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Abstract

In typical computer vision problems revolving around
video data, pre-trained models are simply evaluated at test
time, without adaptation. This general approach clearly
cannot capture the shifts that will likely arise between the
distributions from which training and test data have been
sampled. Adapting a pre-trained model to a new video en-
countered at test time could be essential to avoid the poten-
tially catastrophic effects of such shifts. However, given the
inherent impossibility of labeling data only available at test-
time, traditional “fine-tuning” techniques cannot be lever-
aged in this highly practical scenario. This paper explores
whether the recent progress in test-time adaptation in the
image domain and self-supervised learning can be lever-
aged to adapt a model to previously unseen and unlabelled
videos presenting both mild (but arbitrary) and severe co-
variate shifts. In our experiments, we show that test-time
adaptation approaches applied to self-supervised methods
are always beneficial, but also that the extent of their effec-
tiveness largely depends on the specific combination of the
algorithms used for adaptation and self-supervision, and
also on the type of covariate shift taking place.

1. Introduction

Most modern computer vision applications follow the
general two-steps paradigm of first training a model on a
large dataset and then deploying it on unseen test data.
However, the majority of these applications are still de-
signed under the assumption that training and test data have
been sampled from the same distribution. As this assump-
tion is frequently violated in the real-world, the applicabil-
ity of these models can often be very limited [11, 30] It
is thus important to seek strategies for adapting pre-trained
models to the test data. However, supervised fine-tuning
on the domain from which the test data has been sampled
from is often unfeasible. Even if the distribution from which

the test data has been sampled from is accessible, labelling
can be cumbersome and expensive. This issue is particu-
larly relevant for video tasks, which often require per-frame
pixel-wise labels (e.g. [9, 29]). Nonetheless, videos contain
a wealth of information, especially if we assume that some
(unlabelled) frames from the test distribution are available
before actually performing the evaluation. Consider the
practical case in which a drone for aerial photography is
deployed in an unseen environment; a snowy weather for
instance. It is then reasonable to assume that the first few
seconds of its unlabelled video feed can be used to adapt its
models to the surroundings in which it will soon be oper-
ating. Intuitively, collecting unlabelled sample videos from
the new domain is a significantly simpler task than obtain-
ing labelled data.

In this paper, we explore how unlabelled video data can
be exploited in order to adapt pre-trained models to the
distribution to which the test set belongs. Self-supervised
methods are of particular interest for our scenario, as their
objective allows for “fine-tuning without labels”. In our
evaluation, we address the task of video object segmenta-
tion, also known as dense tracking [6], as it has often been
used to compare self-supervised methods trained on video
data [42, 19, 15]. In this task, the pixel-wise mask of the
target object is provided at test time in the first frame of the
video, and the goal is to track the object of interest through-
out the video sequence by providing per-frame masks.

Beside not having access to labelled data from the test
distribution, in our experiments we consider another im-
portant condition: We assume to have received an already-
trained model, and to not have access to neither its train-
ing routine nor to the data it has been trained with. This
scenario is becoming increasingly important This scenario
has recently become of great interest because of the increas-
ingly prohibitive cost of training large-scale state-of-the-art
models [4].

Recently, several works in the image domain have stud-
ied a (de facto) similar setup under the name of test-time
adaptation. [26, 33, 37, 43]. However, these methods of-
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ten rely on batch normalisation and implicitly assume the
availability of batches with elements sampled i.i.d. from
the test distribution to be used for adaptation. In contrast,
when adapting the model with data originating from a video
stream like in our case, this assumption is inevitably vio-
lated. In this paper, we re-purpose several test-time adapta-
tion methods used in the image domain and experiment to
which extent they can be useful with video data. In particu-
lar, we are interested in evaluating how well we can exploit
unlabeled videos by using self-supervised objectives for im-
proving the test performance on the downstream task. To
this end, we investigate two distinct scenarios of arbitrary
and severe domain shift. In the former case, we perform the
test-time adaptations on unseen videos, whose originating
distribution may differ from the distribution of the training
data in arbitrary and unknown ways. In the latter, we impose
severe (but controlled) domain shifts by artificially adding
perturbations to the video frames.

