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Figure 1: Camera AWB correction corrects colors for only a single illumination present in a captured scene. In the mixed-
illuminant scenario, this traditional WB correction often results in undesirable color tint (typically, reddish or bluish) in the
final SRGB image, as shown in (A) and (B). Our method can effectively deal with such mixed-illuminant scenes by learning
a set of local weighting maps to blend between different WB settings, as shown in (C) and (D), producing more compelling

AWRB correction compared to traditional camera AWB, as shown in (E).

Abstract

Auto white balance (AWB) is applied by camera hard-
ware at capture time to remove the color cast caused by the
scene illumination. The vast majority of white-balance al-
gorithms assume a single light source illuminates the scene;
however, real scenes often have mixed lighting conditions.
This paper presents an effective AWB method to deal with
such mixed-illuminant scenes. A unique departure from
conventional AWB, our method does not require illuminant
estimation, as is the case in traditional camera AWB mod-
ules. Instead, our method proposes to render the captured
scene with a small set of predefined white-balance settings.
Given this set of rendered images, our method learns to esti-
mate weighting maps that are used to blend the rendered im-
ages to generate the final corrected image. Through exten-
sive experiments, we show this proposed method produces
promising results compared to other alternatives for single-
and mixed-illuminant scene color correction.

1. Introduction

Auto white balance (AWB) is an essential procedure ap-
plied by a camera’s dedicated image signal processor (ISP)
hardware. The ISP “renders” the sensor image to the final
output through a series of processing steps, such as white
balance (WB), tone-mapping, and conversion of the final
standard RGB (sRGB) output image. WB is performed
early in the ISP pipeline and aims to remove undesirable
color casts caused by the environment lighting [25]. AWB
mimics the human visual system’s ability to perform color
constancy, which allows us to perceive objects as the same
color regardless of scene lighting.

AWB consists of two steps. First, the scene illuminant
color as observed by the camera’s sensor is estimated using
an illuminant estimation algorithm (e.g., [57, 44, 10, 12]).
This first step assumes there is a single (i.e., global) illumi-
nant in the scene. Second, the captured image is corrected
based on the estimated illumination. These two steps are
applied early in the camera’s ISP to the raw image [34].

The majority of prior work focuses on the illuminant es-
timation step, while the WB procedure is performed using
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a simple diagonal-based correction process [36]. Global
illumination estimation is a well-studied topic and recent
work (e.g., [60, 41, 49]) achieves impressive results of less
than 2° angular errors' across all available single-illuminant
datasets.

The assumption of a single global illuminant is well
known to be an oversimplification of the problem, as many
captured scenes have multiple light sources. Performing
single-illuminant AWB on scenes with multiple illumina-
tions often produces unsatisfactory results [17]. Figure 1
shows a typical example of a scene captured with a mixed
lighting condition. The colors of the captured scene are cor-
rected by the camera AWB module, which applies a single-
illuminant WB correction after running an illuminant esti-
mation algorithm on the ISP. The white-balanced image is
then processed through a set of color rendering functions
typical of an ISP to produce the final SRGB image, shown
in Figure 1-(A). Because the captured scene has two differ-
ent light sources — outdoor lighting on the right side of the
scene and indoor lighting on the left side of the scene — tra-
ditional camera AWB correction results in either a reddish
or bluish tint in the final rendered image.

Contribution In this paper, we present an AWB method
to deal with both single- and mixed-illuminant scenes. Un-
like traditional camera AWB modules, our method does not
require illuminant estimation; instead, we propose to render
the captured scene multiple times with a few fixed WB set-
tings. Given these rendered images of the same scene, we
outline a method to learn suitable pixel-wise blending maps
to generate the final SRGB image. Our generated spatially
varying weighting maps allow us to correct for different
lighting conditions in the captured scene, as shown in Fig-
ure 1-(C-E). As a part of this effort, we propose a synthetic
test set of mixed-illuminant scenes with pixel-wise ground
truth. We use this set, along with other datasets ([9, 22]), to
validate our method through an extensive set of experiments
and comparisons. Code and trained models are available at
https://github.com/mahmoudnafifi/mixedillWB.

2. Related Work

This section briefly reviews prior work for illuminant es-
timation and WB correction for sSRGB images.

