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Abstract

While unlabelled data can be largely available and even
abundant, the annotation process can be quite expensive and
limiting. Under the assumption that some samples are more
important for a given task than others, active learning tar-
gets the problem of identifying the most informative samples
that one should acquire annotations for. In this work we pro-
pose a simple sample selection criterion that moves beyond
the conventional reliance on model uncertainty as proxy to
leverage new labels. By first accepting the model prediction
and then judging its effect on the generalization error, we can
better identify wrongly predicted samples. We also present
a very efficient approximation to our criterion, providing a
similarity-based interpretation. In addition to evaluating
our method on the standard benchmarks of active learning,
we consider the challenging yet realistic imbalanced data
scenario. We show state-of-the-art results, especially on
the imbalanced setting, and achieve better rates at identify-
ing wrongly predicted samples than existing active learning
methods. Our method is simple, model agnostic and relies
on the current model status without the need for re-training
from scratch.

1. Introduction
The success of deep learning relies on the availability

of large annotated data in the order of millions or more,
however, obtaining annotations for such a scale can be a
time consuming and a very expensive procedure. Besides,
in many applications, e.g., semantic segmentation, samples
are not equally important for the task being learned. Many
samples can be redundant or easily predicted and annotating
them would be a waste of resources. With the goal of improv-
ing the data labelling efficiency, active learning is a sub-field
of machine learning that aims at identifying the most infor-
mative data points in a stream or a large pool of unannotated
samples. Those identified samples are then annotated and
added to the existing training set, which would contribute
to a substantial performance gain upon retraining, a process
that can be repeated until reaching a certain level of perfor-

mance or consuming the annotation budget. A large body
of research has been dedicated to active learning (see [21]
for a survey), however, a need emerged for active learning
methods targeting deep models. In this regard, methods for
selecting labelling candidates rely either on the uncertainty
in their current predictions [6, 25, 7] or on how representa-
tive the selected candidates are to the rest of the samples [20],
or, alternatively, how different selected samples are from the
current training data [24]. The last two methods [24, 20]
show state-of-the-art results when extracting large batches
of samples from balanced pools of unannotated data. How-
ever, the first requires solving a mixed integer optimization
problem over all pool samples and the later trains a VAE and
a discriminator on the pool and training samples prior to the
selection process. As such, practitioners usually resort to the
uncertainty sampling [6, 25, 7], however training a Bayesian
neural network or at least a network with dropout layer(s)
is still required which might not always be applicable or
favorable. In this work, we are interested in developing a
lightweight model agnostic sample selection method. We
suggest that informative samples are those that the current
trained model has predicted their output (label) wrongly and
by acquiring their true labels, the model will gain access to
new bits of knowledge. Now the question we aim at answer-
ing is if there is a better way of pointing at wrongly predicted
samples other than the model uncertainty. We propose to
identify those wrongly predicted samples by first hypoth-
esizing that the model prediction is correct and attempt at
increasing the confidence of the model in its initial predic-
tion. We then measure the effect of this hypothesis on the
model performance on a small holdout set. As increasing
the confidence on wrong predictions would harm the model
performance in contrary to correct predictions, we use the
relative change in the model performance (or alternatively
the error) as a criterion for selecting samples that are likely
to be wrongly predicted. Our method is generic, efficient
and requires no changes on the current model.
Aside from these aspects, we point that active learning meth-
ods have been mostly tested in settings where the pool of
unannotated samples is artificially balanced over the differ-
ent categories as in the case of most standard datasets. This
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assumption is unrealistic in many cases and hides the po-
tential of the different approaches, e.g., random sampling is
only outperformed by a small margin. We argue that real
life applications often face the problem of imbalanced set
of samples and the condition where samples are balanced
among different classes is solely met in existing benchmarks.
In this paper, we consider the challenging setting of imbal-
anced pool of unannotated samples where not all categories
are equally represented. We show that random selection is no
longer a competitive baseline and requires significant extra
amount of annotations in comparison to our method which
targets regions where most mistakes occur and surpasses the
imbalanced nature of the data.
Our contributions are as follows: 1) we propose a novel
approach for sample selection based on their plausibility
of being wrongly predicted by the current trained model.
2) We present an approximated variant of our method and
demonstrate an interesting link with kernel based similarity
measures, here from the trained model perspective. 3) We
achieve state-of-the-art results especially on the realistic yet
challenging imbalanced setting. In the following, we discuss
closely related works in Section 2 and describe our proposed
approach in Section 3. We evaluate our method on image
classification problem, Section 4.1 and semantic segmenta-
tion problem, Section 4.3, we conclude in Section 5.

