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Abstract

This paper addresses bioprosthetic heart valve (BHV)
durability estimation via computer vision (CV)-based anal-
yses of the visual symmetry of valve leaflet motion. BHVs
are routinely implanted in patients suffering from valvu-
lar heart diseases. Valve designs are rigorously tested us-
ing cardiovascular equipment, but once implanted, more
than 50% of BHVs encounter a structural failure within
15 years. We investigate the correlation between the visual
dynamic symmetry of BHV leaflets and the functional sym-
metry of the valves. We hypothesize that an asymmetry in
the valve leaflet motion will generate an asymmetry in the
flow patterns, resulting in added local stress and forces on
some of the leaflets, which can accelerate the failure of the
valve. We propose two different pair-wise leaflet symme-
try scores based on the diagonals of orthogonal projection
matrices (DOPM) and on dynamic time warping (DTW),
computed from videos recorded during pulsatile flow tests.
We compare the symmetry score profiles with those of fluid
dynamic parameters (velocity and vorticity values) at the
leaflet borders, obtained from valve-specific numerical sim-
ulations. Experiments on four cases that include three dif-
ferent tricuspid BHVs yielded promising results, with the
DTW scores showing a good coherence with respect to the
simulations. With a link between visual and functional sym-
metries established, this approach paves the way towards
BHV durability estimation using CV techniques.

1. Introduction
1.1. Context

Valve replacement procedures are routinely used in clin-
ical settings to replace defective native heart valves in pa-
tients suffering from valvular heart disease, with around
300,000 procedures performed yearly worldwide [24]. Be-
tween 40 and 60 percent of these procedures involve bio-
prosthetic heart valves (BHVs), which are produced using

Figure 1. Sample frames of a tricuspid BHV from a high-quality in
vitro pulsatile flow test video, at different moments of the cardiac
cycle (opening phase shown here).

glutaraldehyde-fixed animal (bovine or porcine) tissue [37].
Compared to mechanical valves, BHVs tend to have a more
natural behavior [23], do not present thrombogenicity com-
plications and circumvent the problem of anti-coagulation
medications [20], and can be delivered using minimally-
invasive techniques [19]. However, they are not as mechan-
ically robust and exhibit limited durability in younger pa-
tients, particularly those younger than 60 years [19]. In
fact, more than 50% of BHVs encounter a structural fail-
ure within 15 years post-implantation [31], with tears (and
calcification) being responsible for a majority of the fail-
ures [31, 32]. Tears on the valve leaflets mostly happen in
areas under highly localized mechanical forces [32].

This paper aims to investigate the correlation between
the visual symmetry of BHVs in motion and their functional
symmetry performance. The goal is to pave the way for
utilizing computer vision (CV) techniques to estimate the
durability of BHVs. We focus on tricuspid BHV designs,
which contain three symmetric leaflets. Figure 1 shows ex-
ample frames extracted from high-quality videos taken dur-
ing in vitro pulsatile flow tests, at various moments in the
cardiac cycle. A cardiac cycle includes the opening, open,
closing, and closed phases. Pulsatile flow tests are typi-
cally carried out during the valve design process to assess its
performance via mechanical simulations of the cardiac flow
(see Sec. 3.1). In addition to allow for the extraction of mea-
surements related to the hydraulic and fluid dynamic param-
eters of the valve, these mechanical tests are typically cou-
pled with high-speed digital cameras that record the valve’s
opening and closing patterns with great detail, opening up
the way for visual inspections and thus CV-based analyses
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of the valve behavior [2]. Here, we analyze the symmetry of
the valve’s opening and closing patterns at the leaflet level.
We aim to show that an asymmetry in the motion of each
leaflet, compared to that of other leaflets, leads to differ-
ences in stress and forces on each leaflet (increased in some
cases), which can affect the durability of the valve.