2.1. Illuminant Estimation

Working directly on a raw sensor image, illuminant esti-
mation methods aim to predict the global scene illumination
color [36]. A large body of literature performs this estima-
tion according to some statistical hypothesis on the image

IPerceptually, angular errors less than 2° are considered barely notice-
able.

colors/edges. A common statistical hypothesis for illumi-
nant estimation is the gray-world hypothesis [21], which
assumes the mean of image irradiance is achromatic (i.e.,
“gray”) and thus computing the mean image colors could
give a rough estimation of the scene illuminant color. Other
statistical methods include the white-patch hypothesis [20],
the bright pixels [47], the shades-of-gray [31], the gray-
edges [59], the weighted-gray-edges [37], the bright-and-
dark colors PCA [24], the gray pixel [53], and the grayness
index [54].

Despite being hardware-friendly, the accuracy of such
statistical methods is not always satisfying. Learning-
based methods offer more accurate results by relying on
training examples to predict illuminant colors at inference
time. Representative examples of learning-based illumi-
nant estimation methods include: gamut-based methods
[32, 26, 35, 30, 16], Bayesian methods [18, 19, 55, 34], bias
correction methods [27, 28, 7], and neural network-based
methods [33, 23, 50, 57, 44, 52, 15, 60, 41, 49, 2].

While the majority of prior work adopts the single-
illuminant assumption, only a handful of attempts have
been proposed to deal with multi-illuminant scenes (e.g.,
[29, 43, 38, 46, 14, 45]). These prior methods employ pixel-
wise illumination estimation strategies to address the prob-
lem. In some cases, the number of different lights in the
scene need to be known in advance. In contrast to prior
work, our AWB method can deal with single- and mixed-
illuminant scenes without an explicit illuminant estimation
step on the camera imaging pipeline.

2.2. WB Correction for sSRGB Images

As mentioned earlier, traditional camera ISPs use a sim-
ple diagonal correction to white-balance captured raw im-
ages, giving the estimated illuminant colors of the scenes.
After white balancing, the camera ISP applies color ren-
dering and photo-finishing steps to render the final sSRGB
image. If the AWB module had some errors during the
camera ISP rendering — which typically is the case when
the captured scenes have mixed lighting conditions — it be-
comes challenging to correct colors in post-capture. A few
attempts were proposed recently to deal with such a sce-
nario by replacing the diagonal correction with a non-linear
correction function [5, 6, 4]. More recently, a deep neural
network (DNN) was proposed to correct/edit the WB set-
tings of camera-rendered sSRGB images [3].

These sRGB methods treat the problem as a global illu-
mination correction post image capture. In our approach,
we employ a modified camera ISP that allows us to bene-
fit from the raw image early in the camera rendering chain.
With this modified ISP, our method can effectively correct
colors of both single- and mixed-illuminant scenes without
requiring any post-capture correction (e.g., [5, 3]) nor inter-
action from the user (e.g., [6, 4]).
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Figure 2: Proposed AWB method. Unlike traditional camera AWB, shown in (A), which corrects colors for only a single
illuminant estimated by an illuminant estimation method, our AWB method, shown in (B), applies a single WB correction
that corrects for a fixed color temperature (e.g., 5500 K) in addition to generating small images (384 x 384) with a predefined
set of color temperatures (e.g., 2850K, 3800K) that correlate to common lighting conditions (e.g., incandescent, fluorescent).
Given these images, our method predicts blending weights to produce our final AWB result.

3. Method

The overview of our method is depicted in Figure 2. As
shown, we adopted a modified camera ISP, originally intro-
duced in [6]. This modified camera ISP produces additional
small images of the same captured scene, each of which is
rendered with a different WB setting. Our approach works
by observing the same scene object colors under a fixed set
of WB settings. The correct WB is then generated by lin-
early blending amoung the different WB settings. That is,
given a set of small SRGB images {I., |, I.,|, ...}, each of
which was rendered with a different WB setting (i.e., c1, co,
...), the final spatially varying WB colors are computed as
follows:

Leorry = > Wi® Iy, @)

where I, is the corrected small image, ¢ is for indexing,
© is Hadamard product, and W; € R**3 is the weighting
map for the i small image rendered with the c; WB setting.
Here, w and h refer to the width and height of our small
images, respectively. For simplicity, we can think of W; as
a replicated monochromatic image to match the dimensions
of I;. In our experiments at inference time, we used small
images of 384 x 384 pixels (i.e., w = h = 384).