In summary, the contributions of this paper are two-fold:
First, we introduce a problem formulation to investigate the
potential of using unlabeled video data for test-time adap-
tation in a self-supervised manner. Then, we perform an
extensive evaluation to understand the behaviour of current
state-of-the-art dense tracking methods in presence of sev-
eral types of domain shifts and the impact of test-time adap-
tation in alleviating their detrimental effects.

2. Related Work
Unsupervised Domain Adaptation addresses a setup

where the labeled data from a source domain and unlabeled
data from a target domain are available during the training
phase. The goal is to maximize the performance on the tar-
get domain [45]. In this regard, [36, 13, 18] propose fea-
ture alignment and adjusting the statistics of the source and
target data distributions by applying linear transformations
on the source features to lessen the impact of domain shift.
Carlucci et al. [8] develop domain alignment layers that ap-
ply domain-specific operations and align the features from
the source and target distributions to a reference and can be
embedded in any network. Similarly, [28] introduces a mo-
ment matching component for multi-source domain adapta-
tion, which is responsible for adapting the input domains to
a target distribution. [38] employs a feature-wise transfor-
mation layer which learns the parameters of a linear oper-
ation and modulates the activations and adapt them to the
target task/domain. In a different setup, Liang et al. [24]
suggest an effective transfer learning approach in a scenario
where a pre-trained model is to be adapted to a target do-
main without having access to the source data.

Domain Generalization considers a more general sce-
nario where the target data distribution is unavailable dur-
ing training [48]. The goal is to improve the performance
on the target domain with a focus on enhancing the train-

ing process. In this respect, [7] proposes a multi-task setup
and shows that training together with the auxiliary task of
solving the jigsaw puzzle [27] improves the generalization
to unseen domains. [23] proposes a meta-learning approach
in which the objective for improving the generalization is
learned itself, in contrast with methods that utilize manually
designed loss functions [25, 3]. Several works have studied
this aspect in an attempt to accustom the normalization layer
to the target distribution [22, 26, 33, 34, 47, 5]. For exam-
ple, [47] develops a domain-invariant normalization layer
for stereo-matching by normalizing the features along the
spatial and the channel dimensions to enforce the domain
invariance in the learned representation while [34] proposes
a domain-specific normalization layer for multi-source do-
main generalization by combining batch normalization [14]
with instance normalization [39] where the combination
weights are learnable parameters of the network.

Test-time Adaptation unlike the previously mentioned
methods, performs domain generalization by learning from
the data available at test time. In this respect, Sun et al.
[37] propose a multi-task setup using supervised and self-
supervised objectives where the auxiliary loss is used to fur-
ther finetune the network during inference. In [43], the au-
thors utilize entropy minimization [10, 35, 32, 31] to mod-
ify the modulation parameters of the BN layer to mitigate
the impact of covariate shift between the training and test-
ing data distributions and [26, 33, 22] suggest updating the
normalization statistics of the BN layer as an effective way
for adapting the features to the target domain. In this work,
we build on test-time adaptation approaches, as we adapt
the pre-trained models to the new unseen domains in video
data. More details on our problem definition can be found
in Section 3.1.

Dense Tracking also known as video object segmen-
tation is the task of pixel-wise tracking a target object
where the mask of the first object appearance is provided
[6, 2, 1]. In recent years there has been a surge of in-
terest in self-supervised methods for different applications
[16], including correspondence matching and dense track-
ing. One of the earliest works in the deep learning-based
methods for self-supervised correspondence learning was
[42]. In this approach, the authors show that the feature em-
beddings learned by performing the auxiliary task of video
colorization can be utilized for spatio-temporal correspon-
dence matching via tracking matching features. Follow-
ing works [20, 44] significantly enhance the performance
of this method by adding several improvements such as cy-
cle consistency, improved training procedure, using mem-
ory and attention mechanism. [21] combines region-level
correspondence matching (tracking) with colorization while
[46] and [17] utilize motion information for dense tracking.
In a different line of work, [15] suggests a framework where
the video is processed into a graph by dividing a frame
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into multiple patches (nodes). They train the embeddings
by performing a random walk on the constructed graph us-
ing a cycle consistency objective. In this paper, we use the
current state-of-the-art methods VideoWalk [15] and MAST
[19] as our baselines. Further details about these algorithms
are provided in Section 3.2.