1.2. Related Works

In vitro tests are typically carried out prior to the implan-
tation of BHVs within the human body to assess the perfor-
mance of the designs and potential modes of failures. Such
assessments can be categorized into numerical and mechan-
ical simulations. On one hand, numerical simulations are
of great help to understand the dynamics involved in valve
functions (e.g. [6]) and are most useful when experiment-
ing with various designs. On the other hand, mechanical
simulations, such as pulsatile flow tests, physically submit
the actual BHVs to realistic physiological settings, and are
most useful when the valve designs are set and the valves
are constructed. Mechanical simulations and the in vitro
measurements of hydraulic and fluid dynamic parameters
provide effective indications of BHV performance [12].

As this paper focuses on CV applications, a review of
the literature on numerical simulations of BHVs is out of
the paper’s scope. In this section, we first focus on valve as-
sessment using visual data acquired with high-speed cam-
eras during mechanical simulations such as pulsatile flow
tests, and second on symmetry analysis in visual data.

1.2.1 Heart Valve Assessment

Methods for valve assessment using visual data from high-
speed videos can be divided into early works, which made
use of external markers and particles to help process the
videos, and more recent works, which forgo the use of such
external aids and focus instead on the pixel intensities in the
video frames. Here we review the latter.

Methods based exclusively on the valves’ original pixel
intensities include digital kymography, thresholding, and
deformable models. Digital kymograms, which consist of
image lines projected along a time axis, have been part of
several works by Kondruweit et al. [17, 18]. One down-
side is that they focus only on a small region of the valve.
Hahn et al. [13] tested three variations of thresholding-
based methods to segment the orifice region of tricuspid
valves and assess the leaflet fluttering: manual, Otsu’s, and
finite mixture model-based thresholding. As it is difficult
to achieve a homogeneous background against which to
project the valve orifice [7], thresholding only-based meth-
ods typically fail in the presence of non-homogeneous ori-
fices. In part to address this non-homogeneity issue, many
works have proposed deformable models, such as active
contours (snakes) and level sets, to extract the valve orifice
region, the evolution of the valve orifice region over time

being a standard evaluation metric of valve designs [2]. In
a slightly different context, investigating valve movements
via endoscopic high-speed recordings of native pig heart
valves in an ex vivo setting, Wittenberg et al. [36] used
manually initialized snakes and local constraints manually
applied to the leaflets’ anchor points to extract the valve ori-
fice region. In a similar setup, Kondruweit et al. [17] ana-
lyzed the effective orifice region through a combination of
digital kymograms and snakes, both manually initialized.
In an in vitro experimental setup closer to our own (see
Sec. 3.1), and in an effort to automate the process, Con-
durache et al. [7] compared automatic thresholding, simi-
lar to that of [13], with snakes that included automatically
added leaflet anchor points-based attractors to better capture
the leaflet boundaries. The authors also tackled the auto-
matic analysis of leaflet fluttering [8], detected from leaflet
curves as a high frequency signal superimposed on the por-
tion of the curve corresponding to the open phase of the car-
diac cycle. Utilizing snakes and a separate curve expansion
scheme, Alizadeh et al. [1] detected the leaflet free edges as
opposed to the valve orifice region, which more accurately
represent the leaflet motion. In a follow-up paper [2], the
authors increased the detection accuracy utilizing a combi-
nation of snakes, thresholding, and an improved expansion
scheme. Focusing on the valve orifice region itself, Burden
et al. [4] integrated a probabilistic motion boundary model
into a distance regularized level set evolution formulation.
This model allowed them to constrain the evolution domain
using valve-specific motion data.

As there is no literature on symmetry assessment for
BHV performance evaluation, below we review relevant
works on visual symmetry analysis from other applications.

1.2.2 Symmetry Assessment

Symmetry, in the general sense, expresses the notion that a
structure is made from multiple copies of the same smaller
unit. More formally, symmetry is examined via the effect of
transformations on the structure in a certain space such that
its sub-parts map to each other [21]. In the 2D Euclidean
space, there are four types of elemental symmetries: reflec-
tion, rotation, translation, and glide reflection. In CV, re-
search on symmetry has mostly focused on reflection sym-
metry, with an increasing awareness of the entire symme-
try spectrum [21]. Techniques for measuring symmetry in
visual data can be divided into global and local; local tech-
niques can be further divided into area- and feature-based.