2. Related Work
In this paper, we consider a pool-based active learning

setting, where annotation candidates are selected from a
big pool of unlabelled data [21]. Under this setting, most
dominant lines of work focus either on identifying current
uncertain samples or a set of diverse and representative sam-
ples [5]. In contrast, our work comes closest to approaches
that aim at selecting samples which, once annotated, would
have the largest effect on the trained model. These include
largest expected model change (LEMC) and expected er-
ror reduction (EER) methods. A prominent example of
LEMC methods, EGL [22], selects samples based on an ap-
proximation to the expected value of the sample’s gradient
given the current predicted output distribution. Samples with
largest gradient magnitude are selected for annotation. In
our method approximation we do not depend only on the
loss gradient’s magnitude, but also on the angle between the
loss gradient estimated on a pool sample and that estimated
on a holdout set. Instead of estimating the model change
by the expected gradient length, variance reduction meth-
ods [11, 12] aim at implicitly reducing the generalization
error by selecting candidates that would minimize the model
output variance through the reliance on Fisher information.
Closer to our approach, EER methods, estimate explicitly
how much the generalization error will be reduced as in [19].
For each candidate, the model is trained on each possible
label and the generalization error is computed on other pool

samples, approximated with the current model output distri-
bution and further averaged over the different possible labels
of the candidate. In our work, we also aim at reducing the
generalization error of the model when the selected samples
are correctly annotated, however, we select samples that
affect most negatively the generalization error when using
their current predicted labels as ground truth. We use this as
a proxy to identify wrongly predicted labels. Aside from the
novel deployed criterion, in this work, we introduce a series
of steps to make such approaches applicable to deep learning.
Instead of estimating an expectation of the loss on the pool
set, we deploy the typically required validation set to esti-
mate the generalization error and instead of considering all
possible labels while estimating the expected model update
we rely on pseudo labels. More importantly, we present an
efficient approximation and show how our criterion can be
interpreted as selecting samples that are dissimilar to those
in the holdout set.
When considering active learning methods designed for
deep learning, several paradigms have emerged such as un-
certainty based sampling [6, 7, 14], representation based
sampling [20, 24] and query by committee using ensemble
of models [8, 23]. Uncertainty based methods are closer
in nature to our approach. Gal et al. in [6] showed that
MC-Dropout can be used to perform approximate Bayesian
inference in deep neural networks, and applied it to high-
dimensional image data in [14] to estimate uncertainty as a
selection criterion. [25] combine the obtained annotations of
uncertain samples and the pseudo labels of the most certain
samples. Our approach moves beyond uncertainty by select-
ing samples that are likely to be wrongly predicted through
deploying pseudo labels as a proxy to estimate the change in
generalization error. Very recently, [1] propose to rely on
the gradient magnitude as a measure of uncertainty while se-
lecting diverse candidates. In our approximation, we operate
in the gradient space where not only the magnitude of the
gradients is in effect but also the angle with the holdout set
gradient.

3. Our Approach
We consider the pool based active learning setting where

access is only assumed to a small initial set Xt of labelled
training data along with a much larger set of unannotated
data Xp (pool). The active learning method M should iden-
tify a set of K most informative samples Xa to be annotated
and added to the training set which should contribute to a
maximal gain in the trained model performance. K is the
size of the annotation step s. This process can be repeated
until reaching a certain performance level or exhausting an-
notation resources with S annotation steps performed. Given
a model parameterized by θ, we want to learn a function
f(x; θ) that maps the input data x to their corresponding la-
bels y. We start by training the model on the initial training
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Figure 1: Illustration of the main idea of our approach (best viewed in color). (a) Shows the initial training set in blue, the validation
set in gray, used here as a holdout set, and the pool samples (circles) in addition to the current learned decision boundary. The two pool
samples (with ground truth of negative labels) are uncertain with one (in green) correctly predicted and the other (in red) wrongly predicted.
(b) Illustrates how the decision boundary would move if we make small training step(s) with the prediction of the red pool sample as a
true label, while (c) illustrates the effect of utilizing the correctly predicted output of the green pool sample instead. Using the (wrongly
predicted) label of the red pool sample would harm the generalization performance as some correctly predicted samples will be misclassified
as opposed to minimizing the loss on the correctly predicted sample. Hence, our method selects the red point for annotation in order to
obtain its correct label. Finally, (d) shows the decision boundary after adding the newly annotated sample to the training set.

