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Abstract

Conventional Unsupervised Domain Adaptation (UDA)
methods presume source and target domain data to be si-
multaneously available during training. Such an assump-
tion may not hold in practice, as source data is often in-
accessible (e.g., due to privacy reasons). On the contrary,
a pre-trained source model is usually available, which per-
forms poorly on target due to the well-known domain shift
problem. This translates into a significant amount of mis-
classifications, which can be interpreted as structured noise
affecting the inferred target pseudo-labels. In this work, we
cast UDA as a pseudo-label refinery problem in the chal-
lenging source-free scenario. We propose Negative Ensem-
ble Learning (NEL) technique, a unified method for adap-
tive noise filtering and progressive pseudo-label refinement.
NEL is devised to tackle noisy pseudo-labels by enhancing
diversity in ensemble members with different stochastic (i)
input augmentation and (ii) feedback. The latter is achieved
by leveraging the novel concept of Disjoint Residual Labels,
which allow propagating diverse information to the differ-
ent members. Eventually, a single model is trained with the
refined pseudo-labels, which leads to a robust performance
on the target domain. Extensive experiments show that the
proposed method achieves state-of-the-art performance on
major UDA benchmarks, such as Digit5, PACS, Visda-C,
and DomainNet, without using source data samples at all.

1. Introduction
Deep Convolutional Neural Networks (CNNs) have

shown remarkable achievements in a variety of tasks [9].
However, to perform well, training and testing data are as-
sumed to be drawn from the same distribution. This is unre-
alistic when the system needs to be deployed in real-world
scenarios. Consequently, a model trained on some source
domain often fails to generalize well on a related but dif-
ferent target domain, due to the well-known problem called

Figure 1: Illustration of the proposed method. In each iteration, a
batch of target samples with different augmentation is fed to each
ensemble member. Next, considering the inferred pseudo-label,
different feedback is backpropagated by leveraging Disjoint Resid-
ual Labels with Negative Ensemble Learning (NEL) loss. This al-
lows each member to learn diverse characteristics from data, pos-
sibly complementary, leading to a superior noise resilience and a
stronger consensus leaning towards the actual class label.

domain shift [39, 29]. Since annotating data from every pos-
sible domain is expensive and sometimes even impossible,
Unsupervised Domain Adaptation (UDA) methods seek to
address such a problem by minimizing discrepancy across
the domains or trying to learn domain-invariant feature em-
beddings, without accessing target label information.

Several research efforts have been devoted to developing
UDA methods by either enforcing class-level feature dis-
tribution alignment [6, 8], matching moments [32, 5], ap-
plying domain-specific batch normalization [4], or adopt-
ing domain adversarial learning [2, 38]. However, these
methods require joint access to both (labeled) source and
(unlabeled) target data during training, making them unsuit-
able for scenarios where source data is inaccessible during
the adaptation stage, or when source and target data are not
available at the same time. Further, such solutions are also
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not viable when target data is provided incrementally at dif-
ferent times or if the source/target datasets are very large.
Moreover, most UDA methods either focus on the single-
source or single-target scenario with specific framework, re-
gardless of the fact that data may belong to multiple source
or target distributions, e.g., images taken in different envi-
ronments or obtained from the web (e.g., sketches, photos).

To get rid of such restrictive assumptions, we propose to
cast UDA as a pseudo-label refinement problem in a source
data-free scenario. Consequently, unlike most of the former
works, our method does not require any (target-style) data to
be generated and can cope with single-source, multi-source,
and multi-target UDA indifferently, making it easy to use
and generalizable to the dataset of diverse complexity and
challenges. Our approach only assumes the availability of
a model pre-trained on the source domain to infer pseudo-
labels of unlabeled target samples. Obviously, this results
in a significant amount of incorrect acquired pseudo-labels,
which is a consequence of the domain shift [39, 29]. Hence,
it appears natural to adapt to the target domain by clean-
ing the pseudo-labels via a (re-)assignment process, so that
a new model can be trained from scratch (or a pre-trained
model can be fine-tuned) using the cleaned target labels.

To clean noisy pseudo-labels, we propose Negative En-
semble Learning (NEL) technique, a unified method for
adaptive noise filtering and pseudo-label refinement. Our
method takes advantage of several expert ensemble mem-
bers, each trained using a batch of target samples with dif-
ferent stochastic data augmentation and a novel concept of
disjoint feedback. The design of disjoint feedback requires
two essential components (i) more than one trainable mod-
els, and (ii) different labels for each member and a support-
ing loss function. The latter is achieved by employing an
indirect learning scheme, i.e., instead of using the inferred
pseudo-label (out of total C classes) corresponding to tar-
get sample x, the remaining (C − 1) residual labels (RL)
are equally distributed over all ensemble members. Next,
separately for each member, the proposed NEL loss func-
tion attempts to minimize the confidence of corresponding
disjoint residual labels (DRL) as in “x does not belong to
either of them”. Consequently, the collective form of feed-
back pushes confidence of inferred pseudo-label to rise.