Global techniques are generally based on applying
certain types of transforms to search for symmetry
axes [34]. For instance, Derrode and Ghorbel [9] used the
Fourier–Mellin transform for symmetry detection in gray-
level objects, Shen et al. [30] developed a unified method
for detecting reflection and rotation symmetry in 2D im-
ages based on generalized complex moments, and Kondra
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et al. [16] proposed multi-scale kernel operators for reflec-
tion and rotation symmetry detection in real-world scene
images. Global techniques, which consider information de-
rived from entire images, can characterize all potential sym-
metries but are typically less efficient than local techniques.

Area-based local techniques are among the easiest ones
to implement but do not consider shape-related informa-
tion. In general terms, maximal symmetry happens when
two areas completely match, for instance via convolution or
area ratio computations. Most area-based works come from
medical image registration applications (e.g. [25, 28]).

Feature-based local techniques consider higher-level in-
formation embedded in the shape, contour, and/or other key
features of images. They use feature descriptors and rely on
information extracted from pixel intensity, pixel intensity
changes, contour shapes, etc. In one of the early papers,
Reisfeld and Yehezkel [27] proposed to use gradient infor-
mation to detect facial features via generalized symmetry.
Their symmetry score compared the gradient intensity and
orientation between two points. Keypoint-based symmetry
analysis methods such as those based on the scale invari-
ant feature transform (SIFT) descriptor [5,22,26] may have
difficulties in capturing structure-based patterns mostly sup-
ported by edges and contours [3]. Atadjanov and Lee [3]
focused on edges and proposed a scale invariant structure
feature that describes points on extremum curvature along
edges to detect reflection symmetry. Wang et al. [34] estab-
lished the correspondence of locally affine invariant edge-
based features to detect single and multiple reflection sym-
metry axes in synthetic and real-world images. Their ap-
proach relied on diagonals of orthogonal projection matri-
ces (DOPM) as contour descriptors for contour matching,
invariant to the full set of affine transformations [33].

Works on reflection symmetry typically try to find the
symmetry axis knowing or assuming that the data are sym-
metric, by looking at reflected parts. We use the concept of
symmetry differently: we know where the symmetry axis
is, and want to quantify the “degree” of symmetry.

1.3. Contributions

Our contributions are three-fold:

1. From a theoretical viewpoint, we propose to utilize vi-
sual symmetry information derived from the shape of
pair-wise valve leaflet motions to perform BHV anal-
yses via two different symmetry scores: the first one
is based on the DOPM [33] and the second one on dy-
namic time warping (DTW) [11].

2. From an experimental viewpoint, we show, via numer-
ical simulations, that the CV-based evaluation of sym-
metry, in particular the one using DTW, is coherent
with the functional symmetry of the valves.

3. From a practical viewpoint, we pave the way towards
BHV durability estimation using CV methods, having

Figure 2. Flowchart of the proposed method. The three leaflet
curves of the tricuspid valves are extracted from video data (valve
orifice region) and their pair-wise symmetry is analyzed via two
different scores (DOPM and DTW). The score profiles are then
compared to the results of numerical simulations to validate the
link between visual symmetry and functional symmetry.

linked visual and functional symmetry to enable the
indirect evaluation of the flow pattern and turbulence
influencing the durability of BHVs.

We understand this paper to be the first to 1) propose
a link between visual and functional symmetry of BHV
leaflets, 2) utilize numerical simulations with CV-based
techniques to validate this hypothesis, and 3) utilize DTW
for symmetry analysis. Visual symmetry refers to reflection
symmetry (see [35]) between two leaflets A and B, where
there exists a line passing through the common anchor point
of the two leaflets such that the border of A is the mirror
image of the border of B. Functional symmetry refers to an
agreement in the physical values found at the border of two
leaflets A and B, in particular in velocity and vorticity.