set Xt, considered as a starting step s = 0:

θs = arg min
θ

ℓ
(
f(Xt; θ), Y t

)
. (1)

The goal is to estimate each pool sample’s utility, which is
related to the amount of information conveyed when pairing
the sample with the correct output. Providing already known
labels might not be beneficial compared to correcting current
mistakes. While a popular line of works [6, 25, 7] rely on
uncertainty, we argue that a model can be uncertain about a
sample and yet predict its output correctly. In this work, we
propose a new method to spot wrong predictions.

We consider a standard classification problem, where the
target class y is estimated from the model output f(x; θ).
Starting from the initial predictions of the model, the entropy
of these predictions can be used as a measure of uncertainty.
Minimizing this entropy, which is usually deployed in unsu-
pervised or semi-supervised learning [9, 2, 10], would push
the prediction towards the most probable label and suppress
other labels probabilities. Assume that the predicted label is
correct, then maximizing the confidence in this prediction
through maximizing the log-likelihood of the predicted label
or alternatively minimizing the cross-entropy loss using the
first predicted label as a pseudo label could help improving
the model performance. However, if the initial model pre-
diction is wrong, then minimizing the loss on a wrong label
could harm the model performance as we are injecting false
information in the model. We use this reasoning as a base
for designing a measure to select wrongly predicted samples.
Figure 1 illustrates the main idea behind our approach.
Formally, for each candidate sample xp

i ∈ Xp, we first ob-
tain its prediction ŷi by the current model (with θ = θs). In
unsupervised learning methods, ŷi can be seen as a pseudo
label and used to train the model [17]. Here, we first assume
that the prediction given by the pseudo label ŷi is correct

and through minimizing the loss ℓ on the current sample xp
i

given the pseudo label ŷi we obtain θpi as:

θpi = arg loc minθ,θs ℓ (f(x
p
i ; θ), ŷi). (2)

Here arg loc minθ,θs denotes the argument-result of the lo-
cal minimization w.r.t. θ starting from θs. Now, as explained
earlier, our hypothesis suggests that if the current model pre-
diction is wrong, the minimization of the model loss given
that prediction as a target label would harm the model per-
formance. This can be due to moving the decision boundary
in the wrong direction or to relying on a feature that is ap-
parent or representative of another category. We use this
rule as a proxy to identify the samples that are likely to be
wrongly predicted. We propose to select samples using the
estimate of the change in the model generalization error, i.e.,
the change in the model prediction error on unseen samples:

S(xp
i ) = ℓ (f(Xv; θpi ), Y

v)− ℓ (f(Xv; θs), Y v) . (3)

To measure the generalization error, we employ a small
set Xv, this can be a small holdout set or the validation set
used for setting hyper-parameters and estimating the model
performance. We then select K samples with largest values
of S and request their annotations. The newly labelled data
are to be added to the training set on which the model will
be trained again and then a new active learning step can be
carried out. It can be noted that in general the last K samples
whose updated model loss decreases are likely to be correctly
predicted by the current model and could be combined with
the training pool to be learned in an “unsupervised” manner
as in [25].
To summarize, instead of relying only on the model uncer-
tainty to find the annotation candidates, we use the change

98782292



in the generalization error on a holdout set to identify the
wrongly predicted samples.