3. Problem Setup and Methods
This section discusses our proposed problem formula-

tion and experimental setup, followed by an overview of the
utilized baselines and test-time adaptation algorithms. Our
primary focus lies on studying the impact of covariate shifts
in the task of self-supervised dense tracking and the possi-
ble remedies utilizing the unlabeled video data. We are in-
terested in studying ways to adapt a pre-trained model to the
target data distribution without altering the training regime.
This setup is beneficial due to the many practical use-
cases in real-world conditions. Inspired by test-time adap-
tation literature from the image domain [37, 43, 26, 33], we
explore utilizing unlabelled video data for addressing the
problem of covariate shift in the video domain.

Test-time adaptation methods in the image domain usu-
ally assume the availability of a diverse batch of unlabeled
data from the target distribution during inference. These
data are used for further finetuning the model with an unsu-
pervised or self-supervised objective. As a video contains
much more information than a single image, in this work we
study the extent in which the unlabeled video frames can be
utilized for test-time adaptation. We note that the definition
of domain in the literature is relatively imprecise. For exam-
ple, it is unclear if we consider a dataset as a single domain
or a combination of multiple domains (each class forming
a cluster can be viewed as a separate domain). Hence, we
initially contemplate a hypothesis where each video can be
considered as an individual domain. Next, we enforce do-
main shift by manually adding various perturbations to the
test videos [11]. To this end, we ask the following ques-
tions:

• Assuming each video represents a specific domain,
how effective are the current test-time adaptation
methods when applied to the task of dense tracking in
videos?

• Considering the self-supervised setups for dense track-
ing, can further finetuning the model on the target
video (essentially overfitting to a specific video do-
main using the self-supervised objective) improve the
performance on the downstream task?

• In the case of clear domain shift such as noisy data,
how effective are these adaptation methods for recov-
ering the performance in self-supervised dense track-
ing tasks?

To answer to these questions, we experiment with mod-
ified variants of three recent approaches for test-time adap-
tation from the image domain, namely Prediction-time BN
[33, 26], TENT [43], and TTT [37]. However, our setup is
different from these methods as discussed in the following:
First, the aforementioned methods are developed for image
classification and assume that a diverse batch of data from
the target distribution will be available at test time. In our
setup, each video is considered as an individual domain, and
the frames sampled from a single video comprise the batch,
meaning the batch might not contain enough diversity. Un-
like the prediction-time BN scenario in [26, 33], the cap-
tured statistics from a video sequence may not be diverse
enough, so replacing the normalization statistics in the nor-
malization layer with those collected from the video frames
might hurt the performance. Therefore, we experiment with
different momentum values as:

x̂ = (1− α)× xold + α× xnew (1)

where xold is the statistics estimated from the training data,
xnew is the statistics computed from the video at hand, and
α ∈ [0, 1] is the momentum. Second, these methods build
on top of models trained in a supervised manner, while we
examine baselines that are trained in a self-supervised fash-
ion. Third, we use a modified version of TENT [43] where
the self-supervised objective substitutes the entropy loss.
TENT minimizes the entropy of the class prediction, while
in dense tracking, the first mask is required for computing
the pixel-wise label probabilities. As we aim at the fully un-
labeled test-time adaptation, we utilize the self-supervised
objective (eqs. (6) and (9)) instead of the entropy minimiza-
tion. We refer to this adapted version as TENT*.

In our experimental setup, we consider two outlines for
the offline and online applications. In offline applications
such as video editing, all the video frames are available
beforehand and can be exploited for adaptation. However,
this is clearly not possible in online applications such as au-
tonomous driving, as real-time inference is required. Never-
theless, it is still reasonable to assume that we have access to
a limited amount of unlabeled data from the target domain.
Therefore, we utilise all the video frames for test-time adap-
tation in the first scenario, and only use a fraction of frames
in the latter. As our self-supervised dense tracking base-
lines, we chose two state-of-the-art methods of VideoWalk
[15] and MAST [19]. In the following, we briefly explain
the utilized test-time adaptation methods as well as the se-
lected dense tracking baselines.