2. Proposed Method
Figure 2 shows the proposed method’s flowchart, divided

into two streams: CV-based analysis (top), and numerical
modeling (bottom), converging in the end to show the cor-
relation between visual and functional symmetry. For the
CV stream, the contour of the valve orifice region, obtained
from high-quality videos recorded during in vitro pulsatile
flow tests and input to the system for each frame, is divided
into three leaflet curves. The leaflet curves are then used for
pair-wise motion symmetry analysis via the computation of
two symmetry scores: DOPM and DTW. For the numeri-
cal modeling stream, numerical simulations of the flow pat-
terns during the cardiac cycle are conducted to estimate the
amount of stress and forces on the leaflets. The simulations
make use of the valve orifice region and of measured veloc-
ity and pressure data obtained during in vitro pulsatile flow
tests as input, and output velocity and vorticity values at the
leaflet borders. Finally, the symmetry scores are compared
with the simulation results to assess their similarity.
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Figure 3. Leaflet curve extraction. Original frame (a), valve orifice
region mask (b), contour of the valve orifice region (c), and three
extracted leaflet curves shown in green, red, and blue (d).

2.1. Leaflet Curve Extraction

To evaluate the existing symmetry between the leaflets
of a BHV, we consider three pair-wise leaflet groups, which
yield three cases of bilateral symmetry. This allows us to
analyze the valve symmetry at the leaflet level and deter-
mine which leaflet, if any, causes an asymmetry in the valve
orifice region during the cardiac cycle. This process is car-
ried out for each frame of the pulsatile flow test video.

The binary mask of the valve orifice region is used as
input to the leaflet curve extraction step (Figure 3b). This
mask can be obtained via one of the valve orifice segmen-
tation methods from the literature (e.g. [2, 4, 8]), or from
ground truth data. We selected the latter option, using the
semi-automatic ground-truthing approach of [2], to discard
any valve orifice segmentation error that would impact the
evaluation of our method. The contour of the valve ori-
fice region (Figure 3c) corresponds to the leaflet boundaries.
For symmetry analysis purposes, we need to identify which
part of the contour corresponds to each of the three leaflets.
We base this split on the location of the anchor points (Fig-
ure 3a) and the valve center, found as follows. To obtain a
rough skeleton representation of the valve orifice, dilation
and thinning are applied to the input mask from one of the
first few frames of the opening phase. The linear Hough
transform is then applied on the skeleton representation to
find three centerlines, at approximately 120 deg from each
other. The intersection of the centerlines gives us the valve
center. As the valve diameter d is a known parameter, the
valve circular outline (stent) is readily found with respect
to the valve center. The centerlines are then extended from
their end point closest to the circular outline and the three
anchor points are found as the intersection of the centerlines
with the circular outline. The contour is then split into three
segments (leaflet curves) at the anchor points (Figure 3d).
The line passing through the anchor point common to two
leaflets and the valve center is used later on as the symme-
try axis for bilateral symmetry analysis, and also for reflect-
ing a leaflet curve and superimposing it on the other leaflet
curves. The three leaflet curves are used to calculate the two
symmetry scores as explained next.

2.2. DOPM-Based Symmetry

DOPM, reviewed in Sec. 1.2.2, has been used for contour
matching [33] and for the detection of reflection symme-

try [34]. Using edge information, it relies on the curvature
of two curves to evaluate their symmetry. It has been shown
to be affine invariant and appropriate in the context of cap-
turing structure-based patterns, which is desirable here.

DOPM is based on the concept of edge fragments, or
leaflet curve fragments in our case. An edge fragment Ei

on a curve is defined around an edge point Xi on the curve:

Ei = [Xi−n, ...,Xi, ...,Xi+n]
T , (1)

where XT
i = [xi, yi] represents the edge point Cartesian

coordinates. The edge fragment is thus the n-neighborhood
of the edge point (we use n = 10). The centerized config-
uration matrix Ĕi is introduced to move this edge fragment
Ei to the origin and remove translation effects:

Ĕi = (I − 1

n
1n1

T
n )Ei, (2)

where I is the identity matrix and 1n := [1, ..., 1]T ∈ Rn.
As its name suggests, the DOPM descriptor WEi

is then
computed from Eq. (2) as the diagonal of the orthogonal
projection matrix:

WEi
= diag(ΠĔi

)
1
2 , (3)

where ΠĔi
is the orthogonal projection matrix on the range

space of Ĕi. We define the following similarity metric γ
between the edge fragments of two leaflet curves A and B:

γ(ĔA
i , Ĕ

B
i ) := ∥WEA

i
−WEB

i
∥1, (4)

where ∥ · ∥1 denotes the 1-norm of the subtracted vector. γ
is calculated for all the edge points on the leaflet curve A
and their corresponding match on the leaflet curve B. The
final DOPM score is obtained as the average of all γ values:

DOPM score =
1

p

p∑
i=1

γ(ĔA
i , Ĕ

B
i ), (5)

where p is the length of the smaller of the two leaflet curves
A and B. One should note that the smaller the DOPM score
value, the higher the symmetry. Large values indicate the
presence of asymmetry.