3.1. First Order Approximation

Our criterion involves an estimation of the updated model
loss on a holdout set after the loss minimization on each pool
sample given its pseudo label. As we shall see in the experi-
ments, Section 4.1, the holdout set can be very small and its
loss can be estimated in one forward pass. Nonetheless, to
account for scenarios with extreme constraints on computa-
tional cost and more importantly to gain better insights on
the proposed method behaviour, we analyze and present an
approximation to the selection criterion in (3). Let’s define:

ℓv(θ) = ℓ (f(Xv; θ), Y v) =
∑
j

ℓ
(
f(xv

j ; θ), y
v
j

)
. (4)

Then (3) can be rewritten as follows:

S(xp
i ) = ℓv(θ

p
i )− ℓv(θ

s). (5)

We expand the first term about θs using first order Taylor
series approximation.

ℓv(θ
p
i ) ≈ ℓv(θ

s) +∇θℓv(θ
s) · (θpi − θs) , (6)

where ∇θℓv(θ
s) denotes the gradient of ℓv(θ) w.r.t. the

parameter θ at point θ = θs. Instead of doing local op-
timization of the loss (mentioned in (2)), we propose to
estimate θpi by a single step of gradient descent from θs with
a learning rate η and the loss gradient estimated at sample
xp
i :

θpi ≈ θs − η∇θℓ(f(x
p
i ; θ

s), ŷi). (7)

Then, using this estimate in the right-hand part of (6), we
obtain:

ℓv(θ
p
i ) ≈ ℓv(θ

s)+∇θℓv(θ
s)·(θs − η∇θℓ(f(x

p
i ; θ

s), ŷi)− θs)

= ℓv(θ
s)− η∇θℓv(θ

s) · ∇θℓ(f(x
p
i ; θ

s), ŷi), (8)

S(xp
i ) ≈ ℓv(θ

s)−η∇θℓv(θ
s)·∇θℓ(f(x

p
i ; θ

s), ŷi)−ℓv(θ
s)

= −η∇θℓv(θ
s) · ∇θℓ(f(x

p
i ; θ

s), ŷi). (9)

The positive constant η in (9) has no influence on the order of
xp
i sorted by decreasing S(xp

i ), and, therefore, can be simply
dropped. We propose the following alternative criterion and
consider both criteria in the experiment Section 4.1.

Sa(x
p
i ) = −∇θℓv(θ

s) · ∇θℓ(f(x
p
i ; θ

s), ŷi). (10)

The estimation of the selection criterion Sa(x
p
i ) does not in-

volve the loss minimization of (2) as in the original criterion
S(xp

i ), but uses only the estimation of the pool sample gra-
dient. It also replaces the estimation of the holdout set loss
in (3) for each pool sample with a single prior computation
of the loss gradient on the holdout set.

3.1.1 A Similarity Based Interpretation

Here we want to present our criterion as a measure of dis-
similarity between a given pool sample and samples of the
holdout set based on the currently trained model. Let’s define
the following kernel:

Kθ(xi, xj) = ∇θℓ(f(xi; θ), yi) · ∇θℓ(f(xj ; θ), yj). (11)

Each term in (11) can be expanded using the chain rule as
follows:

∇θℓ(θ) = (∇θf(xi; θ))
⊺
ℓ′, (12)

where ℓ′ ∈ RC denotes the derivative of ℓ w.r.t. f(xi; θ),
and ∇θf(xi; θ) ∈ RC×P with C the number of categories
and P the size of the parameter vector. The kernel can be
written as follows:

Kθ(xi, xj) = ((∇θf(xi; θ))
⊺
ℓ′) · ((∇θf(xj ; θ))

⊺
ℓ′) . (13)

This kernel is related to the Neural Tangent Kernel
(NTK) [13], KNTK(xi, xj) = ∇θf(xi; θ) · ∇θf(xj ; θ),
studied from an optimization point of view in the infinite
width limit; it describes how changing the network function
at one point affects its output on another. A kernel similar
to NTK was proposed in [3] to measure the similarity be-
tween samples from a trained network perspective for dataset
self denoising. In the same study it was shown that from
∇θf(xi; θ) = ∇θf(xj ; θ) follows f(xi; θ) = f(xj ; θ), and
samples with dissimilar features have orthogonal gradient
directions and kernels value close to zero. The kernel, de-
fined in (13), considers additionally the gradient of the loss
function accounting for the sample/label pair. For example,
in the case of a cross-entropy loss, we have Kθ(xi, xj) =
(∇θf(xi; θ)