The intuition behind is that, in case of incorrect pseudo-
label, at least Ne − 1 members out of Ne (the total num-
ber of expert members in the ensemble network) should re-
ceive the correct information: stochastically sampling dis-
joint subsets of residual labels forces each ensemble mem-
ber to learn different concepts, which is known to be ben-
eficial in ensemble learning to reach a strong, hence more
robust, consensus. Thus, such a consensus contributes to
reaching higher confidence on clean pseudo-labels, allow-
ing us to introduce a novel fully adaptive noise filtering
technique to refine labels of the samples with low confi-

dence (i.e., noisy pseudo-labels) via reassignment. Finally,
a standard supervised learning procedure is used to train a
single model on the target domain data using the refined
pseudo-labels featuring high confidence only.

The proposed pipeline obtains a significant noise reduc-
tion from the inferred pseudo-labels. With extensive experi-
ments on various benchmarks yielding a wide range of shift-
noise (PACS: 4% - DomainNet: 82.4%), we show that train-
ing on the target domain with refined pseudo-labels outper-
forms state-of-the-art UDA methods by a considerable mar-
gin. To summarise, the contributions of our work can be
stated as follows:

• We propose a new, fully-adaptive method that dynami-
cally filters out label noise and assigns cleaner pseudo-
labels to noisy target samples. To do so, we intro-
duce Negative Ensemble Learning, a new strategy that
enhances diversity among members by different data
augmentation and disjoint feedback, leading to im-
proved noise resilience and a stronger consensus.

• Our method can naturally cope with the absence of
source data during adaptation. It does not require new
(target-style) data to be generated, avoiding the use of
GAN-based models that are often difficult to train with
stability. Also, it can deal with single/multi-source and
multi-target UDA scenarios indifferently.

• We validate our method through detailed ablation anal-
yses and extensive experiments on four well-known
benchmarks, demonstrating its superiority over state-
of-the-art UDA methods with a significant margin,
e.g., up to 21.8% better accuracy for PACS benchmark.

The remainder of the paper is organized as follows. In
Section 2, we discuss related works in the literature. Sec-
tion 3 describes the proposed method. Section 4 illustrates
the experimental setup and reports the obtained results. Fi-
nally, conclusions and future work are drawn in Section 5.

2. Related Work
Unsupervised Domain Adaptation. Most of the exist-

ing UDA methods focused on cross-domain feature align-
ment either by employing discriminative class-conditional
alignment [8], features and prototype alignment using re-
liable samples [6], or customized CNN models with do-
main alignment layers and feature whitening [34]. Other
works proposed feature distribution matching by approx-
imating joint distributions [40], matching graph [10], or
matching moments [32]. However, such methods assume
the co-existence of source and target data during training,
making them unsuitable for more realistic scenarios where
source data is inaccessible, e.g., due to data-privacy issues.

Source-free UDA. A few recent works showed interest
in source-free UDA. For example, [7] proposed a feature
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corruption and marginalization technique using few labeled
source samples and [30] adapted the outputs from an off-
the-shelf model to minimize distribution shift using some
labeled target samples. An instance-level weighting method
using negative classes is proposed in [22], which is highly
dependent on a procurement stage requiring source data.
Another approach leveraged a pre-trained source model to
update the target model progressively by generating target-
style samples through conditional generative adversarial
networks [29], also combined with clustering-based regu-
larization [26]. Similarly, to improve UDA performance in
person re-identification task, [16] proposes a pseudo-label
cleaning process with on-line refined soft pseudo-labels.

Our proposed approach lies in this category and takes
partial inspiration from the methods developed for source-
free UDA in [26, 29]. Here, a pre-trained source model
is used to infer pseudo-labels of target data, and then a
target-style sample generator is employed for adaptation.
Like in many previous works, while we start by inferring
pseudo-labels using a pre-trained model but, subsequently,
we progressively refine such labels exploiting the consen-
sus of an ensemble network, without generating any (target-
style), thus data avoiding the use of GAN-based models that
require careful hyperparameter balance to reach stability.