In [34], as symmetry is assumed and must be located, the
two curves involved have the same length. In our case, sym-
metry is not assumed and the leaflet curves can be of differ-
ent lengths, since they are the product of a 2D projection on
the image plane of their 3D shape. The process for finding
corresponding edge points from two leaflet curves is thus
not trivial. We propose the following matching scheme. Let
us assume that leaflet curve A is shorter than leaflet curve
B. All points from A will make it to the final list of matched
points, whereas some points from B will be discarded. The
process starts with the first point on A, for which the DOPM
descriptor (Eq. (3)) is calculated. The DOPM descriptors
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Figure 4. Superimposing the leaflet curves for the DTW score. The
green and red leaflet curves are under examination for symme-
try assessment, and the blue curve shows the reflection of the red
curve about the symmetry axis (yellow line).

are then calculated for the first n points (search neighbor-
hood) on B. The point on B that yields the lowest γ value
is considered as the best match for the first point on A. To
preserve monotonicity, the matched point on B is consid-
ered as the point on the lower end of the search neighbor-
hood for the next point. The DOPM score is computed for
all frames of the cardiac cycle.

2.3. DTW-Based Symmetry

We propose to adapt the DTW as a second way to mea-
sure the reflective symmetry between two leaflet curves via
a DTW score. DTW was developed as an algorithm for
measuring the similarity between two temporal sequences,
first used in the context of speech recognition [10]. As a
similarity measure between sequences of points in a metric
space, it has since been massively used in various fields of
computer science and computational biology [11].

DTW finds the optimal match between two curves that
yields the minimum summation of the absolute distance be-
tween corresponding points. Let us consider two curves (A
and B) represented by the following:

A = (a1, a2, ..., an), B = (b1, b2, ..., bm), (6)

where ai and bj = [xiyi]
T are the coordinates of the ith

and jth points on A and B, and n and m are the length of A
and B, respectively. The DTW algorithm finds all possible
alignment paths between points ai and bj which satisfy the
following conditions: 1) Boundary condition: the first and
last points of the curves should be the first and last points
of the aligned sequence, i.e. a1 and b1 should be paired to-
gether as well as an and bm. This, however, does not need to
be their only match. 2) Monotonicity condition: the order of
the points should be preserved, i.e. the order of the aligned
indices is never descending. The alignment path with the
minimum summation of the absolute pairwise distances is
considered as the optimal alignment path. The minimum
summation value is used as the DTW score. Since a higher
distance implies a larger discrepancy between curves, the
smaller the DTW score value, the higher the symmetry. To
calculate the DTW score between two leaflet curves in a
way that takes into account reflection symmetry, we first
need to superimpose them. The first leaflet is thus reflected
about the symmetry axis of the leaflets’ pair, which is the

line passing through the common anchor point of the leaflets
and the valve center. Figure 4 shows an example of the
two leaflets (red and green) in one leaflet pair, their sym-
metry axis (yellow) and the reflected curve (blue) of the
first leaflet. The DTW score between the two superimposed
leaflet curves is calculated for each pair of leaflets and for
all frames of the cardiac cycle.

2.4. Numerical Modeling of Flow Patterns

We utilize a numerical model and conduct simulations of
the cardiac cycle to investigate the correlation between the
visual symmetry (analyzed via the DOPM and DTW scores)
and the functional symmetry (agreement in the velocity and
vorticity values found at the border of two leaflets). In the
absence of a measured flow pattern at the leaflet borders,
the goal is to confirm the possible impact of the valve open-
ing asymmetries on the flow irregularities, which can lead
to valve failure in the long term. The simulated values are
observed throughout one cycle and their evolution is com-
pared with that of the symmetry scores.