⊺ (pi − yi)) · (∇θf(xj ; θ)
⊺(pj − yj)) with yi

here constructed as a one-hot label vector and pi the out-
put probability, which can be seen as weighting the function
gradient by the difference between the predicted class prob-
abilities and the target/pseudo labels. See supplementary
materials for details on the derivation.
Finally, given that ∇θℓv(θ) =

∑
j ∇θℓ(f(x

v
j ; θ), y

v
j ), where

j is the index of the holdout samples, our approximated cri-
terion can be rewritten as follows:

Sa(x
p
i ) = −

∑
j

Kθ(x
p
i , x

v
j ). (14)

Following that, our criterion allows to select the samples that
are dissimilar to those in the holdout set according to the
kernel defined in (11).
Binary classification example. Let us demonstrate the
proposed sample selection method on a binary classifi-
cation problem employing a single-layer neural network
parametrized by θ. Assume the input to the network is a
feature vector ϕ(x) ∈ Rn

≥0 extracted from a sample x with a
fixed (non-trainable) feature extractor ϕ. The function being
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learned is fθ(ϕ(x)) = θ⊺ϕ(x). By defining z = fθ(ϕ(x)),
and the loss ℓ(z, y) = −y log(σ(z))−(1−y) log(1−σ(z)),
where y ∈ {0, 1} is the binary label, and σ(z) = 1

1+e−z ; the
gradient of the loss w.r.t. θ can be derived using the chain
rule:

∇θℓ(z, y) =
∂ℓ(z, y)

∂θ
=

∂ℓ

∂σ

∂σ

∂z

∂z

∂θ
= (σ(z)− y)ϕ(x).

(15)
Following this definition, our criterion for selecting pool
samples is:

Sa(x
p
i ) = −

∑
j(σ(z

p
i )− ŷi)ϕ(xi) · (σ(zvj )− yvj )ϕ(x

v
j ).

(16)
Let us analyze the kernel value w.r.t. a pool sample xp

i and
a sample from the holdout set xv

j .

(17)Kθ(x
p
i , x

v
j ) = c ϕ(xp

i ) · ϕ(x
v
j ),with scalar c

= (σ(zpi )− ŷi)(σ(z
v
j )− yvj ).

Consider the following cases: 1) the feature vectors ϕ(xp
i )

and ϕ(xv
j ) are different and ϕ(xp

i ) · ϕ(xv
j ) ≈ 0, resulting in

Kθ(x
p
i , x

v
j ) ≈ 0; 2) xp

i and xv
j are close in the feature space

and ϕ(xp
i ) · ϕ(xv

j ) ≫ 0. In the latter case, either ŷi ̸= yvj
and c < 0, causing Kθ(x

p
i , x

v
j ) ≪ 0 (case 2a), or ŷi = yvj

and c > 0, leading to Kθ(x
p
i , x

v
j ) ≫ 0 (case 2b). Therefore,

if xp
i differs significantly from all holdout samples (case 1),

then Sa(x
p
i ) ≈ 0. However, if xp

i is similar to some holdout
samples and it is predicted incorrectly (case 2b), then Sa(x

p
i )

is likely to be positive, otherwise, when the prediction is
correct (case 2b), the corresponding Sa(x

p
i ) is likely to be

negative. Consequently, the pool samples from both former
cases would get greater (than the samples from the later
case) values of the selection criterion and, therefore, will be
selected for annotation.
In a nutshell, our method aims at selecting pool samples
that differ from the holdout samples firstly in their (probably
wrongly) predicted label or in their feature representation.

4. Experiments
To evaluate the effectiveness of our approach in various

active learning scenarios, we perform a wide set of experi-
ments on both image classification (Section 4.1), and image
segmentation (Section 4.3).

4.1. Image Classification

We first describe the details of our experiments:
Datasets. We consider MNIST [16] dataset for handwritten
digit recognition, KMNIST [4] an MNIST style dataset for
Kanji characters composed of 10 classes, SVHN [18] Google
street view house numbers dataset and CIFAR10 [15].
Compared methods. - Random: a random subset of the
pool is selected for annotation at each step.
-Err-Reduction [19]: an implementation of the error re-
duction approach using pseudo labels and error estimation
on subset of the pool.

