Therefore, it requires an accurate early stopping,
and its performance degrades dramatically when faced with
heavy noise. This inspired follow-up works to incorporate
DIP with additional explicit regularizations [6, 23, 24, 53].

This paper proposes a new image restoration framework
that is based on minimizing a loss function, where instead of
a plain fidelity term `(x̃), we use a “projected-version” of
the Generalized Stein Unbiased Risk Estimator (GSURE)
[39, 10, 12] together with a parameterization of the latent
image by a CNN. We show two ways to use our framework.
In the first one, where no explicit prior is used, we show that
our approach outperforms other internal learning methods,
such as DIP [47] and ZSSR [35]. In the second one, we
show that our GSURE-based loss leads to improved per-
formance when used within a plug-and-play priors scheme
[48, 32, 5, 43, 24], where an additional prior s(·) is imposed
through the application of existing denoisers.

2. Related work
The self-similarity of natural images (i.e. the phe-

nomenon of recurrence of patterns within and across scales)
has been shown to be a powerful prior for image recon-
struction [3, 7, 13, 16, 29]. Recent empirical works, such
as DIP [47] and zero-shot super-resolution (ZSSR) [35]
showed that the self-similarity prior imposed by CNN ar-
chitectures is sufficient for recovering an image simply by
training a deep neural network from scratch at test time us-
ing only the observed degraded image. While ZSSR fo-
cused only on SR, the approach in DIP considered gen-
eral inverse problems and led to many follow-up papers
[11, 14, 17, 33, 34, 41, 49, 51].

In the presence of noise, DIP requires an accurate early
stopping to avoid overfitting the noise. To mitigate this is-
sue, and improve the performance, several papers incorpo-
rate it with additional explicit priors [6, 23, 24, 42, 53].

Another line of work, which is related to our paper, fo-
cuses on offline unsupervised learning: training CNNs on
noisy training sets (without ground truth clean images).
One such work is Noise2Noise [21], where the training
set includes two independent noise realizations per image,
and the strategy is examined for various noise models and
some applications, including compressive sensing MR re-
covery [21]. Another method, proposed in [36], is based on
Stein’s unbiased risk estimator (SURE) [39] (which is an
unbiased estimate for the estimation MSE when the ground
truth is unknown). This method trains CNNs with a training
set of a single noise realization per image and SURE as the
loss function. Yet, similarly to the original SURE [39], it
is limited to Gaussian denoising. Another paper that uses
SURE to train CNNs for Gaussian denoising is [26], where
the performance is also demonstrated when training using
only a single noisy image. These works have been extended
to train networks (without ground truth data) for image re-
covery from undersampled compressive sensing measure-
ments but the training is performed in this case using multi-
ple images.

Over the years, SURE has been extended to more general
noise models such as mixed Poisson-Gaussian model [20]
or a general exponential family [10]. The Generalized
SURE (GSURE) in [10] has been used for offline unsu-
pervised training (without ground truth data) of networks
for image recovery from undersampled compressive sens-
ing measurements [26]. Another work, combined the regu-
lar SURE with the LDAMP technique [28] for solving the
same problem using also offline training [52]. In contrast to
these two approaches that perform offline training on a large
set of images with pre-determined observation models, in
this paper we will use GSURE to solve ill-posed problems
by training a CNN using only the observed image.

Using SURE to train a CNN requires evaluating the di-
vergence of the network’s output with respect to its input,
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as well as the gradient of the divergence with respect to the
network’s parameters. Most previous works [36, 52, 26]
have used Monte-Carlo (MC) approximation of the diver-
gence, as proposed in [31], due to fast and easy compu-
tation, which we employ also in our paper. Alternative ap-
proximation of the divergence, based on random projections
of the network’s output, has been shown in [37].

The image restoration framework, presented in this pa-
per, is demonstrated with no explicit prior (similarly to
DIP), and also when an additional prior is used. In the lat-
ter case, we are inspired by the Plug-and-Play Priors (P&P)
approach [48, 27, 32, 5, 18, 43], where the prior used for
solving different inverse problems is imposed through the
application of denoising operations. Specifically, in this
paper, we impose the additional prior using the BM3D
denoiser [7]. Note that several P&P methods have also
shown excellent results using offline trained CNN denois-
ers [25, 43, 50, 43]. We note that there exists a method
[24] that combines DIP and P&P. The major difference be-
tween our approach and [24] is in the fact that [24] uses the
plain LS fidelity term while we use a GSURE-based loss
function. GSURE has the advantage over DIP that it leads
to a more stable training that is less sensitive than DIP to
the parameters of the network and the early stopping in the
training.