Note that, we decided to learn the weighting maps,
{W;}, for the images rendered in the SRGB space — after
a full rendering of demosaiced raw images — to make our
method device-independent. With that said, our method can
be easily adjusted to learn the weighting maps in the linear
raw space.

Producing {I,,} can be attained by following the mod-
ification introduced in [6] (Sec. 3.1). Then, our main task
is to learn the values of W;, given {I., } (Sec. 3.2). Lastly,
we apply post-processing steps to compute the final high-
resolution white-balanced image (Sec. 3.3).

3.1. Modified Camera ISP

We followed the modified ISP proposed in [6], which
renders a few small images, each of which is rendered with
one of a set of predefined WB settings, along with the high-
resolution image rendered with the camera AWB correction.
In contrast to [6], we propose to use a fixed WB setting to
render the high-resolution image, and thus we do not need
an illuminant estimation module in our pipeline. In the rest
of this paper, the WB settings are interchangeably referred
to by lighting source names or the correlated color temper-
atures.

Rendering such small images through the camera ISP
modules does not require major changes to standard cam-
era ISPs. Specifically, this modification downsamples the
captured raw demosaiced image into the target size of the
small images. This small raw-image is then processed by
the ISP color rendering modules to produce a small sSRGB
image. For each rendering pass, a predefined WB setting is
used. Processing such small images though the ISP an ad-
ditional few times requires negligible processing time [6],
and thus it does not affect the real-time processing offered
by the camera viewfinder.

In the photofinishing stage, we can employ these small
images to map the colors of the high-resolution SRGB im-
age, rendered with a fixed WB setting (e.g., daylight), to our
set of predefined WB settings as described in the following
equation:

Ici = MC1¢ (Iinit) ) 2
where I;,;¢ is the initial high-resolution image rendered
with the fixed WB setting, fci is the mapped image to the
target WB setting ¢;, ¢ (-) is a polynomial kernel function
that projects the R, G, B channels into a higher-dimensional
space [42], and M, is a mapping matrix computed by fit-
ting the colors of I;,;¢, after downsampling, to the corre-
sponding colors of I., . This fitting is computed by mini-

1212



mizing the residual sum of squares between the source and
target colors in both small images.

3.2. Learning Weighting Maps

So far, we have described the rendering process of our
small images and the post-capture color mapping to gener-
ate high-resolution images with our predefined set of WB
settings. Our task now is to estimate the values of W; for a
given set of our small images {I.,; }.

We employed a DNN to predict the values of {W;},
where our network accepts the small images, rendered with
our predefined WB settings, and learns to produce proper
weighting maps {W;}. Specifically, our network accepts a
3D tensor of concatenated small images and produces a 3D
tensor of the weighting maps. The details of our network
architecture are given in the supplementary materials.

To train our DNN model, we employed the Rendered
WB dataset [5], which includes ~65K sRGB images ren-
dered with different color temperatures. Each image in the
Rendered WB dataset [5] has the corresponding ground-
truth sSRGB image that was rendered with an accurate WB
correction. From this dataset, we selected 9,200 training im-
ages that were rendered with “camera standard” photofin-
ishing and with the following color temperatures: 2850
Kelvin (K), 3800 K, 5500 K, 6500 K, and 7500 K, which
correspond to the following WB settings: tungsten (also re-
ferred to as incandescent), fluorescent, daylight, cloudy, and
shade, respectively.We then train our network to minimize
the following reconstruction loss function:

7, 3)

‘Cr: ||Pcorr_ZWi®Pci
i

where ||-]|% computes the squared Frobenius norm, Peo,,
and P, are the extracted training patches from ground-truth
sRGB images and input SRGB images rendered with the ¢;
WB setting, respectively, and W; is the blending weighting
map produced by our network for F,.

To avoid producing out-of-gamut colors in the recon-
structed image, we apply a cross-channel softmax operator
to the output tensor of our network before computing our
loss in Equation 3.