Ensemble Learning. Such methods exploit features ex-
tracted from multiple models through a diversity of data
projections and bring forward the mutual consensus to
achieve better performances than those obtained by any in-
dividual model [47]. A comprehensive review about ensem-
ble methods is well illustrated in [13]. The importance of
learning diverse contributions from data for classifier selec-
tion and parameters update is proposed in many works, for
instance [45]. Also, multiple choice learning is employed
in [15] to improve the accuracy of an ensemble of models.

We also drew inspiration from the general idea pro-
posed in these works, which agree in stressing that diversity
among members is beneficial for ensemble robustness. We
differentiate from them by introducing a new way of induc-
ing diversity in the members, i.e. we back-propagate differ-
ent feedback to each member by leveraging the novel con-
cept of Disjoint Residual Labels. This allows each mem-
ber to learn diverse characteristics from data, possibly com-
plementary, leading to a superior noise resilience and a
stronger consensus leaning towards the actual class label.

Learning with Noisy Labels. Deep CNNs are capa-
ble of memorizing the entire data even when labels are
noisy [21]. To overcome such overfitting, existing methods
try to select a subset of possibly clean labels for training,
e.g., using two networks under a co-teaching framework
[18], adopting meta-learning for exemplar weight estima-
tion [46], applying an one-out filtering approach based on
the local and global consistency [11], or investigating Neg-
ative Learning (NL) as an indirect learning method [21].

In these works, the type of label noise is an important
factor to be considered. The above methods typically only
consider random noise from selective or uniform distribu-
tion, which has a completely different structure from the la-
bel noise injected by the domain shift affecting the inferred
pseudo-labels (see Section 3). Thus, [21] fails when the
noise is not uniform, and the performance results actually
affected by threshold sensitivity, which limits the general-
ization capability of the method across benchmarks. In con-
trast to a fixed threshold, our Negative Ensemble Learning
method features a fully adaptive procedure to progressively
filter out the structured noise affecting target pseudo-labels.

3. Proposed Method
In the context of UDA for a C-class classification task,

we use a model pre-trained on source data to infer pseudo-
labels of the entire target set Dt — such set of labels will
be noisy due to domain shift [39, 29]. The standard training
procedure i.e., training with cross-entropy loss tries to max-
imize the probability of x belonging to the corresponding
inferred pseudo-label ỹ. But, in case of noisy pseudo-label
ỹ ̸= yt (where yt is the inaccessible actual target label), the
model would undeniably be provided the wrong informa-
tion which results in poor performance.

Instead, Negative Learning (NL) [21], can reduce such
probability to 1

(C−1) . NL refers in fact to an indirect learn-
ing method, which instead of using a given label — ỹ in our
case — attempts to train the classifier using a complemen-
tary label ȳ (randomly selected from {1, ..., C}\{ỹ}) as in
“data sample x does not belong to ȳ”. Since the chances of
selecting a true label as a complementary label are low, NL
decreases the risk of providing incorrect information.

Nevertheless, the existing NL method with a single net-
work can not tackle shift-noise associated with inferred
pseudo-labels. To understand better, let our CNN architec-
ture be composed of a feature extractor νϕ(.), a classifier
ψθ(.), and a softmax σ(.), being ϕ and θ the related net-
work parameters. The function f : X → RC , defined as
f(x) = σ(ψϕ(νθ(x)))

1, maps the input x ∈ X to the C-
dimensional vector of probabilities p ∈ RC . Within a stan-
dard training procedure, namely Positive Learning (PL), the
cross entropy loss function can be defined as:

LPL(Dt) = −Ext∼Dt

C∑
c=1

1[c=ỹ] log(p) (1)

where 1 is an indicator function, Dt represents the unla-
beled target domain and p = f(xt). Clearly, Eq. (1)
pushes the probability p for the given pseudo-label ỹ to-
wards pỹ = 1. On the contrary, NL aims at encouraging
the probabilities of complementary labels ȳ to move away

1Networks’ parameters θ and ϕ will be omitted for brevity from now
on.
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(a) Symmetric-noise (b) Shift-noise

Figure 2: Histogram showing the noise-filtering performance of
[21] on MNIST. In both cases, the amount of noise equals 32.9%
(cf. SVHN→MNIST shift-noise in Table 1).

from 1, actually pushing them towards pȳ = 0. The NL
loss function would be so defined as:

LNL(Dt) = −Ext∼Dt

C∑
c=1

1[c=ȳ] log(1− p) (2)

While Eq. (2) optimizes the output probability of the
complementary label to be close to zero, the probability val-
ues of other classes are increased. In such a contest, the
samples carrying clean ỹ get higher confidence, whereas
noisy ones struggle with scarcely confident scores, meeting
the purpose of NL. Nevertheless, the fundamental limi-
tation of naive NL [21] is that it is suitable for the noise
showing a uniform distribution (symmetric-noise) only. As
reported in Figure 2a, data samples with labels are assigned
low confidence, resulting in effective noise separation.