3. Method
In this paper, we employ the generalized SURE

(GSURE), which has been developed in [10]. Let x̂(y) be
a (weakly) differentiable estimator of the deterministic un-
known x. The original SURE formula [39] provides an un-
biased estimate of the MSE, E‖x̂− x‖22, for the case where
e is white Gaussian noise and H equals the identity ma-
trix In. The work in [10] has proposed the project GSURE,
which generalizes the MSE estimate to more cases, where
one of them is the ill-posed linear model that is considered
in Equation (1).

While previous works used this “projected” GSURE
mainly for tuning only a few hyper-parameters of a pre-
determined estimator x̂ (i.e. by setting them to values that
minimize Equation (4)) [12], in this paper, we proposed to
extend the role that GSURE plays in estimating x. Specifi-
cally, we propose to estimate x (from scratch) as the mini-
mizer of the cost function

`GSURE(x̃) + βs(x̃), (3)

where x̃ is the optimization variable, s(x̃) is a prior term
that can improve the estimation and β is a positive hyper-
parameter that balances the two terms.

Before introducing our method, we first discuss the use
of the projected GSURE and its formulation. Then we show
how it can be used for network training from a single exam-
ple. This is followed by a derivation of a plug and play

based approach which allows incorporating prior knowl-
edge through a denoiser to the single image training. Fi-
nally, we draw a connection between our formulation and
other recently used loss functions.

3.1. The projected GSURE

In the case where m ≤ n and H has full row rank, its
pseudoinverse is given by H† := HT (HHT )−1 and the
projection onto R(HT ) (i.e. the subspace spanned by the
rows of H) is given by PH := H†H. As the observa-
tion model is ill-posed, the GSURE provides an estimate
of the MSE only in R(HT ), i.e., of the projected MSE
E‖PH x̂−PHx‖22. The GSURE estimate is given by

`GSURE(x̂(u)) =c+ ‖PH x̂(u)‖22 − 2x̂T (u)x̂ML (4)
+ 2divu(PH x̂(u)),

where c is a term that does not depend on x̂, u ∈ Rn is
a sufficient statistic (for the estimation of x from y) that x̂
gets as input, x̂ML is the maximum likelihood estimator and
the last term denotes the divergence

divu(PH x̂(u)) =

n∑
i=1

∂[PH x̂(u)]i
∂ui

. (5)

For the considered model, typical choices are u = 1
σ2 HTy1

and x̂ML = H†y.
In practice, the assumption that H has a full row-rank

does not hold always. Moreover, some of the singular
values of H may be very close to zero such that even if
H has a full row-rank, numerically the inversion is un-
stable and therefore leads to poor MSE estimations. This
is particularly important in the deblurring problem where
many of the blur operators have full rank in theory but in
practice, many of their singular values are close to zero.
In this case, to calculate the pseudo-inverse of H, we
take the SVD decomposition H = UΣVT , where Σ =
diag(σ1 . . . , σm, 0, . . . , 0), and set the pseudo inverse to be
H† = VΣ†UT . The pseudo inverse Σ†, which is a diag-
onal matrix, is defined such that (Σ†)i,i = 1/σi if i ≤ m

and σi > ξ (for a given small threshold ξ) and (Σ†)i,i = 0
otherwise.

This formulation for the pseudo-inverse can be easily
computed in the deblurring case (with circular padding)
since the blur kernels are shift-invariant and therefore they
are diagonalized by the Fourier transform. Thus, to apply
the pseudo-inverse of H we can simply apply the Fourier
transform on the input, then multiply it with the inverse
eigenvalues of the kernel (that are larger than the threshold
ξ) and then apply the inverse Fourier transform.

Notice that the formula of the projected GSURE remains
the same also when we use the thresholding of the small

1Notice that although the GSURE relies on knowing the noise level σ,
σ can be estimated from the y using techniques such as [4].
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singular values. The only difference is in the calculation of
H†, which then determines PH in Equation (4).