We apply the following regularization term to the pro-
duced weighting maps to encourage our network to produce
smooth weights:

Lo =D IIWi# Va3 + Wi + 7, |13 “)

where V, and V,, are 3 x 3 horizontal and vertical Sobel
filters, respectively, and * is the convolution operator. Thus,
our final loss is computed as follows:

L= Er""‘)\ﬁw (5)

where A is a scaling factor to control the contribution of £
to our final loss. In our experiments, we used A = 100.
Minimizing the loss in Equation 5 was performed using the
Adam optimizer [48] with 5; = 0.9 and B = 0.999 for 200
epochs. We used a mini-batch size of 32, where at each it-
eration we randomly selected eight training images, along-
side their associated images rendered with our predefined
WB set, and extracted four random patches from each of
the selected training images.

3.3. Inference

At inference time, we produce our small image with the
predefined WB settings. These images are concatenated and
fed to our DNN, which produces the weighting maps. To
improve the final results, we advocate an ensembling strat-
egy, where we feed the concatenated small images in three
different scales: 1.0, 0.5, 0.25. Then, we upsample the pro-
duced weights to the high-resolution image size. Afterward,
we compute the average weighting maps produced for each
WB setting. This ensemble strategy produces weights with
more local coherence. This coherence can be further im-
proved by applying a post-processing edge-aware smooth-
ing step. That is, we used our high-resolution images (i.e.,
the initially rendered one with the fixed WB setting and the
mapped images produced by Equation 2) as a guidance im-
age to post-process the generated weights. We utilized the
fast bilateral solver for this task [11]. See the supplementary
materials for an ablation study.

After generating our upsampled weighting maps {WiT}’
the final image is generated as described in the following
equation:

jcorr = Z Wi’r ©) jci~ (6)

4. Experiments

We conducted several experiments to evaluate our
method. In all experiments, we set the fixed WB setting
to 5500 K (i.e., daylight WB). We examined two different
predefined WB sets to render our small images, which are:
(i) : {2850 K, 3800 K, 6500 K, 7500 K} and (ii) {2850
K, 7500 K}. These two sets represent the following WB
settings: {tungsten, fluorescent, cloudy, and shade} and
{tungsten, shade}, respectively. Our network received the
concatenated images, along with the downsampled daylight
image. Thus, we will refer to the first predefined WB set as
{t, £,d, c, s} and the second set is referred to as {t, d, s},
where the terms t, £, d, c, and s refer to tungsten, fluores-
cent, daylight, cloudy, and shade, respectively.

When WB={t, d, s} is used, our DNN takes ~0.6 sec-
onds on average without ensembling, while it takes ~0.9
seconds on average when ensembling is used. This process-
ing time is reported using a single NVIDIA GeForce GTX
1080 graphics card. When WB={t, £, d, c, s} is used, our
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(A) 3D scene in 3Ds Max

(B) Rendered with 6500 Kelvin (K)

(C) Rendered with 2850 K (D) Ground truth

Figure 3: Our mixed-illuminant evaluation set. (A) We began with 3D scenes modeled in Autodesk 3Ds Max [58]. (B-C) We
set the WB setting of the virtual camera to different color temperatures and produced realistic scene images with multiple
illuminations using Vray rendering [1]. (D) For each input image in our test set, a ground-truth image is provided.

DNN takes ~0.8 seconds and ~0.95 seconds on average to
process with and without ensembling, respectively.

The average CPU processing time of the post-processing
edge-aware smoothing for images with 2K resolution is
~3.4 seconds and ~5.7 seconds with WB={t,d, s} and
WB={t, £,d, c, s}, respectively. This post-processing
step is optional (see the supplementary materials for com-
parisons) and its processing time can be reduced with a
GPU implementation of the edge-aware smoothing step.

In the remaining part of this section, we elaborate the
details of our experiments and report both qualitative and
quantitative results of our method.

4.1. Evaluation Sets

We used three different datasets to evaluate our method.
The scenes and camera models present in these evaluation
sets were not part of our training data.