3.1. Test-time Adaptation

Prediction-time BN [26, 33] suggests replacing the stat-
ics of the normalization layer (µ, σ) with the ones estimated
from the test data. [26, 33] observe that in a scenario where
there is a domain shift between the training and testing data,
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it is sub-optimal to normalize the activations with the µ and
σ estimated from the training data. Assuming a batch of
data from the target distribution is available at inference
time, they propose to either replace [26] or update [33] the
normalization statics with the ones computed from the test
data.

TENT [43] algorithm proposes to update the normaliza-
tion statistics as well as the shift and scale parameters γ
and β in the BN layer and adapt the feature modulation to
the target data distribution. In [43], the authors use entropy
minimization as their optimization objective:

H(ŷ) = −
∑
c

p(ŷc) log p(ŷc) (2)

where p(ŷc) is the network output probability for class c. As
mentioned earlier, in our adopted variant of this method re-
ferred to as TENT*, we experiment with the self-supervised
objectives (Equation 6 and Equation 9) instead of the en-
tropy loss in Equation 2.

Test-time Training (TTT) [37] alters both the training
and inference procedures. In [37], the authors modify the
architecture to include a shared backbone as well as two
separate heads for the main task (image classification) and
a self-supervision objective, namely rotation classification.
The model is then trained with the standard image classifi-
cation objective together with the auxiliary loss in a multi-
task setup. During the test phase, the model is further fine-
tuned using the auxiliary objective. This way, the parame-
ters of the shared backbone are modified and adapted for the
target distribution, but the classification head remains un-
changed. Therefore, the auxiliary head is utilized to adapt
the backbone to the target data distribution and mitigate the
impact of covariate shift between train and test data distri-
butions.

3.2. Self-supervised Dense Tracking

Recently, self-supervised methods for dense tracking
have significantly improved and achieve impressive per-
formance, comparable to supervised counterparts [19, 15].
One of the earliest works in this area was [42], where the
authors proposed to learn the correspondences based on
video colorization. This algorithm has been the basis for
many other approaches such as [20, 19]. In this method,
a self-supervised objective for correspondence matching is
defined based on colorizing the frames in a video. To this
end, consider a colored reference frame where each pixel
has a value ci ∈ Rd (colors are quantized to d bins) and a
grayscale target image. The colors in the target frame are
quantified as:

yj =
∑
i

Aijci (3)

where A is a similarity matrix computed as:

Aij =
exp(fTi fj)∑
k

exp(fTk fj)
(4)

In Equation 4, f represents the image features computed by
a neural network which is trained by minimizing the follow-
ing objective.

Loss =
∑
j

CrossEntopy(yj , cj) (5)

Here, cj is the correct quantized color and yj is the pre-
dicted color class by the model, based on Equation 3. Dur-
ing inference time, the learned features are utilized for vari-
ous applications such as pose tracking and video object seg-
mentation.

MAST [19] is one of the state-of-the-art methods based
on colorization. In [19], the authors make several improve-
ments to [42] such as explained in the following. First, they
suggest using lab color space instead of RGB due to less
correlation between color channels. Second, they enhance
the architecture by incorporating a memory bank and em-
ploying an attention mechanism to retrieve the color in each
target frame from multiple past frames using the attention
weights. Third, they propose to replace the classification
objective in Equation 5 with regressions as:

Loss =
1

n

∑
i

{
0.5(Îit − Iit)2 if |Îit − Iit | < 1

|Îit − Iit | − 0.5 otherwise
(6)

where n is the number of pixels and Îit and Iit are the esti-
mated and the actual color values for the ith pixel, respec-
tively. The intuition is that quantizing the colors to a limited
number of classes causes loss of important information and
leads to sub-optimal performance whereas using regression
preserves all the color information.

VideoWalk [15] on the contrary, develops a framework
for correspondence matching based on learning the patch-
wise similarities across the video frames. In this algorithm,
a space-time graph is formed by dividing each frame into
multiple nodes (patches) and computing the edge weights
based on a similarity metric between the neighboring nodes
(across time and spatial dimensions). Consequently, the
task of finding the correspondences across the video frames
is devised as a contrastive random walk with patch-wise
affinities providing the transition probabilities.