- MC-Dropout [6]: uses as a criterion the model uncer-
tainty of each pool sample.
- Coreset [20]: selects a set of representative samples cov-
ering the rest of the pool. The method presents a mixed
integer programming solution and a greedy alternative that
is only 1− 2% inferior, we employ this efficient alternative.
- BALD [7]: it is based on the mutual information between
the prediction and the model posterior.
-BADGE [1] selects diverse and uncertain samples in a gradi-
ent space of pool samples based on their the pseudo labels.
Implementation. We deploy a two-layer fully connected
network for MNIST and KMNIST datasets, and ResNet18
for SVHN and CIFAR10. All methods were trained using
ADAM with early stopping on the validation set. We don’t
retrain the model from scratch after each annotation step,
we rather continue training the model and only reset the
optimizer parameters. This makes more sense since the new
samples are selected based on a criterion linked to the pre-
viously trained model. We apply this to all methods and
observe consistent improvement. For our method, Identi-
fying Wrongly Predicted Samples, we consider both the
criterion in (3) and refer to it as IWPS, and the first order
approximation criterion in (10) and refer to it as IWPS-app.
We use the initial validation set as a holdout set to estimate
the criterion of both IWPS and IWPS-app. Note that in our
experiments we keep the validation set fixed to the initial
setting while in practice one can augment it as new labels
are obtained. We limit the optimization of the loss in (2) to
the last layer parameters and similarly for the gradients esti-
mation of (10) of IWPS-app criterion. This has a valuable
advantage computationally and shows no significant effect
on the performance, see supplementary materials . The mini-
mization of (2) in IWPS is performed with SGD and limited
to 3 iterations with learning rate η = 10−3 on the fully
connected model and η = 10−4 on ResNet. We report the
average of 10 runs with different random seeds along with
the standard deviation. We refer to the supplementary ma-
terials for a discussion on the computational cost of IWPS
and IWPS-app. Note that our IWPS-app has a cost of
approximately one forward pass, the best computation cost
after the random selection baseline.

4.1.1 Identifying Wrongly Predicted Samples

A main question of this work is if there is a better way
in identifying wrongly predicted samples than the conven-
tional use of uncertainty. Those wrongly predicted pool
samples, which, once identified and annotated, should im-
prove the model performance, as it is being trained on previ-
ously unknown cases. We first validate how well our method
can do that by inspecting the percentage of selected sam-
ples with wrong predictions in comparison to BALD and
MC-Dropout. Table 1 reports the wrong predictions rate
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Figure 2: Mean accuracy and std.dev. for (a) MNIST, (b) KMNIST and (c) SVHN on balanced setting.

among the selected samples at the indicated steps based on
MNIST benchmark. Both our criteria are best at picking
wrongly predicted samples, with IWPS achieving a higher
mistake selection rate, 10%–20%, than others.
Having shown this, we next study the active learning perfor-
mance of our selection criteria compared to other methods.

Step 1 Step 5 Step 10
BALD 72.2% 57.6% 56.6%

MC-Dropout 70.4% 62.2% 60.6%
IWPS-app 91.8% 67.2% 62.0%

IWPS 90.0% 74.0% 70.0%
Table 1: Percentage of wrong prediction among selected samples,
on MNIST with 50 initial train and 50 annotation step.

4.1.2 Balanced Setting

The used datasets are standard in the field and they are com-
posed of a similar number of samples per category. As such,
the pool and the randomly sampled initial training set rep-
resent equally each category. We refer to this setting as
balanced setting. Here, we use a validation set of the same
size as the initial training set. Each active learning round
is composed of 10 annotation steps with each step being
10% of the initial training set size. The initial training set
size is relative to each dataset difficulty and the amount of
samples needed to obtain a reasonable initial performance.
We use the following initial sizes 50, 100, 500, 5000 for
MNIST, KMNIST, SVHN and CIFAR10 respectively. Fig-
ures 2a, 2b, 2c and 4a report the accuracy of the compared
methods after each annotation step on MNIST, KMNIST,
SVHN and CIFAR10 datasets respectively. See supplemen-
tary materials for more results. While most methods improve
over random sampling, the margin of improvement is limited
(2%–3%). When considering all the studied datasets, our pro-
posed method IWPS and its approximation IWPS-app per-
form similarly to BALD, MC-Dropout, and BADGE. Our
IWPS-app is the fastest to compute, as discussed in the
supplementary materials.