Cube+ dataset [9] As the Cube+ dataset [9] is commonly
used by prior color constancy work, we used the linear raw
images provided in the Cube+ dataset to evaluate our AWB
method for single-illuminant scenes. Specifically, we used
the raw images in order to generate the small images to feed
them into our DNN.

MIT-Adobe 5K dataset [22] We selected a set of mixed-
illuminant scenes from the MIT-Adobe 5K dataset [22] for
qualitative comparisons. Similar to the Cube+ dataset, the
MIT-Adobe 5K dataset [22] provides the linear raw DNG
file of each image, which facilitates our small image render-
ing process. This set is used to compare our results against
the traditional camera AWB results by using the “as-shot”
WB values stored in each DNG raw file.

Our mixed-illuminant test set As a part of our contribu-
tion, we generated a synthetic testing set to quantitatively
evaluate mixed-illuminant scene WB methods. To gener-
ate our test set, we started with 3D scenes modeled in Au-
todesk 3Ds Max [58]. We added multiple light sources in

each scene, such that each scene has at least two types of
light sources (e.g., indoor and outdoor lighting). For each
scene, we set the virtual camera in different poses and used
different color temperatures (e.g., 28500 K, 5500 K) for the
camera AWB setting. Then, we rendered the final scene
images using Vray rendering [1] to generate realistic pho-
tographs. In total, we rendered 150 images with mixed
lighting conditions. Each image comes with its associated
ground-truth image. To render the ground-truth images, we
set the color temperature of our virtual camera’s WB and
all light sources in the scene to 5500 K (i.e., daylight). Note
that setting the color temperature does not affect the inten-
sity of the final rendered image pixels, but only changes the
lighting colors; see Figure 3. In comparison with existing
multi-illuminant datasets (e.g., [14, 13, 51, 40, 39]), our test
set is the first set that includes images rendered with differ-
ent WB settings along with the corresponding ground-truth
images rendered with correctly white-balanced pixels in the
rendering pipeline. See supplementary materials for further
discussion.

4.2. Results

Figure 4 shows examples of the generated blending
weights. In this figure, we compare our results, shown
in Figure 4-(H), with the traditional camera AWB results,
shown in Figure 4-(D). Figure 4 also shows the initial sSRGB
image rendered with the fixed WB setting (i.e., daylight),
along with the mapped images to the predefined WB set-
tings, as described in Equation 2. As can be seen, our
method learned to produce proper blending weights to lo-
cally white-balance each region in the captured scene.

Table 1 shows the results of our AWB method on the
single-illuminant Cube+ dataset [9]. In this table, we also
show the results of a set of ablation studies conducted to
show the impact of some training options. Specifically, we
show the results of training our network on the following
patch sizes (p): 256 x 256, 128 x 128, and 64 x 64 pixels.

We also show the results of our method when training
without using the smoothing loss term (L;). The impact of
L can also be shown in Figure 5. In addition, we show
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(A) Initial SRGB (daylight)

(B) Mapped indoor (tungsten)
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(E) Daylight weight (F) Tungsten weight

(C) Mapped outdoor (shade) (D) Traditional camera AWB
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(C) Mapped outdoor (shade) (D) Traditional camera AWB

(G) Shade weight

(H) Our AWB result

Figure 4: Predicted weighting maps. (A) Initial rendered image with daylight WB applied. (B-C) High-resolution images
with indoor and outdoor WB settings after color mapping. (D) Traditional camera AWB. (E-G) predicted weights for each
WB setting. (H) Our final AWB. Images are from the MIT-Adobe 5K dataset [22].

(B) w/ smoothing loss

(A) w/o smoothing loss

Figure 5: Impact of the smoothing loss term (L;). (A) Re-
sult without L. (B) Results with L. Input image are from
the Cube+ dataset [9].

the results of training our method without keeping the same
order of concatenated small images during training. That
is, we shuffle the order of concatenated small images before
feeding the images to the network during training to see if
that would affect the accuracy. As shown in Table 1, using a
fixed order achieves better results as that helps our network

to build knowledge on the correlation between pixel colors
when rendered with different WB settings and the gener-
ated weighting maps. Table 1 also shows that when com-
paring our method with recent methods for WB correction,
our method achieves very competitive results, while requir-
ing small memory overhead compared to the state-of-the-art
methods (e.g., [3]).