Our model is based on an open-source multi-physics
solver (MPARS) [15, 29]. We selected this solver since in
addition to being free and open-source, its mesh-free La-
grangian numerical method lends itself to a natural han-
dling of highly dynamic irregular immersed boundaries
(here the heart valve), which are challenging for conven-
tional mesh-based Eulerian methods [29]. The numerical
model solves the conservation of mass (continuity) and mo-
mentum (Navier–Stokes) equations for incompressible flow
in a Lagrangian framework:

{
Dρ
Dt + ρ(∇ · u) = 0 Continuity
ρDu

Dt = −∇p+ µ∇2u+ g Momentum
(7)

where ρ is the fluid density, u : (u, v, w) is the fluid velocity
vector in Cartesian coordinates x : (x, y, z), p is the pres-
sure, µ is the fluid dynamic viscosity, and g is the gravity
vector. The numerical methods represent the computational
domain with a set of free-to-move particles (nodes) over
which Eqs. (7) are integrated (discretized) using a mov-
ing particle semi-implicit technique [29]. The time integra-
tion is via a predictor-corrector algorithm, and turbulence is
modeled using a large eddy simulation model [29].

The simulations make use of pressure and velocity data
measured at the inlet and outlet during in vitro pulsatile
flow tests (as boundary conditions), and take into account
the valve orifice region area available via the high-quality
videos. They allow us to extract the velocity and vorticity
fields at the leaflet borders. The velocity and vorticity give
us the flow pattern (streamlines) as well as an indication of
the shear stress, which are important cues of the functional
symmetry. The setup details are given in Sec. 3.2.
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2.5. Symmetry Scores and Simulations Compar-
isons

Once we have DOPM and DTW score profiles obtained
with the CV stream and simulated velocity and vorticity
profiles obtained with the numerical modeling stream over
a cardiac cycle, we need to find out how much they cor-
relate. This comparison cannot focus on the values them-
selves since they are not representing the same variables.
Instead, we qualitatively investigate the overall trend and
the location of the peaks in the graphs, and perform a quan-
titative difference-based comparison as follows. The mean
value of the graphs is first removed from all values; this
centers the graphs around a value of 0. The graphs are then
normalized (rescaled to the range [0, 1]), and the root-mean-
square error (RMSE) is calculated between the resulting
graphs. Since there are three pairs of leaflets for each valve,
there are three DOPM score profiles and three DTW score
profiles that are each compared with the velocity and the
vorticity profiles for each valve. This amounts to 12 com-
parisons per valve (6 scores x 2 simulated variables). One
should note that the pair-wise velocity and vorticity profiles
are computed as the absolute difference of the velocity and
vorticity values at the border of the two leaflets involved.

3. Results and Discussion
3.1. Experimental Setup and Video Dataset

As there are no public BHV video datasets available, we
have assembled our own. Our experimental setup to col-
lect high-quality videos and pressure and velocity data in-
volves tricupsid BHVs mounted in the Pulse Duplicator de-
vice from ViVitro Labs [14]. The device reconstructs the
performance of native heart valves by simulating the phys-
iological cardiac conditions and flow patterns. Figure 5
shows the schematics of the heart anatomy and the device
side by side, with arrows indicating which parts of the heart
are modeled by each chamber of the device. Pressure ports
and flow measuring sensors, located before and after the
valve, are used to collect data that are input to the numeri-
cal modeling. The device uses an anatomical model and a
rigid anatomical aortic model with sinuses. The flow path is
28 mm in diameter. The inflow and outflow pressure trans-
ducers are located 65 mm and 85 mm from the midline of
the valve, respectively. The midline of the electromagnetic
flow probe is located 35 mm from the midline of the valve.