Yet, a significant amount of noise is overfitted with high
confidence by the network when we consider shift-noise —
namely noise turned up during inferring pseudo-labels on
the target using a model trained with the source (MNIST
and SVHN, respectively, in the example of Figure 2b). Note
that overfitting is not to be ascribed to the amount of noise,
which was carefully balanced in the experiment, but rather
to its distribution (see supplementary material for more de-
tails). So, NL works nicely when data is affected by sym-
metric noise but, when complying with shift-noise as in
our case, important modifications are required to be able
to clean pseudo-labels effectively.

To mitigate such limitations, we propose to employ En-
semble Learning which refers to concurrently training mul-
tiple networks of similar configuration. The idea is to create
a set of experts trained in different ways, in order to produce
predictions with low bias and high variance. Generally, an
ensemble produces the final output as a weighted sum of all
the experts’ logits, i.e., for a data sample x, the final predic-
tion can be obtained as:

pe = σ(

Ne∑
k=1

βkψk(νk(x)) (3)

where Ne corresponds to the number of experts in the en-
semble network, and βk is a set of weights modulating the

contribution of each expert member.
Precisely, we set βk = 1,∀k ∈ [1, Ne] and propose Neg-

ative Ensemble Learning loss for learning with noisy labels
that, amplifies the diversity of the ensemble members by
different stochastic (i) input augmentation, and (ii) feedback
using Disjoint Residual Labels. The resulting strong con-
sensus gives rise to the cleaner pseudo-labels, better than
those obtained by any stand-alone network. The following
sections discuss specific details of the proposed approach.

3.1. Adaptive Pseudo-Label Refinement

Problem Setup. The goal of UDA methods is to adapt
a model pre-trained on a labelled source domain Ds =
{(xi

s, y
i
s)}

Ns
i=1 in order to generalize well on a different, yet

related, unlabeled target domain Dt = {xj
t}

Nt
j=1, where Ns

and Nt denote the number of samples in the source and the
target domain, respectively, and the label set Y is the same
for the 2 domains, i.e. Ys = Yt. For the sake of general-
ity, we assume to work with Md + 1 domains: Md source
domains Ds, where s = {1, ...,Md}, and a target domain
Dt. Differently from many standard UDA methods, our
proposed approach does not use any source data for adapta-
tion, nor generate target-style data at any stage. Instead, we
simply use only a pre-trained source model to infer pseudo-
labels P = {ỹj}Nt

j=1 on the target domain. Being aware that
a severe noise (due to domain shift [39]) is affecting such
labels resulting in a significant amount of incorrect labels,
we propose a way to progressively filter out noisy target
samples from the clean ones, and carry out pseudo-label re-
finement to obtain a cleaner set P .

Pseudo-Label Refinement. The first step for our pro-
posed method refers to inferring pseudo-labels P of unla-
beled data samples of Dt using fs, a model pre-trained on
the labeled source samples from Ds. In this context, for
single-source and multi-target UDA, the model pre-trained
on the chosen source data is used to infer pseudo-labels of
target domain(s) being considered. For multi-source UDA,
we often have a single model pre-trained on aggregated data
from all source domains, fagg , which can be used to infer
target pseudo-labels P as:

ỹj = argmax(ψagg(νagg(x
j
t ))) ∀j ∈ {1, ..., Nt}, (4)

Subsequently, the proposed label refinement procedure
is carried out. In particular, to obtain robust and cleaner
pseudo-labels by employing ensemble network, we use
moving average of Na previous ensemble output predic-
tions. For a certain sample x, this results to:

p = σ(
1

Na ·Ne

Na∑
l=1

Ne∑
k=1

ψk,l
e (νk,le (x)) (5)

where we setNa = 10 for all the experiments in this study.2

2We anticipate that this is a non sensitive parameter, it has not a relevant
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(a) epochs = 1 (b) epochs = 10 (c) epochs = 25 (d) epochs = 50

Figure 3: Prediction-confidence trend during training and pseudo-label refinement by our proposed NEL method in case of
SVHN→MNIST source-free UDA. Almost all samples are predicted with very low confidence at the beginning (a). As the network
starts learning, noisy samples are segregated in a low confidence interval. Only if confidence is lower than γ (eq. 6), pseudo-labels are
reassigned. Noise is thus progressively reduced (c-d). (Best viewed in color)