Another element in Equation (4) that deserves a special
care is the divergence term. It is essentially the only term
in Equation (4) that requires connecting x̃ with an input
u. In this paper we resolve this issue by parameterizing
x̃ by a CNN with weights θ and input u = 1

σ2 HTy, i.e.
x̃ = f(u;θ). While this differentiable connection between
x̃ and u allows to compute the derivatives required in Equa-
tion (5), to ease the computation we use the MC approxima-
tion of [31]:

divu(PH x̃(u)) ≈ gTPH
x̃(u + εg)− x̃(u)

ε
, (6)

where g is a Gaussian vector drawn from N (0, In) and ε is
a fixed small positive value.

To summarize, our framework for estimating x is based
on optimizing the weights of the CNN f(u;θ) by minimiz-
ing the loss function

L(θ) = ˜̀GSURE(f(u;θ)) + βs(f(u;θ)), (7)

where

˜̀GSURE(f(u;θ)) =‖PHf(u;θ)‖22 − 2fT (u;θ)H†y (8)

+ 2gTPH
f(u + εg;θ)− f(u;θ)

ε
.

As mentioned above, in tasks like deblurring and super-
resolution, the operators H,H† and PH have a fast imple-
mentation using the Fast Fourier Transform (FFT). In addi-
tion, fast automatic differentiation of ˜̀GSURE(f(u;θ)) with
respect to θ can be obtained using popular software pack-
ages, such as TensorFlow and PyTorch. Note that the ran-
dom variable g is drawn in each iterations of the optimiza-
tion (this improves the expectation of the MC approxima-
tion). After obtaining the optimized weights, θ̂, the latent
image is estimated by x̂ = f(u; θ̂).

We now turn to describe two instantiations of Equa-
tion (7): one without the prior function s(·) and the second
when the additional prior is implicitly imposed by a “plug-
and-play” denoiser.

3.2. GSURE-based network training

Standard neural network training techniques for inverse
problems in image processing require a large amount of
training data as they are usually trained based on pairs of
the input deteriorated image y and the true clean image x.
Under the assumption that the image statistics in the train-
ing resemble the one of the input image to the network, then
the fact that the network was trained to minimize the MSE
on the training images is expected to lead to a small MSE
also on the input test image. The GSURE gives us an op-
portunity to treat the MSE of the input image directly as

it provides an unbiased estimate for it. This is particularly
important in cases where the image statistics or the mea-
surement model are different than the training setup.

Having the estimation of the GSURE for the MSE (or
projected MSE), we use it to train a network just a single im-
age by directly minimizing its (estimated projected) MSE.
Notice that although we do not use any explicit image prior
in this setting, the fact that we use a neural network for the
reconstruction implicitly imposes a prior as shown in the
DIP approach [47]. Moreover, the implicit regularization of
optimization methods like SGD and Adam is another source
of regularization [38]. Therefore, the first reconstruction
method that we examine in this paper is solely based on
minimizing L(θ) = ˜̀GSURE(f(u;θ)) using Adam [19].

While the GSURE based approach bears similarity to the
original DIP work, it differs from it in several ways. First,
it is theoretically motivated by minimizing an estimate of
the (projected) MSE. Second, it uses a different loss func-
tion — ˜̀GSURE(f(u;θ)) instead of `LS(f(u;θ)). Third, it
uses a different input for the CNN — the sufficient statistic
u rather than a large tensor of random noise. As will be
shown in the experiments section, GSURE based training
not only outperforms the original DIP in terms of PSNR but
also does not require accurate early stopping to avoid noise
overfitting. Another related work is a recent paper [53] that
solves deblurring tasks using DIP with the BP loss (instead
of the plain LS loss as in regular DIP), which is equiva-
lent to omitting the divergence term in GSURE (this also
allows their CNN to get random noise as input). Yet, the
divergence term that we have in the GSURE stabilizes the
effect of the noise on the BP loss, which as shown in [53] is
sensitive to noise and requires accurate early stopping. We
discuss more the relationship to this loss in Section 3.4.

3.3. GSURE-based P&P-ADMM

Since our proposed GSURE metric only estimates the
projected MSE, using it alone is not sufficient; adding an-
other image prior s(·) can lead to improved reconstruction.
To achieve this goal, we follow the P&P denoisers concept
[48]. We modify Equation (7) using variable splitting and
obtain the following constrained optimization problem

min
θ,z

˜̀GSURE(f(u;θ)) + βs(z) (9)

s.t. z = f(u;θ).