High-quality videos were captured during pulsatile tests
and utilized as input to the CV processing. Videos were
recorded for three different BHVs via a Photron SA3 high-
speed digital camera, with a frame rate ranging from 250
to 1000 fps depending on the video, a shutter speed match-
ing the frame rate, and a 300 ms test cycle, with resolutions
between 400×400 and 1024×1024 pixels depending on the
valve. Two of the BHVs (BHV-1 and BHV-2) were 25 mm

Figure 5. Pulse Duplicator device (left) and schematic of the heart
anatomy (right). Arrows show how each chamber of the device
represents different parts of the heart, modeling the performance
of the left side of the heart. The left chamber of the device is where
the BHVs are mounted (as aortic valves) and tested, and where the
data are collected. Image from ViVitro Labs Inc.

in diameter, while the third was 19 mm (BHV-3). Two dif-
ferent test sessions were recorded for BHV-2, at 50 million
cycles and at 200 million cycles. The dataset thus com-
prises four different experimental cases with videos and the
associated pressure and flow data: “BHV-1”, “BHV-2-50”,
“BHV-2-200”, and “BHV-3”.

3.2. Numerical Setup

The computational domain is based on the Pulse Dupli-
cator device with some simplifications. It includes a dy-
namic valve placed inside a 3D cylinder (Figure 6a). To
emulate a valve as genuinely as possible, the geometrical
evolution of the valve orifice is taken directly from the real
cases (not modeled). Since the only source for that infor-
mation comes from the 2D camera imagery data providing
projection of the actual 3D valve on the x-y plane, we sim-
ulate a 2D valve on the x-y plane perpendicular to the flow
direction. Although this simplification may affect the flow
pattern, the overall flow symmetries (and asymmetries) are
expected to be reproduced. For each valve, we also simu-
late an equivalent ideal valve, with the orifice area equal to
that of the actual valve but with a circular shape opening,
providing an ideal symmetry. The results of those equiv-
alent valves are used to remove the trends that are valve-
independent (e.g. boundary condition effects). The working
fluid is saline with a density of ρ = 1000 kg/m3 and a vis-
cosity of µ = 0.001 Pa s. The boundary conditions include
the measured velocity and pressure at the inlet and outlet,
respectively (Figure 6b). The domain is represented with a
particle (node) size of dp = 0.035d, where d is the valve
diameter (d = 25 mm in Figure 6c, resulting in around
125,000 particles). A sensitivity analysis with respect to the
particle size shows that smaller particle sizes would have an
insignificant impact on the results. The time step size is au-
tomatically determined by the model to guarantee a stable
solution. Figure 7 shows example flow simulations through
a valve at two different moments in the cardiac cycle, in-
cluding snapshots of the simulation results (streamwise ve-
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Figure 6. Numerical setup: (a) computational domain for a valve
with a 25 mm diameter, (b) inlet boundary condition, i.e. known
velocity time series, and (c) particle representation of the computa-
tional domain. The “Valve” tag indicates the profile of the orifice,
obtained from the high-quality video.

Figure 7. Example flow simulations through a valve, with a snap-
shot of the simulation results (streamwise velocity component w,
and streamline), and velocity time series in two points (A and B).

locity component w, and streamline), and velocity time se-
ries at two example points.

3.3. Evaluation

Figure 8 shows the calculated pair-wise leaflet symme-
try DOPM and DTW score profiles along with the simu-
lated velocity and vorticity profiles for all four experimen-
tal cases. Qualitatively speaking, it is easy to see that the
DTW score profiles (second column) are closer to the ve-
locity (third column) and vorticity (fourth column) profiles
than the DOPM score profiles (first column). Indeed, ex-
cept for the BHV-1 case, the global trend of the DOPM
score profiles do not appear to follow that of the velocity
and vorticity profiles. One possible explanation is that the
DOPM score is computed locally, fragment by fragment,
and summarized via averaging, whereas the DTW score is
computed globally, which may be more appropriate in our
case. We can see that the DTW score profiles’ ranking of
the symmetry among the three leaflet pairs generally fol-
lows that found in the velocity and vorticity profiles. For
instance, for BHV-1, the A&C leaflet pair (in blue) is more