Assume qit is the feature embedding of ith node/patch at
time-step t. The Affinity matrix between each two nodes in
consecutive frames can be calculated as:

At+1
t (i, j) =

exp(〈qit, q
j
t+1〉/τ)∑N

l=1 exp(〈qit, qlt+1〉/τ)
(7)
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where τ is a temperature parameter. Subsequently, the
long range affinity between the nodes from non-consecutive
frames are computed as:

Ât+k
t =

k−1∏
i=0

At+i+1
t+i = P (Xt+k|Xt) (8)

The goal is to train the embeddings such that higher weights
are assigned to the edge between the similar patches so
that the random walk likely follows the path of the corre-
sponding nodes. To achieve this goal, [15] uses an objec-
tive based on cycle-consistency and creates a palindrome of
video frames so that for each node at the first time-step, we
know the target node at the end of the walk. This objective
can be formulated as:

Loss = CrossEntropy(Ât+k
t , Y t+k

t ) (9)

where Y t+k
t is the actual corresponding node which is

known as a result of the palindrome setup and the cycle con-
sistency.

4. Experiments
4.1. Datasets

In this work, we experiment with DAVIS2017 [29] and
TAO-VOS [40] datasets, two standard benchmarks for eval-
uating dense tracking methods.

DAVIS2017 [29] validation set consists of 30 videos
with an average duration of 3.4 seconds. As the videos in
DAVIS are somewhat short, especially for the online setup
where half of the video frames are used for adaptation, we
further benchmark this setup on a sub-set of TAO-VOS
[41, 9]. The videos in this dataset are considerably longer
than DAVIS2017 with an average length of 36.7 seconds.
Therefore even when using half of the frames for the evalua-
tion, we end up with longer videos than DAVIS2017. We se-
lected this subset based on two criteria: each video contains
at least 1000 frames and at most 2 target objects. The lat-
ter condition is a practical consideration as the current self-
supervised methods do not work well in scenes with many
objects. Therefore, we resort to relatively more straightfor-
ward videos with more frames, allowing us to use a subset
of data for test-time adaptations. The full list of the se-
lected videos can be found in the supplementary material.
We report the standard evaluation metrics of dense track-
ing task, Region Similarity and Contour Accuracy (J&F )
scores [29]. J refers to the intersection-over-union between
the model prediction and the ground-truth and F measures
the quality of the estimated object boundaries.

4.2. Results

In this section, we present our experimental results fol-
lowing the setup explained in Section 3 and analyze the ob-
served behavior.

Table 1 presents the results for offline and online setups
on DAVIS2017 dataset. Each row shows the J and F scores
of the baselines in the presence of a specific domain shift,
with and without test-time adaptation. In the first block
of rows, we investigate the efficacy of test-time adaptation
with a self-supervised objective on the test data with arbi-
trary domain shifts (without any added perturbation). As
we are working with self-supervised baselines, a question
naturally arises whether further tuning on a specific video is
helpful and to which extent it can improve the performance
on the downstream task. Next, we study a scenario with
a substantial domain shift between the training and testing
data distributions. In this respect, we follow the proposed
setup in [12] and impose an artificial covariate shift to the
video frames. In particular, we experiment with Gaussian
noise, Motion Blur, Fog, and Snow perturbations, shown in
Figure 1. Perturbations are generated according to the level
5 severity as described in [11].

Figure 1: Samples from corrupted data distributions (Gaus-
sian noise and Snow at the top row, Fog and Motion Blur at
the bottom row).

As can be seen from the results in table 1, self-
supervised test-time adaptation on the data without pertur-
bation slightly improves the results, while considerably de-
creasing the adverse effect of covariate shift for data with
severe perturbations. The behavior in arbitrary domain shift
scenario (without perturbation) implies that in situations
with mild distribution shift, overfitting to the current self-
supervised objectives does not fully transfer to the down-
stream task and only marginally improves the performance.
However, these methods can successfully adapt the features
to the target domain when there is a severe distribution shift
between the training and testing data. Interestingly, in most
cases, updating the normalization statics (BN column) has
an equal or superior positive impact on the dense tracking
accuracy despite its simplicity. However, we note that Fog
perturbation is an exception where both MAST and Vide-
oWalk methods achieve considerably better accuracy with
TENT* and TTT algorithms. Furthermore, the results show
a similar pattern in offline and online scenarios, suggesting
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Dense Tracking (Offline) Dense Tracking (Online) Test-time Adaptation