This problem can be solved using ADMM (a review on
ADMM can be found in [2]). Specifically, we construct the
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(a) Original image (cropped)

(b) Blurred (c) DIP (d) P-GSURE

(e) P&P ADMM (f) DIP-P&P (g) P-GSURE P&P

Figure 2: Deblurring of the flowers image from Set14, blurred using the model of scenario 1. (a) The original image cropped
(b) The observed blurry and noisy image (c) Reconstruction using DIP (d) Reconstruction using P-GSURE (proposed method)
(e) Reconstruction using P&P-ADMM method (using BM3D prior) (f) Reconstruction using DIP based P&P-ADMM (g)
Reconstruction using P-GSURE based P&P-ADMM (proposed method).

augmented Lagrangian

Lρ = ˜̀GSURE(f(u;θ)) + βs(z) + ṽT (f(u;θ)− z)

+
ρ

2
‖f(u;θ)− z‖22

= ˜̀GSURE(f(u;θ)) + βs(z) +
ρ

2
‖f(u;θ)− z + v‖22

− ρ

2
‖v‖22, (10)

where ṽ is the dual variable, v = 1
ρ ṽ is the scaled dual

variable, and ρ is the ADMM penalty parameter. Then, we
initialize v0 = 0 and z0 = x̂ML, and repeat the following
three steps for k = 1, . . . , Niter

θk = argmin
θ

˜̀GSURE(f(u;θ))

+
ρ

2
‖f(u;θ)− zk−1 + vk−1‖22,

zk = argmin
z

1

2β/ρ
‖f(u;θk) + vk−1 − z‖22 + s(z),

vk = vk−1 + f(u;θk)− zk. (11)

The first step can be optimized via Adam with warm-start
initialization (given by the previous θk−1). The second step
describes obtaining zk using a denoiser for white Gaus-
sian noise of variance β/ρ applied on f(u;θk) + vk−1.

Table 1: Deblurring test scenarios

Scenario h(x1, x2) σ2 ξ
1 1/(1 + x21 + x22) 2 5× 10−2

2 1/(1 + x21 + x22) 8 1× 10−1

3 9× 9 uniform 0.3 5× 10−3

4 [1, 4, 6, 4, 1]T [1, 4, 6, 4, 1]/256 49 1× 10−1

5 Gaussian with std = 1.6 4 5× 10−2

6 Gaussian with std = 0.4 64 0

Following the P&P denoisers concept, in our experiments
we implement this step by an existing denoiser zk =
D(f(u;θk) + vk−1;

√
β/ρ) (e.g., colored BM3D [7]) that

implicitly imposes the prior s(·) on the reconstruction.
Note that in typical P&P schemes, which use plain fi-

delity terms, the first step in Equation (11) inverts the ob-
servation model with very minor regularization (the simple
`2-norm term that is weighted by ρ/2). In contrast, in our
approach, this step enjoys both the advantage of GSURE
over LS (e.g. better handling the noise via the divergence
term) and the implicit prior of the CNN architecture.

3.4. Relation to other loss functions

We now motivate optimizing Equation (3) (or its CNN
parameterized form Equation (7)) by comparing it with al-
ternative cost functions. Perhaps the most common ap-
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Figure 3: Super-Resolution and deblurring results of sce-
nario 5 and scenario 4 respectively, averaged on Set5.

proach to estimate x from observations modeled by Equa-
tion (1) is to minimize cost function of the form `LS(x̃) +
βs(x̃), where `LS(x̃) = ‖y−Hx̃‖22 is the least squares (LS)
fidelity term [24, 48, 50].

Recently, an alternative fidelity term `BP(x̃) = ‖H†(y−
Hx̃)‖22, dubbed the “back-projection” (BP) term, has been
shown to have advantages over LS for different ill-posed
problems, such as deblurring and super-resolution, where
the condition number of H, i.e. the ratio between the largest
and smallest singular values of H, is large [43, 45, 46].
However, the tradeoff is that the BP term is more sensitive
than LS to noise amplification when H has small singular
values.