4.1.3 Imbalanced Setting

In the standard balanced setting, Random appears to be a
competitive baseline and only outperformed by a small mar-
gin as also shown in [24]. Here, we argue that random sam-
pling cannot be taken for granted as a competitive method
in the cases where there are dominant categories that are
not of much importance to the task at hand as opposed to
the under-represented ones. For example, in autonomous
driving applications most images contain examples of road,
sky or buildings, but other categories like cyclists or trains
are much less frequent. We simulate this scenario by con-
structing a pool of samples in which half of the categories are
under-represented with number of samples equals to 1/10 of
other categories samples (base number of samples per class).
Since the compared methods start with initial training set,
we also construct this set with the same imbalanced setting.
Regarding the validation set, we keep it balanced but limit its
size to 1/5 of the initial training size, note that the test set on
which we report the accuracy remains balanced. We apply
this setup to the 4 studied datasets. As this is a much harder
setting, for each dataset we double the base class size of the
initial training set compared to the expected per category
size in balanced setting, we also double the annotation step
size.
Figures 3a, 3b, 3c, 4b report the test accuracy of each of
the compared methods after each annotation step on the de-
scribed imbalanced setting of MNIST, KMNIST, SVHN and
CIFAR10 respectively, see supplementary materials for more
results with larger imbalanced rates and different annotation
steps. This setting shows larger differences between the
compared methods. It is clear that Random baseline fails to
compete here, for example, on MNIST IWPS with only 5 an-
notation steps achieves the same accuracy of Random after
10 annotation steps. This is an important reduction of half
of the annotation resources. Uncertainty and information
based methods BALD, BADGE and MC-Dropout continue
to improve over Random with a larger margin in this setting.
Coreset, in the contrary, has consistently lower perfor-
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Figure 3: Mean accuracy and std.dev. for (a) MNIST, (b) KMNIST and (c) SVHN on imbalanced setting. Our IWPS & IWPS-app show
significantly better performance.

mance, we think that this method is more suitable for extract-
ing much larger batches of data. Our method IWPS achieves
the best performance on MNIST, KMNIST and SVHN set-
tings. We believe that this is a significant improvement that
shows our method ability to identify those underrepresented
categories where most mistakes occur, and thereof selects
most informative samples contributing to higher gains in the
trained model performance. Notably, IWPS is constantly
outperforming Err-Reduction. This indicates that using
the largest generalization error as a proxy for identifying
wrongly predicted samples provides the model with previ-
ously unknown knowledge and results in a larger reduction
of the newly trained model generalization error than when
aiming at explicitly reducing it.
For CIFAR10 dataset, all methods perform closely; we think
it is due to the low intra class similarity of this dataset which
reduces the potential impact of the individual selected sam-
ples. IWPS-app improves over other methods on MNIST,
KMNIST and SVHN benchmarks with slightly less margin
than IWPS and achieves comparable performance on CI-
FAR10. This is still outstanding given its low complexity
compared to other competitors.

4.2. Ablation

Having shown the effectiveness of our method especially
on the important case of imbalanced data pool, in this section
we discuss our design choices e.g., the holdout set selection
and size.

4.2.1 Holdout Set Size

Our criterion is based on the generalization error of the
model f(x; θ), for θ = θpi – the updated parameters of
each pool sample, estimated on a holdout set regarded as
representative of the different concepts (categories). In the
previous experiments, we have used the validation set for
estimating our selection criterion. In this section, we study
the effect of the used set choice on the behaviour of our
selection criteria. We first answer the question of how many

samples are needed for our method to make a reasonable
selection. Figure 5a reports the performance of IWPS on
imbalanced SVHN benchmark for different sizes of the hold-
out set (1 − 40) per class, see supplementary for MNIST
imbalanced and balanced setting. However, there are no
significant differences for larger sizes. As it can be seen,
only the very smallest holdout set sizes decay our method
performance. This empirical evidence suggests that with
only few samples (> 2) per class, our method can reach its
best performance and, in spite of the important role of this
holdout set, its size does not affect significantly the perfor-
mance of our method. While one would expect that the more
complex the ground-truth concept is the more holdout data
is needed to estimate the generalization error; we argue that
this is also the case of the typically deployed validation set.
We indeed require similar and even smaller size to rank the
pool samples than what needed to tune the hyper-parameters
of a deep neural networks. We should note that each class is
required to have a representative sample(s) and when a cat-
egory is under-represented or over-represented, this would
affect its contribution to the generalization error estimation
and hence the ranking of the pool samples.