VideoWalk MAST VideoWalk MAST BN TENT* TTT Noise
J F J F J F J F

64.38 70.40 62.95 66.94 69.46 74.43 67.11 70.85 —
+1.00 +0.56 +0.47 +0.62 +0.67 +0.99 +1.04 +1.04 X
+1.04 +0.50 +0.32 +0.65 +0.70 +0.97 +0.20 +0.30 X
+1.17 +0.47 +0.09 +0.34 +0.64 +0.84 +0.27 +0.39 X

58.40 63.08 32.70 35.48 64.43 67.89 41.51 43.36 Gaussian
+1.85 +2.16 +19.82 +20.54 +2.07 +2.58 +18.21 +19.26 X
+1.91 +2.44 +17.98 +18.77 +3.73 +3.91 +15.90 +17.17 X
+2.67 +2.97 +18.06 +18.15 +2.11 +2.20 +15.37 +16.58 X

62.97 68.75 58.49 63.45 67.69 72.50 64.54 69.99 Motion Blur
+0.69 +0.51 +0.49 +0.80 +1.01 +1.62 +0.35 +0.10 X
+0.41 +0.34 -0.10 +0.13 +1.04 +1.69 -0.21 -0.22 X
+0.18 +0.11 +0.12 -0.18 +0.97 +1.28 -0.58 -0.43 X

50.89 54.77 51.12 53.08 56.44 59.20 58.51 59.68 Snow
+1.63 +2.78 +0.83 +0.77 +2.60 +2.80 +0.51 +0.46 X
+1.99 +2.80 +0.14 +0.34 +2.43 +2.52 +0.77 +0.99 X
+2.79 +3.92 +0.32 +0.39 +1.98 +1.91 +0.15 +0.38 X

19.27 26.32 35.55 38.05 24.76 30.76 43.42 45.03 Fog
+11.23 +10.76 0.00 0.00 +11.54 +9.860 0.00 0.00 X
+12.01 +12.23 +3.09 +2.66 +9.67 +9.22 +3.83 +3.51 X
+18.70 +18.42 +9.85 +8.50 +14.07 +14.21 +9.24 +9.54 X

Table 1: J and F scores for VideoWalk [15] and MAST [19] self-supervised dense tracking methods on DAVIS2017 vali-
dation set in offline and online settings. In the offline mode, all video frames are used for adaptation. In the online setup,
we use the first and second half of the video for adaptation and evaluation, respectively. For each perturbation variant, we
compare the accuracy of the baseline model with three test-time adaptation techniques as explained in Section 3. Results
in cursive correspond to absolute metrics, followed by their delta when using one of the test-time adaptation methods. Best
results per column shown in bold.

that performing test-time adaptation is beneficial for both
circumstances.

For the results shown in column BN, we experimented
with different momentum values and updated the normal-
ization statistics according to Equation 1. Here the re-
sults are provided with the best-found momentum, and ad-
ditional results can be seen in Figure 2. From these plots,
we see that partially updating the normalization statistics
with those from the target domain alleviates the impact of
covariate shift, but completely replacing them (momentum
value of 1) can deteriorate the performance. This behav-
ior can be due to a lack of diversity in video frames, re-
sulting in sub-optimal performance when ignoring the in-
formation collected from the training data (the old normal-
ization statistics). Moreover, we observe varying trends
in the VideoWalk and MAST methods; for example, in
Fog perturbation, VideoWalk enjoys updating the normal-
ization statistics, whereas it is better to keep the statistics
unchanged for MAST. This can result from different train-

ing objectives in these approaches as the self-supervised
loss in MAST is purely based on color information (Equa-
tion 6), while VideoWalk additionally utilizes higher-level
correspondences between pixel embeddings (Equation 9).