Now, observe that if we ignore the divergence term in
Equation (4) then minimizing `GSURE(x̃) (where x̂ML =
H†y) is equivalent to minimizing `BP(x̃). This follows
from (recall that PH = PT

H and PHH† = H†) the fact
that

argmin
x̃

‖H†(y −Hx̃)‖22 (12)

= argmin
x̃

‖PH x̃‖22 − 2x̃TPHH†y + ‖H†y‖22

= argmin
x̃

‖PH x̃‖22 − 2x̃TH†y.

Therefore, `GSURE(x̃) is expected to have advantages over
`LS(x̃) that are similar to those of `BP(x̃). Moreover,
note that the term divu(PH x̃(u)) in `GSURE(x̃) constrains
the changes in x̃ due to perturbations in the observations,
which provides a regularization against noise amplification.
Therefore, `GSURE(x̃) is also expected to be more suitable
than `BP(x̃) to handle high noise levels.

4. Experiments
We demonstrate our method on two common image pro-

cessing tasks on the Set5 and Set14 datasets. We first
present the experiments for deblurring, in which a restora-
tion of the original sharp image from the blurry and noisy
observation is desired. This is followed by evaluating our
approach on the SR task, where we seek to recover the
original High-Resolution (HR) image from its given Low-
Resolution (LR) and noisy version.

In each task, we examine the proposed GSURE-based
method with and without an additional BM3D prior. In
all the experiments, we compare our results with those ob-
tained by using DIP instead of GSURE (recall that they
mainly differ in their loss functions and in their inputs). For
both GSURE and DIP, we use the same ’skip’ network used
in the original DIP code published by [47]. In the “internal
learning” SR experiments (where only the self-similarity of
the observed image is used as prior), we also compare to
the results of ZSSR [35]. In the experiments that exploit the
BM3D prior, we also present the results of the plain P&P
method (that does not include the CNN parameterization)
[48].

We use ε = 10−6 for approximating the divergence in (6)
for all GSURE scenarios and optimize the network weights
using ADAM [19] with learning rate of 10−2 for both DIP
and GSURE. For achieving the best performance in DIP, we
run the algorithm in all scenarios on all the images in Set5,
then we average the iterations number in which the maxi-
mum PSNR is achieved, and use that as the early stopping
criterion in each scenario (6 values, one for each scenario).
In GSURE, however, we take the reconstruction at the min-
imum value of `GSURE(x̃), since it is on par with the MSE
value. Notice that unlike in DIP, with GSURE we do not
need the ground truth information to set the stopping crite-
rion, as demonstrated in Figure 3. In P&P based GSURE
and DIP we take the reconstruction from the last ADMM
iteration.

4.1. Deblurring

In the image deblurring problem, H is a blur operator
defined as a circular convolution with a blur filter h. Thus,
it has fast implementation using the Fast Fourier Transform
(FFT). Accordingly, HT is a blur operator with a flipped
version of the blur kernel h. As a result, calculating HHT

can be achieved by simply multiplying the FFTs of the blur
kernel and its flipped version.

We adopt the test scenarios used in [8], whose blur ker-
nels h and noise levels σ are presented in Table 1. Note
that in these scenarios the condition number of H is ex-
tremely high, hence, when computing (HHT )†, we zero
(rather than invert) all the places where the eigenvalues are
smaller than ξ (the specific values are given in Table 1).

Under this setup, we run GSURE for 4000 iterations and
take the reconstruction that minimizes `GSURE(x̃). Prac-
tically, GSURE does not need any early stopping criterion,
since the divergence term in Equation (4) prevents the net-
work from fitting the noise even when σ is high. Therefore,
the objective in Equation (7) can be conveniently minimized
until convergence, in contrast to DIP, where careful early
stopping criteria need to be examined in order to achieve
optimal results and prevent it from fitting the noise (as can
be seen in Figure 3).
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Table 2: Deblurring results (averaged PSNR) for the different scenarios

Set5 Set14 Set5 Set14
Scenario DIP P-GSURE DIP P-GSURE P&P P&P-DIP P&P-GSURE P&P P&P-DIP P&P-GSURE