Now, let us define p̃ as the confidence of the pseudo-label ỹ,
namely the entry of the obtained probability vector p corre-
sponding to ỹ. We categorize the target samples with p̃ > α
as High Confidence Samples (HCS) which enable us to de-
fine the ratio of HCS over the total number of samples as:

γ =
# of HCS

Nt
(6)

Thus, the γ threshold derived by parameter α and instan-
taneous generalization capability of the ensemble network
is the key behind adaptive nature of the noise filtering abil-
ity of the proposed method. So, the pseudo-label of each
sample xj

t is updated/retained according to the following
condition:

ỹj(n) =

{
argmax(pj), if p̃j < γ

ỹj(n− 1), otherwise
∀j (7)

where n denotes the epoch number. The intuition behind
such reassignment rule can be drawn from the trend of the
prediction confidence along training. As shown in Figure 3a
and 3b, with the growing number of epochs, noisy samples
remain towards low confidence regime and clean samples
obtain high confidence progressively. In Figure 3b, the ratio
of HCS (with α = 0.9) gives γ ≈ 0.15 that corresponds to
a confidence region [0, γ] = [0, 0.15] in which the noisy
samples are prevalent, hence they are the best candidates to
be subjected to label reassignment. Consequently, pseudo-
label refinement is achieved progressively during training in
an adaptive manner (see Figure 3c and 3d, where total noise
is progressively reduced). We ablate to find optimal value
of α in Section 4.1.

3.2. Negative Ensemble Learning

The adaptive pseudo-label refinement procedure dis-
cussed in Section 3.1 heavily depends on the diversity exists
among ensemble members. Our approach induces such a di-
versity by different stochastic data augmentation and feed-
back. The latter is achieved by employing Residual Labels

effect on the performance as long as Na ≥ 5.

(RL) — randomly chosen complementary labels other than
the inferred pseudo-label — a key attribute of our proposed
Negative Ensemble Learning (NEL) loss that we define as:

LENL(Dt) = −Ext∼Dt

1

NRL

C∑
c=1

1[c∈RL]log(1−pc) (8)

The NEL loss in Eq. 8 is used to train each member inde-
pendently, where NRL refers to the number residual labels.
Thus, for any value NRL > 1, the proposed approach can
influence the training process in three ways: (a) The like-
lihood of the actual-label yt being randomly picked as one
of the residual labels increases by factor of NRL

C−1 , which is
bad. (b) In case yt ∩ RL = ∅, the training is accelerated
with the stronger feedback provided by the multiple contri-
butions of RLs, which is good. (c) In case yt ∩ RL ̸= ∅,
instead of providing entirely wrong feedback using Eq. 2,
the impact of wrong feedback is mitigated by a factor of
NRL−1
NRL

, and this is again good. In fact, gradients will fol-
low a mean direction according to Eq. 8. Although cases (b)
& (c) are essential advantages of using multiple RL, (a) is a
downside. To understand the balance among these aspects,
we ablate on the different values of NRL in Section 4.1.

However, we found that best results are obtained using a
completely disjoint random subset of residual labels (DRL).
Not only this allows each member to receive a different
feedback (thus enhancing the ensemble’s diversity), but also
restricts the possibility of receiving wrong feedback to one
member only. Thus, in this paper, we don’t use specific
number of RL, rather, we use equally distributed DRL over
all ensemble members.

Further, to induce additional diversity in ensemble expert
members, we consider several standard stochastic data aug-
mentation strategies including the composition of (i) spa-
tial/geometric transformation via random cropping (with
uniform area = 0.08 to 1.0 and aspect-ratio = 3

4 to 4
3 ) fol-

lowed by resizing to the original size, (ii) affine transfor-
mation followed by Gaussian blur, and (iii) color distortion.
We found that composition of different stochastic data aug-
mentation is crucial to avoid noise overfitting and extend
diversity in the ensemble network (See Section 4.1).
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Figure 4: Correlation between adaptiveness of γ threshold (right
y-axis, dashed lines) and progressive noise reduction (left y-axis,
solid lines) achieved by NEL during training for various amount of
noise. Legend: T: MNIST, S: SVHN, U: USPS, and M: MNIST-M.

Figure 5: Distribution of remaining noise in refined pseudo-labels
after SVHN→MNIST UDA. The highlighted bars (in a rectangle)
represent the set of samples with confidence greater than α = 0.9.