4.2.2 Holdout Set Alternative

The next discussion point is whether a subset of the training
set instead of a holdout set can be used for the error change
estimation. Here, the error will no longer be a generalization
error. However, the interpretation of the selection criteria
behaviour is still valid. Pool samples will be selected if
utilizing their pseudo labels as ground-truth would harm
the performance on seen data here instead of holdout data.
Following our approximation criterion discussion, samples
different from those in the training set either in their pre-
dicted labels or features, will be selected first. We examine
our methods’ (IWPS and IWPS-app) performance change,
when deploying a random subset of the training data in the
selection strategy instead of a holdout set.

Figure 5b reports on SVHN imbalanced setting the per-
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Figure 4: Mean accuracy and std.dev. for (a) CIFAR10 balanced setting and (b) CIFAR10 imbalanced setting. (c) Semantic segmentation
results, mIoU and std.dev. on Cityscapes.
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Figure 5: Top (5a) holdout set size ablation, bottom (5b) reports
the performance when using a training subset vs a holdout set, both
on the imbalanced SVHN setting.

formance of our both variants when using a holdout set
(IWPS, IWPS-app) and when using a subset of the train-
ing data (IWPS-OnTrain, IWPS-app-OnTrain). The
performance suffers from a small drop 1− 2% when using
the training set. Empirically, it seems that our method can
still select informative samples even when only relying on
the same training samples for estimating the criteria. In sup-
plementary materials we report the use of a training subset
in other benchmarks. The only noticeable performance drop
was on Imbalanced MNIST. It is a simple dataset and the
training error can get to zero ℓv(θ

s) → 0 which would lead
to a close to zero norm of the training subset gradient and a
noisy direction, thus hindering our selection criteria.

Finally, we note that the use of validation sets is unavoid-
able with deep neural networks as other strategies are pro-
hibitively expensive and that deep learning based AL works
usually deploy relatively big validation sets.

4.3. Semantic Segmentation Experiment

In the previous experiments, each sample has only one
possible true class. We are interested in the case were each
sample contributes to multiple and possibly conflicting hy-
potheses, thus we consider semantic segmentation.
We mainly compare to Random and MC-Dropout de-
scribed previously, Section 4.1. For IWPS and IWPS-app:
we only optimize the parameters or compute the gradients on
the last two convolutional layers. We adapt IWPS to the case
where an imperfect model produces both correct and incor-
rect predictions for one sample. We average pixel predictions
S (3), where ℓ (f(Xv; θpi ), Y

v) > ℓ (f(Xv; θs), Y v) holds,
and by doing so we only consider the subset of the frame
that indicates that the model has been negatively impacted
by the pool sample. See supplementary for further details
and results. Fig. 4c shows the mean Intersection over Union
(mIoU) after each annotation step. IWPS and MC-Dropout
performs closely, with IWPS having slightly higher mIoU
scores towards the end.

5. Conclusion

We propose a new solution to the problem of active learn-
ing that first accepts the hypothesis of the current model
prediction on each pool sample and then judges the effect of
increasing this hypothesis confidence on the performance on
a holdout set. We use the change in the model generalization
error as an indication of how likely the prediction of a given
sample is to be mistaken. We further develop an approx-
imation of our selection criterion and show that it targets
sample/prediction pairs that are dissimilar to those in the
holdout set from the current model perspective. We evaluate
our approach on several benchmarks and achieve compara-
ble performance to state-of-the-art methods. Additionally,
we setup for the first time a systematic comparison on the
more realistic imbalanced setting where we show significant
improvements. Our method is computationally efficient and
requires no changes on the available model. As a future
work, we will explore possible alternatives to the holdout set
in the case of very low data regime.
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