1 30.36 31.95 27.10 30.14 33.36 32.18 33.30 30.72 27.49 30.97
2 30.24 31.39 27.01 28.28 31.25 31.5 31.82 28.27 27.46 28.92
3 28.42 30.28 25.17 27.75 32.60 29.68 30.38 30.31 25.85 27.58
4 31.16 31.99 26.77 29.49 31.85 31.23 32.53 29.29 28.85 29.7
5 30.41 30.93 26.91 28.06 31.80 31.64 32.05 28.66 27.55 28.71
6 33.44 35.55 31.32 34.21 34.55 33.32 35.67 33.69 29.74 34.45

Table 3: SR test scenarios

Scenario h(x1, x2) α σ2 ξ
1 Gaussian with std = 1.6 3 10 1× 10−2

2 Gaussian with std = 1.6 3 49 1× 10−2

3 Bicubic 2 10 1× 10−2

4 Bicubic 3 10 1× 10−2

5 Bicubic 2 49 1× 10−2

6 Bicubic 3 49 1× 10−2

The average PSNR results of our method compared to
DIP are presented in the left columns of Table 2. The supe-
riority of our method over DIP is clear.

One may appreciate the visual quality of the GSURE
based reconstruction by looking at Figure 1 and Figure 2.
The first is from scenario 2 and the second from scenario 5
in Table 1.

We also examine the different methods within the
ADMM-based P&P scheme (presented with GSURE loss
in Equation (11)). In P&P-GSURE, we set βi/ρ =
0.01, where βi = {0.75, 0.75, 4, 1, 2, 1.5} and i ∈
{1, 2, 3, 4, 5, 6} indicates the scenario number. We initial-
ize v = 0 and z = x̂ML, and run 250 ADMM itera-
tions, while performing the first step in (11) with 20 it-
erations of Adam with learning rate of 10−3. For P&P-
DIP we set β/ρ = 1, where β = 0.1, initialize v = 0
and z = x̂ML, and run 250 ADMM iterations, where
in each iteration the first step in Equation (11) is imple-
mented using 20 iterations of Adam with learning rate set
to 10−2. For the plain P&P (without GSURE or DIP)
we use βi = {0.85, 0.85, 0.9, 0.8, 0.85, 0.85} and ρi =
{2, 1, 3, 1, 2, 2}/255. In all cases we implement the sec-
ond step in Equation (11) using the python version of the
BM3D denoiser [7] with noise level

√
β/ρ.

Because the projected GSURE measure is an estimate of
the true projected MSE (up to a constant value), one could
find the optimal hyper-parameters β and ρ that gives the
lowest projected GSURE value. However, in the case of
DIP, the true ground-truth image is required for tuning these
parameters, which can be complicated.

The average PSNR results of combining the P&P ap-
proach with GSURE and DIP are presented in the right
columns of Table 2. It can be seen that incorporating
GSURE and DIP with BM3D prior via the P&P approach

usually yields better results than their “internal learning”
application. Interestingly, P&P-DIP is often no better than
the plain P&P scheme (which uses only the BM3D prior).
Yet, the proposed P&P-GSURE obtains the best results in
most cases.

Finally, several visual examples of all the methods are
displayed in Figures 1 and 2. It can be seen that our
GSURE-based restoration yields sharper images with bet-
ter textures.

4.2. Super-Resolution

In super-resolution H is defined as applying an anti-
aliasing filter followed by sub-sampling by factor α > 1.
H is a circular convolution with filter h, therefore it can be
applied efficiently using Fast Fourier Transform (FFT), then
by sub-sampling the inverse FFT of the result we obtain the
LR image. Accordingly, HT in this case is defined as zero-
padding of the input in between its samples, followed by
applying a flipped version of h, which also can be applied
using the FFT. Using the poly-phase decomposition (see,
e.g. [5]) HHT can be achieved by multiplying the FFT of
h and its flipped version followed by sub-sampling the in-
verse FFT.

We test our approach on the test scenarios detailed in Ta-
ble 3. In these scenarios H is ill-posed, therefore when cal-
culating (HHT )† we also zero all the eigenvalues smaller
than ξ (as in the deblurring case).

The average PSNR results of our method compared to
DIP, Deep Decoder [15] (we do not compare to it in the de-
blurring case above as unlike SR, deblurring was not con-
sidered in their work) and ZSSR are presented in the left
columns of Table 4. Notice that all of these compared meth-
ods are unsupervised that are trained on the test image itself
as done in our approach as well. The comparison demon-
strates clearly the superiority of our method.