All these ingredients concur in making proposed method
capable of filtering out different amounts of noise in
an adaptive manner while progressively refining pseudo-
labels. In Figure 4, the profiles related to the right y-axis
(dashed lines) show the capability of the threshold γ to
adapt to different single-source UDA cases, while the pro-
files related to the left y-axis show the corresponding noise
reduction. In particular, it is worth noting that no pseudo-
label refinement is applied during the first few epochs until
the ensemble gets a mature state of generalization capabil-
ity. As the ensemble members get more and more confident
in the clean examples, label reassignment becomes more
rigorous preventing the network to overfit to noisy samples.

After a certain number of training epochs, the pseudo-
label refinement process stalls down to an insignificant
noise reduction rate (see Figure 4). Therefore, instead
of pushing refinement process more for several epochs to
achieve further small reduction, we apply standard super-
vised learning only using high confidence samples deter-
mined by α. This is done using only one model (the fi-
nal target model) for a fair comparison with state-of-the-art
methods. As shown in Figure 5, the remaining noise is dis-
tributed over the entire probability spectrum, whereas the
majority of the clean samples are predicted with high con-

fidence (red box in the right plot). Therefore, only a small
fraction of noisy samples affects training.

4. Experiments
We consider the image classification task to comprehen-

sively evaluate the proposed method on major UDA bench-
marks including Digit5 (MNIST [23], SVHN [31], USPS
[12], MNIST-M [14], and Synthetic-Digits [14]), PACS
[25], VisDA-C [33], and DomainNet [32]. For all the
benchmarks, we use batch-size = 32, α = 0.9 and Adam as
the optimizer with a weight decay of 5e−4. The base learn-
ing rate is set to 1e−4 and the feature extractors are opti-
mized with a learning rate of 1e−5. The feature extractor of
ensemble members are initialized with a pre-trained source
model. For single-source and multi-target UDA, we con-
sider one pre-trained source model to adapt on every target
domain. For multi-source UDA, each domain is selected as
the target domain while the rest of the domains are treated
as aggregated source (according to Eq. 4).

Digit5 refers to a set of digit benchmarks. In this pa-
per, following [32], we sample a subset of 25000 images
from the training and 9000 images from the testing set for
MNIST, MINST-M, SVHN, and Synthetic-Digits. Since
USPS contain a total of 9298 images, we use standard train-
test splits. To keep comparable image resolution, we resize
all images to 32×32 and a naive 3-layer CNN is used as en-
semble members. For single-source and multi-source UDA,
label refinement takes 750 and 300 epochs, respectively,
whereas the final target model is trained for 200 epochs.

PACS contains 4 domains, namely (Art-Painting, Car-
toon, Photo, and Sketch). There are only 9991 images of
227x227 resolution from 7 object categories that accom-
modates a large domain shift due to the different image
style depictions. We use ResNet-18 as ensemble members.
For single-source, multi-target and multi-source UDA, la-
bel refinement takes 200, 200 and 100 epochs, respectively,
whereas the final target model is trained for 200 epochs.

Visda-C is a challenging large-scale benchmark attempt-
ing to bridge the significant synthetic-to-real domain gap
across 12 object categories. We follow standard protocol
in which the source domain (training split) contains 152K
synthetic images and the target domain (testing split) con-
tains 72K real images. We resize all images to 256×256
resolution and use ResNet-101 as ensemble members. La-
bel refinement takes 150 epochs and just 25 epochs were
found to be enough for training the final target model.

DomainNet is by far the largest UDA benchmark with
6 domains, 600K images and 345 categories. We resize all
images to 256×256 and use ResNet-101 as ensemble mem-
bers. It was mainly developed for multi-source UDA task
for which our proposed label refinement takes 100 epochs
for Infogragh and Quickdraw domain, while 40 epoch were
enough for the rest. For training the final target model, 100
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Single-Source UDA Multi-Source UDA

Source T T T S U Avg.
M,S, T,S, T,M, T,M, T,M,

Avg.D,U D,U D,U S,U S,D
Target U S M T T T M S D U
ATT [36] – 52.8 94.0 85.8 – – DCTN [42] – 70.9 77.5 – – –
SBA [35] 97.1 50.9 98.4 74.2 87.5 81.6 MM [32] 98.4 72.8 81.3 89.5 96.1 87.6
MALT [28] 97.0 78.7 71.4 98.7 20.7 73.3 OML [24] 98.7 71.7 84.8 91.1 97.8 88.8
MTDA [17] 94.2 52.0 85.5 84.6 91.5 81.5 CMSS [44] 99.0 75.3 88.4 93.7 97.7 90.8
GPLR [29] 89.3 63.4 94.3 97.3 91.8 87.5
NEL 97.4 61.6 95.4 99.2 99.2 90.6 99.1 95.5 89.6 90.0 97.8 94.4

Table 1: Classification accuracy on Digit5 with a naive 3-layer CNN. Legend: T: MNIST, S: SVHN, U: USPS, M:
MNIST-M, and D: Synthetic-Digits.