In Table 2, we report the results of our method, along
with the results of recently published methods for WB cor-
rection in SRGB space, on our synthetic test set. As shown,
our method achieves the best results over most evaluation
metrics. Table 2 shows the results when training our method
using different predefined sets of WB settings.

Figure 6 shows qualitative comparisons on images from
the MIT-Adobe 5K dataset [22]. We compare our results,
shown in Figure 6-(D), against traditional camera AWB
(Figure 6-[Al]), after applying the KNN-WB correction [5]
(Figure 6-[B]), and after applying the deep WB correction
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(A) Camera AWB

(B) Camera AWB + KNN WB

(C) Camera AWB + Deep WB

Figure 6: Qualitative comparisons with other AWB methods on the MIT-Adobe 5K dataset [22]. Shown are the results of the
following methods: gray pixel [53], grayness index [54], interactive WB [4], KNN WB [5], deep WB [3], and our method.

[3] (Figure 6-[C]). It is clear that our method provides better
per-pixel correction compared to other alternatives.

Our method has the limitation of requiring a modifica-
tion to an ISP to render the small images. To overcome
this, one could employ one of the SRGB WB editing meth-
ods to synthesize rendering our small images with the tar-
get predefined WB set in post-capture time. In Figure 7, we
illustrate this idea by employing the deep WB [3] to gen-
erate the small images of a given sRGB camera-rendered
image taken from Flickr. As shown, our method produces
a better result compared to the camera-rendered image (i.e.,
traditional camera AWB) and the deep WB result for post-
capture WB correction.

Lastly, Figure 8 shows a failure example of our method,
where it could not properly correct colors of each pixel in
the image. In such cases, our method produces results that
are very similar to correcting only for a single illuminant,
as it is bounded by our predefined set of WB settings.

5. Conclusion

We have presented an AWB method for mixed-
illuminant scenes. Our method achieves local WB cor-
rection by producing weighting maps that blend between
the same input image rendered with different WB set-
tings. Our proposed method learns to produce these lo-
cal weighting maps through a DNN. Our method is fast
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Table 1: Comparison on the single-illuminant Cube+ dataset [9]. For our method, we report the results of several ablation
studies, where we trained our model with different WB settings and patch sizes (p). The terms t, £, d, ¢, and s refer to
tungsten, fluorescent, daylight, cloudy, and shade, respectively. We followed prior work [5] and reported the mean, first,
second (median), and third quantile (Q1, Q2, and Q3) of mean square error (MSE), mean angular error (MAE), and AE 2000
[56]. For all diagonal-based methods, gamma linearization [8, 25] is applied. The top results are indicated with yellow and
bold, while second and third best results are indicated with green and red, respectively.

Method MSE MAE AE 2000 Size
Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 | Mean | Q1 Q2 Q3
FC4 [44] 371.9 | 79.15 | 213.41 | 467.33 | 6.49° | 3.34° | 5.59° | 8.59° | 10.38 | 6.6 | 9.76 | 13.26 | 5.89 MB
Quasi-U CC [15] 292.18 | 15.57 | 55.41 | 261.58 | 6.12° | 1.95° | 3.88° | 8.83° | 7.25 | 2.89 | 5.21 | 10.37 | 622 MB
KNN WB [5] 19498 | 27.43 | 57.08 | 118.21 | 4.12° | 1.96° | 3.17° | 5.04° | 5.68 | 3.22 | 461 | 6.70 | 21.8 MB
Interactive WB [4] 159.88 | 21.94 | 54.76 | 125.02 | 4.64° | 2.12° | 3.64° | 5.98° 6.2 328 | 5.17 | 745 38 KB
Deep WB [3] 80.46 | 1543 | 33.88 | 7442 | 3.45° | 1.87° | 2.82° | 4.26° | 4.59 | 2.68 | 3.81 | 5.53 | 16.7MB
77777777777777777777777777 e
p = 256, WB={t, f,d, c,s} 235.07 | 54.42 | 8334 | 197.46 | 6.74° | 4.12° | 5.31° | 8.11° | 8.07 | 5.22 | 7.09 | 10.04 | 5.10 MB
p =128, WB={t, f,d,c,s} 176.38 | 16.96 | 3591 | 115.50 | 4.71° | 2.10° | 3.09° | 5.92° | 5.77 | 3.01 | 427 | 7.71 | 5.10 MB
p =64, WB={t, f,d,c,s} 161.80 | 9.01 19.33 | 90.81 | 4.05° | 1.40° | 2.12° | 4.88° | 4.89 | 2.16 | 3.10 | 6.78 | 5.10 MB
p =64, WB={t, f,d,c,s}, wlo L, 189.18 | 11.10 | 23.66 | 112.40 | 4.59° | 1.57° | 2.41° | 5.76° | 548 | 2.38 | 3.50 | 7.80 | 5.10 MB
p =64, WB={t, £,d, c,s}, w/shuff. | 197.21 | 24.48 | 5577 | 149.95 | 5.36° | 2.60° | 3.90° | 6.74° | 6.66 | 3.79 | 545 | 8.65 | 5.10 MB
p =64, WB={t,d, s} 168.38 | 8.97 19.87 | 105.22 | 4.20° | 1.39° | 2.18° | 5.54° | 5.03 | 2.07 | 3.12 | 7.19 | 5.09 MB