To examine the effect of using an external prior, in ad-
dition to the internal learning, similar to the deblurring
task, we examine also the performance of DIP and GSURE
within the ADMM-based P&P scheme. For P&P-GSURE,
we set β = 100 and β/ρ = 10, initialize v = 0 and z =
x̂ML, and run 50 ADMM iterations, while performing the
first step in (11) with 100 iterations of Adam with learning
rate of 10−3. In P&P-DIP, we set β/ρ = 1, where β = 0.1

3608



Table 4: SR results (averaged PSNR) of the methods for the different scenarios

Set5 Set14 Set5 Set14
Scenario DIP ZSSR Deep GSURE DIP ZSSR Deep GSURE P&P P&P- P&P- P&P P&P- P&P-

Decoder Decoder DIP GSURE DIP GSURE
1 28.78 26.77 27.74 29.41 26.10 25.03 25.59 26.34 28.71 29.26 29.59 26.12 26.67 29.77
2 26.61 25.34 27.07 28.09 24.79 24.13 25.00 25.68 27.28 27.70 28.41 25.2 25.59 25.93
3 31.49 32.14 30.88 32.04 28.38 26.07 26.93 29.05 32.83 31.92 32.79 29.57 29.14 29.58
4 29.49 27.33 29.33 29.48 26.14 25.23 26.11 26.65 29.82 29.95 29.92 26.90 27.19 27.00
5 29.67 29.71 30.21 31.09 27.08 25.21 26.70 28.32 30.43 31.15 31.46 27.90 28.47 28.77
6 27.60 25.97 28.17 28.79 25.41 24.45 25.63 26.20 27.92 28.51 28.94 25.63 26.30 26.46

for scenarios {1,3,4} amd β = 1.5 for scenarios {2,5,6}.
We run 20 ADMM iterations, where in each iterations the
first step in Equation (11) is implemented using 250 itera-
tions of Adam with learning rate set to 10−3. For the plain
P&P we use βi = {0.85, 0.9, 0.85, 0.85, 0.9, 0.9} × 2 and
ρi = {2, 3, 2, 2, 3, 3}/255. Similar to deblurring, we im-
plement the second step in Equation (11) using the python
version of the BM3D denoiser [7] with noise level

√
β/ρ.

Similar to deblurring, note that the hyper-parameters β
and ρ can be set by finding the minimum value of the pro-
jected GSURE, in contrast to the least-squares objective
where one needs to tune them carefully in order to achieve
optimal performance.

The average PSNR results of combining the P&P ap-
proach with GSURE and DIP are presented in the left
columns of Table 4. Again, incorporating GSURE and DIP
with BM3D prior via the P&P approach usually yields bet-
ter results than their “internal learning” applications. No-
tice how again the proposed P&P-GSURE obtains the best
results in most scenarios.

5. Conclusion
In this work, we presented a general framework for solv-

ing inverse problems using a neural network on a single
image without the need for pre-training on a large dataset.
Our approach relies on an unbiased estimator of the MSE,
namely the generalized SURE that approximates the true
error. This allows training a network directly on the input
image without external data.

Our approach improves over the DIP strategy, which
train networks based on the least-squares loss. Moreover,
it has the advantage that it does not need to rely on early
stopping and less sensitive to the used architecture. In the
work, for the sake of comparison, we have used the same ar-
chitecture proposed in the DIP work. Yet, when we changed
the network model, our approach still achieved good results
while the performance of DIP decreased more significantly.

While in this work we focus on using the GSURE for-
mulation for white Gaussian noise, it might be possible in
follow-up work to support a larger variety of noise types us-
ing the formulation in [10] that supports also colored noise
and other types of noise. Moreover, while our work focused

(a) Original image (cropped) (b) LR

(c) ZSSR (d) DIP

(e) P-GSURE (f) P&P - BM3D

(g) DIP-P&P (h) P-GSURE P&P

Figure 4: SR with scenario 5 (a) Original image (b) LR
noisy image (c) ZSSR [35] (d) DIP (e) P-GSURE (ours)
(f) P&P-ADMM method (g) DIP + P&P-ADMM (h) P-
GSURE + P&P-ADMM (ours).

on deblurring and super-resolution, our proposed frame-
work can be easily used also for other inverse problems in
image processing such as joint demosaicing and denoising.
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