Multi-Target UDA Multi-Source UDA
Source P A Avg. C,P,S A,P,S A,C,S A,C,P Avg.Target A C S P C S A C P S
1-NN* 15.2 18.1 25.6 22.7 19.7 22.7 20.7 DD [27] 87.5 87.0 96.6 71.6 85.7
ADDA* 24.3 20.1 22.4 32.5 17.6 18.9 22.6 SIB [19] 88.9 89.0 98.3 82.2 89.6
DSN* 28.4 21.1 25.6 29.5 25.8 24.6 25.8 OML [24] 87.4 86.1 97.1 78.2 87.2
ITA* 31.4 23.0 28.2 35.7 27.0 28.9 29.0 RABN [41] 86.8 86.5 98.0 71.5 85.7
KD [1] 24.6 32.2 33.8 35.6 46.6 57.5 46.6 JiGen [3] 84.8 81.0 97.9 79.0 85.7

CMSS [44] 88.6 90.4 96.9 82.0 89.5
NEL 80.1 76.1 25.9 96.0 82.8 49.8 68.4 90.8 89.5 98.8 85.2 91.1

Table 2: Classification accuracy on PACS with ResNet18. * results are taken from [17]. Legend: A: Art-Painting, C:
Cartoon, P: Photo, and S: Sketch.

Single-Source UDA
Source P P P A A A Avg.Target A C S P C S
NEL 82.6 80.5 32.3 98.4 84.3 56.1 72.4

Table 3: Classification accuracy on PACS with ResNet18.

epochs were sufficient in all the cases.

4.1. Ablation study

We ablate the design choices described in Section 3 on
the SVHN→MNIST adaptation task. It is important to note
that the parameters estimated here are then used in all sub-
sequent experiments, demonstrating the little sensitivity of
the proposed method to such coefficients.

We considerNe = 1 (i.e., no ensemble) to ablate the dif-
ferent values of α. Figure 6a shows that α = 0.90 results in
the highest noise reduction, whereas α = 0.50 is the least
effective. These findings make sense, since with α = 0.50,
the reassignment would start too early (i.e., as soon as some
example has confidence greater than 0.5, since γ is always
zero beforehand), when the network is not yet ”ready” for
it. Instead, with α = 0.90, reassignment will start only
when some samples have very high confidence. From that
moment on, γ starts adapting, so that the more the samples
with high confidence, the more permissive the threshold γ
will be. The reason α = 0.95 results slightly less effective is
because a relatively higher number of noisy samples overfits
before they are reassigned. Keeping Ne = 1 and α = 0.9,
we ablate on the different values of parameter NRL (Fig-
ure 6b). Results show that NRL = 3, 4, or 5 can be con-
sidered as the legitimate choice. Further, the results shown
in Figure 6c exhibit the improvement achieved by the RL

(a) (b)

(c) (d)

Figure 6: Ablation study considering SVHN→MNIST UDA task
to determine optimal parameters of our proposed NEL method.
(a): Single model is trained with 1 residual-label (RL) to choose
the best α required to compute adaptive noise filtering threshold γ.
(b): Searching for the right number of RL i.e., NRL. (c): Search-
ing for the optimal number of members in the ensemble network
(NRL = 4 is used for Ne = 1). (d): Investigating the effect of
same/disjoint RL (SRL and/or DRL) and same/different data aug-
mentation (SAUG and/or DAUG) in all four possible scenarios.

approach in comparison to Ne = 1 (with NRL = 4, i.e., the
best choice found in Figure 6b). Though faster noise reduc-
tion is achieved with higher number of ensemble members,
Ne = 3 can be regarded as the optimal choice considering
performance vs. computational cost trade-off.
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Methods plane bcycl bus car horse knife mcycl person plant skate train truck Avg.
MCD [37] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
GPDA [20] 83.0 74.3 80.4 66.0 87.6 75.3 83.8 73.1 90.1 57.3 80.2 37.9 73.3
SAFN [43] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
DSBN [4] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
DADA [38] 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8
NEL 94.5 60.8 92.3 87.3 87.3 93.2 87.6 91.1 56.9 83.4 93.7 86.6 84.2

Table 4: Classification accuracy on Visda-C with ResNet101.