As explained in Section 3.1, TTT [37] and TENT [43]
approaches finetune the network weights. We note that up-
dating the model weights also depends on how the normal-
ization statistics in the BN layer are handled (i.e., training
the model when freezing or updating the BN statistics). In
these methods, it is assumed that a diverse batch of data is
available, but this condition may not hold when sampling
the batch from a video sequence. Therefore, we need to
consider this factor and carefully treat the BN layer. We
experimented with both cases of training with freezing and
updating the normalization statistics. The results in Tables 1
and 2, are with the best-found configuration an additional
results in this regard can be found in the supplementary
material. Concerning the other hyperparameters in Vide-
oWalk and MAST, we performed an extensive hyperparam-
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Figure 2: Ablation on the momentum in prediction-time BN (Equation 1) and the impact it has on the performance of
VideoWalk and MAST methods under different perturbations. The first and second rows illustrate the results on DAVIS and
TAO-VOS datasets, respectively. The diagrams on DAVIS are from the offline setup (we observed a similar trend in the
online mode). The results indicate that, except for Fog, it is better to update the normalization statics with a momentum value
less than one in most cases. In VideoWalk, it is better to completely replace the statistics with those collected from the target
domain, while in MAST, it is better to keep the statistics unchanged.

eter search and found that the parameters used during the
self-supervision also worked best for the test-time adapta-
tion. We utilized the public available code from the respec-
tive authors and further finetuned the model until the con-
vergence of the self-supervised loss.

Considering the short duration of DAVIS2017 videos,
utilizing half of the video may not provide solid conclu-
sions. Therefore, we also benchmark the baselines on a
subset of TAO-VOS, which contains about ten times longer
videos than DAVIS2017, with a similar experimental setup
described before. Table 2 presents the results for this dataset
in online setting where we use the first half of the video for
adaptation and the rest for evaluation. Furthermore, figs. 2c
and 2d show an ablation on the performance of the base-

lines when updating the normalization statistics with vary-
ing momentum values, as in Equation 1. The results in BN
column in Table 2 are obtained using the best-found mo-
mentum based on this ablation. We observe a similar pat-
tern between the results obtained from DAVIS2017 and the
longer videos in the TAO-VOS subset, validating the effi-
cacy of test-time adaptation for short and long videos.

5. Conclusion

In this work, we investigated the role that self-
supervision can have in alleviating the harmful effect of dis-
tribution mismatch between train and test datasets of video
data. We considered two scenarios of practical relevance.
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Dense Tracking Test-time Adaptation

VideoWalk MAST BN TENT* TTT Noise
J F J F

55.83 65.17 43.68 48.59 —
+0.83 +0.98 +1.49 +1.42 X
+1.23 +1.52 +1.21 +1.46 X
+1.42 +1.76 +0.85 +2.11 X

48.29 57.25 22.34 24.64 Gaussian
+6.51 +6.78 +14.40 +15.31 X
+3.56 +3.90 +13.79 +14.71 X
+4.35 +4.56 +14.21 +15.33 X

55.21 64.19 42.69 48.12 Motion Blur
+0.71 +0.29 +2.71 +2.95 X
+1.01 +1.09 +2.32 +1.93 X
+0.58 +0.43 +2.65 +2.71 X

38.79 48.16 31.53 35.07 Snow
+5.18 +4.35 +3.94 +3.95 X
+6.48 +5.88 +2.82 +2.81 X
+6.56 +5.31 +3.87 +4.11 X

14.47 21.96 14.60 17.67 Fog
+11.11 +10.07 +0.52 +0.49 X
+23.64 +24.62 +1.63 +2.10 X
+22.24 +22.20 +6.12 +5.48 X

Table 2: J and F scores for VideoWalk [15] and MAST [19] self-supervised methods on a subset of the TOA-VOS dataset
in an online setup when using half of the video for adaptation and evaluation on the second half of the frames. Results in
cursive correspond to absolute metrics, followed by their delta when using one of the test-time adaptation methods. Best
results per column shown in bold.

One, for offline applications, in which the entire video se-
quence is available in advance. Another, for online applica-
tions, in which instead we are interested in real-time infer-
ence and have access to some unlabeled data from the target
domain prior to inference. In both cases, we only consid-
ered pre-trained model and we assume to not have access to
neither their training data nor training routine. We studied
the behavior of two recent self-supervised dense tracking
algorithms in the presence of several domain shifts. Our
experimental results confirm that self-supervised test-time
adaptation is an effective method for decreasing the impact
of covariate shift in dense tracking, but that the extent of its
efficacy largely depend on the specific shifts and algorithms
in question.
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