Case Leaflet DOPM- DOPM- DTW- DTW-
Pair Velocity Vorticity Velocity Vorticity

BHV-1
A&B 0.1642 0.1769 0.1288 0.2669
A&C 0.3186 0.4497 0.1678 0.4525
B&C 0.2067 0.1596 0.1044 0.2095

BHV-2-50
A&B 0.9252 0.9622 0.2258 0.2663
A&C 0.9696 1.0321 0.1713 0.1576
B&C 0.4825 0.5371 0.2510 0.1603

BHV-2-200
A&B 0.4533 0.5153 0.2152 0.2591
A&C 0.8917 1.0330 0.2995 0.3412
B&C 0.7257 0.6958 0.2024 0.1863

BHV-3
A&B 0.6383 0.5755 0.2261 0.0899
A&C 1.1504 1.1040 0.2322 0.0915
B&C 0.7252 0.6761 0.1932 0.1003

Average 0.6376 0.6598 0.2015 0.2151

Table 1. RSME values of the calculated DOPM and DTW sym-
metry scores with respect to the simulated velocity and vorticity
parameters for all four experimental cases.

visually symmetric than the other pairs, as is shown from
the lower values in the DTW, velocity, and vorticity pro-
files; for BHV-2-50, this is seen for the B&C leaflet pair
(in yellow), etc. The peaks in the DTW profiles generally
correspond to the peaks in the velocity and vorticity pro-
files, e.g. around 15 ms and 280 ms for BHV-3. We can
deduce from the DTW score profiles which leaflets cause
asymmetries in the valve motion: for instance, looking at
BHV-1 (first row, second column), leaflet B is common to
the two pairs involved in the largest scores, thus responsible
for most asymmetries, which is confirmed by the A&C pair
having the lowest score.

Figure 9 shows the DTW score profile for BHV-2-50
augmented with video frames and the corresponding valve
orifice region mask at three key locations of the cardiac cy-
cle. The scores are lower (more symmetry) when the valve
is open, and higher (less symmetry) when the valve is open-
ing and closing, as corroborated by the frames.

Table 1 quantitatively compares the graphs of Figure 8.
Lower RMSE values are preferable, with 0 indicating a per-
fect similarity of the graphs. On average, the RMSE val-
ues involving DTW are lower than those involving DOPM,
which supports our observations on Figure 8. Regarding
DOPM, BHV-1 yields the lowest RMSE values, which are
comparable to those related to DTW. For the other cases, er-
ror values are too high for DOPM to be a reliable symmetry
indicator. Regarding DTW, BHV-1 yields the lowest RMSE
values for DTW-Velocity, whereas BHV-3 is showing the
lowest error for DTW-Vorticity. Overall, DTW serves as a
good indicator of valve functional symmetry due to its low
error values, as low as 0.0899.

4. Conclusion

This paper shows that the visual symmetry of BHV
leaflets is highly correlated with the functional symmetry
of the valves. Visual reflection symmetry information, de-
rived from the shape of pair-wise valve leaflet motion, is
obtained from video data, acquired during pulsatile flow
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Figure 8. Calculated DOPM and DTW symmetry scores and simulated velocity and vorticity parameters for all four experimental cases.

Figure 9. Calculated DTW symmetry score for BHV-2-50, show-
ing frames from the high-quality video and the corresponding
valve orifice region mask at three key locations of the cardiac cy-
cle, from left to right: opening, open, and closing phases.

tests, via two different symmetry scores: DOPM and DTW.
Functional symmetry information, related to physical val-
ues such as velocity and vorticity, is obtained via numeri-
cal simulations of the cardiac cycle, using actual data from
pulsatile flow tests for the boundary conditions and effec-
tive valve orifice area. Experiments on four different cases

that include three tricuspid BHVs of various diameters have
shown that DTW score profiles are similar to the profiles
of the velocity and vorticity at the leaflet borders, much
more so than DOPM profiles. With RMSE values as low
as 0.09, the DTW score constitutes a good indicator of the
functional symmetry of the valve. This paves the way to-
wards BHV durability estimations based on computer vi-
sion methods via symmetry analyses of the leaflet motion.
Future research will look at expanding the dataset to cover
additional BHV designs, developing a unified symmetry
measuring parameter that would allow us to easily com-
pare valves with different video characteristics (frame rates,
resolution, etc.), gathering real-world (non-simulated) dura-
bility data, and utilizing DTW scores and/or a new unified
symmetry parameter to train deep learning networks to es-
timate BHV design durability based on visual symmetry.
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