Target C I P Q R S Avg.
MM [32] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
OML [24] 62.8 21.3 50.5 15.4 64.5 50.4 44.1
CMSS [44] 64.2 28.0 53.6 16.0 63.4 53.8 46.5
NEL 68.3 22.1 54.7 22.8 67.3 57.1 48.7

Table 5: Classification accuracy on DomainNet with ResNet101.
For each target, the rest of the domains are considered as source
(multi-source UDA). Legend: C: Clipart, I: Infograph, P: Paint-
ing, Q: Quickdraw, R: Real, and S: Sketch.

Also, as shown in Figure 6d, just one type of augmenta-
tion for all the ensemble members (ref. SAUG in the figure)
is not enough. Also, the results validate the ineffectiveness
of using same residual labels (SRL in the figure) for all.
The best noise reduction is achieved using Disjoint Resid-
ual Labels along with different stochastic augmentations,
DRL and DAUG, respectively.

4.2. Performances

The reported results in Table 1-5 present the average ac-
curacy of 3 runs3. In Table 1 (left), we compare our method
(NEL) with the existing methods which address the chal-
lenging MNIST→SVHN and MNIST→MNIST-M tasks in a
multi-target UDA framework. In both cases, the source con-
tains gray-scale images, and the target holds colored (RGB)
images, carrying a massive distribution gap across domains
for which our method achieves third and second-best perfor-
mance, respectively. Nevertheless, by outperforming in 3
out of 5 cases, our method achieves state-of-the-art average
accuracy. For multi-source UDA task in Table 1 (right), the
performance of proposed method is slightly affected while
adapting to Synthetic-Digits benchmark. In the remaining
4 out of 5 cases, our method outperforms existing methods
and achieves state-of-the-art average accuracy. Especially,
the difference is substantial in the case of MNIST-M.

In Table 2 (left), we compare NEL with the existing
methods addressing multi-target UDA on PACS. As can be
noticed, despite the sub-optimal performance in 2 cases,
our method achieves superior average accuracy. For multi-
source UDA, we compare recent works in Table 2 (right).
Also in this framework, our method consistently outper-
forms existing methods, with only in one case getting lower,
yet comparable, accuracy. To the best of our knowledge, we
are the first to report single-source UDA results on PACS.

3Additional details, such as standard deviations and remaining noise in
refined pseudo-labels are provided in the supplementary material

So, in Table 3, we consider similar pairs as of Table 2 (left)
to evaluate the performance difference. As expected, single-
source UDA brings comparatively better performance be-
cause of the pairwise UDA. In Table 4, along with 2 com-
parable results for Visda-C, the proposed method achieves
superior performance in 6 out of 12 categories that give rise
to state-of-the-art average accuracy on such a challenging
benchmark. Also In Table 5, except one case, NEL consis-
tently outperforms existing methods despite the large num-
ber of classes and discrepancy across domains.

Discussion. In the pseudo-label refinery framework, the
single-source and multi-target UDA scenarios can be con-
sidered as the most challenging tasks since the pre-trained
source model is optimized for one particular data distribu-
tion only. Consequently, inferred pseudo-labels are affected
by a relatively higher amount of shift-noise with respect to
the multi-source UDA scenario. Thus, in such cases, NEL
requires a bit larger amount of epochs for filtering noise
and, thus, refining pseudo-labels. On the other hand, start-
ing from a better pre-trained source model in a multi-source
UDA scenario, NEL performs better and faster. Moreover,
there is no existing method in the literature that targets
all three frameworks (i.e., single-source, multi-target, and
multi-source UDA) at a time. To sum up, NEL outperforms
existing methods in all scenarios, even without using source
data, which highlights the general applicability of the pro-
posed method to cope with challenging tasks of different
levels of complexity.

5. Conclusions
In this work, we cast UDA as a pseudo-label refinery

problem in the challenging source-free scenario. We pro-
pose Negative Ensemble Learning technique, which takes
advantage of different data augmentation and feedback us-
ing Disjoint Residual Labels to diversify the learning of the
ensemble members. Thanks to this new training procedure,
we were able to obtain an extraordinary cleaning of the tar-
get data labels. It requires a minimal tuning of parameters
(estimated once and fixed for all the experiments), and can
work in single-source, multi-target, and multi-source sce-
narios indifferently, unlike the existing methods in the liter-
ature. Results demonstrate the actual goodness of the pro-
posed approach, outperforming the state-of-the-art average
performances in all the challenging public benchmarks.
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