Table 2: Comparison on our mixed-illuminant evaluation set. Highlights and symbols are the same as in Table 1.

Method MSE MAE AE 2000
Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Gray pixel [53] 4959.20 | 3252.14 | 4209.12 | 5858.69 | 19.67° | 11.92° | 17.21° | 27.05° | 25.13 | 19.07 | 22.62 | 27.46
Grayness index [54] 1345.47 | 727.90 | 1055.83 | 1494.81 | 6.39° | 4.72° | 5.65° | 7.06° | 12.84 | 9.57 | 12.49 | 14.60
KNN WB [5] 1226.57 | 680.65 | 1062.64 | 1573.89 | 5.81° | 4.29° | 5.76° | 6.85° | 12.00 | 9.37 | 11.56 | 13.61
Interactive WB [4] 1059.88 | 616.24 | 896.90 | 1265.62 | 5.86° | 4.56° | 5.62° | 6.62° | 11.41 | 8.92 | 10.99 | 12.84
Deep WB [3] 1130.598 | 621.00 | 886.32 | 1274.72 | 4.53° | 3.55° | 4.19° | 5.21° | 1093 | 859 | 9.82 | 11.96
Ours (p = 64, WB={t,d,s}) | 819.47 | 655.88 | 845.79 | 1000.82 | 5.43° | 4.27° | 4.89° | 6.23° | 10.61 | 9.42 | 10.72 | 11.81
Ours (p = 64, WB={t, f,d, c,s}) 938.02 75749 | 961.55 | 1161.52 | 4.67° | 3.71° | 4.14° | 5.35° | 12.26 | 10.80 | 11.58 | 12.76
Ours (p = 128, WB={t,d, s}) 830.20 584.77 | 853.01 992.56 | 5.03° | 3.93° | 4.78° | 590° | 1141 | 9.76 | 11.39 | 12.53
Ours (p = 128, WB={t, £,d,c,s}) | 1089.69 | 846.21 | 112559 | 1279.39 | 5.64° | 4.15° | 5.09° | 6.50° | 13.75 | 11.45 | 12.58 | 15.59

(A) Input image

Daylght
Cloudy

(C) Our predicted blending weights

(D) Our AWB

Figure 7: Post-capture WB correction. By employing an
off-the-shelf method for global WB editing (e.g., [3]), we
can employ our method to correct mixed-illuminant scene
colors in post-capture time. Input image is from Flickr.

and thus can be deployed on board a camera ISP hard-
ware. As a part of our contribution, we have proposed
a synthetic test set of mixed-illuminant scenes with pixel-

(A) Camera AWB

(B) Ours

Figure 8: Failure examples. Our method fails in some cases,
where it could not properly choose the correct WB setting
for some regions in the input image. Input image is from
the MIT-Adobe 5K dataset [22].

wise ground truth. Compared with other alternatives, we
showed that our method produces promising results through
both qualitative and quantitative evaluations. Our source
code, trained models, and synthetic test set are available at
https://github.com/mahmoudnafifi/mixedillWB.
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