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Abstract

Deep neural network (deepnet) applications play a cru-
cial role in safety-critical systems such as autonomous vehi-
cles (AVs). An AV must drive safely towards its destination,
avoiding obstacles, and respond quickly when the vehicle
must stop. Any transient errors in software calculations
or hardware memory in these deepnet applications can po-
tentially lead to dramatically incorrect results. Therefore,
assessing and mitigating any transient errors and provid-
ing robust results are important for safety-critical systems.
Previous research on this subject focused on detecting er-
rors and then recovering from the errors by re-running the
network. Other approaches were based on the extent of full
network duplication such as the ensemble learning-based
approach to boost system fault-tolerance by leveraging each
model’s advantages. However, it is hard to detect errors in
a deep neural network, and the computational overhead of
full redundancy can be substantial.

We first study the impact of the error types and locations
in deepnets. We next focus on selecting which part should be
duplicated using multiple ranking methods to measure the
order of importance among neurons. We find that the du-
plication overhead for computation and memory is a trade-
off between algorithmic performance and robustness. To
achieve higher robustness with less system overhead, we
present two error protection mechanisms that only dupli-
cate parts of the network from critical neurons. Finally, we
substantiate the practical feasibility of our approach and
evaluate the improvement in the accuracy of a deepnet in
the presence of errors. We demonstrate these results us-
ing a case study with real-world applications on an Nvidia
GeForce RTX 2070Ti GPU and an Nvidia Xavier embedded
platform used by automotive OEMs.

1. Introduction

Safety-critical systems require high robustness against
systematic or modular faults caused by either hardware or
software. Sometimes, even errors within only a small por-
tion of the software system can lead to drastically different
results.

1.1. Related Work

There have been numerous studies in the recent past to
assess the resilience of hardware accelerator-enabled sys-
tems and applications using fault injection [17, 22, 32, 36].
They injected errors at the instruction-level by selecting reg-
isters and flipping random bits to study the soft error re-
silience of applications running on hardware accelerators.
Similarly, [7,24,34] presented in-depth studies of low-level
hardware failures on large-scale GPU-enabled systems and
analyzed the behavior of applications in the presence of
hardware errors. Other approaches inject errors and faults
in the software and hardware states, such as environmental
conditions and faults affecting sensor data on open-source
or proprietary AV software stacks [20, 21, 31]. These pre-
vious studies provide significant insights into the impact of
low-level software and hardware faults. However, they do
not consider the impact of transient memory and computa-
tional errors in deepnet applications. In this work, we focus
on transient memory-related errors that can affect the accu-
racy of deepnet applications. We also study the impact of
the error locations in deepnet components.

Software-based approaches for mitigating deepnet errors
can be categorized into two kinds. In the first category, the
approach [5] detects the existence of an error, tries to lo-
cate the error and replicates the computation from the point
of the error. Whenever the primary deepnet fails, a replica
retrieves the checkpoints either from the frame-level or the
layer-level, and continues processing from that checkpoint
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one step prior to the detected error location. This method,
however, focuses on reducing the recovery time from a per-
manent failure and does not protect output accuracy in the
presence of transient errors. Compared with the first cat-
egory, the second approach skips the error detection step,
and leverages the output from multiple deepnets to increase
robustness. This approch trains multiple different models,
where, in the best case, the trained models together pro-
duce a collective decision to make the system less fault-
sensitive [16] [10] [33] [37]. This simple approach is, how-
ever, inefficient in terms of memory, since the whole model
needs to be duplicated. Instead, one can duplicate only cer-
tain parts of the network and reduce the impact of the errors,
which means that duplication of much more fine-grained
modules inside the neural network is required. In particu-
lar, we highlight D2NN [27] which duplicates at the neu-
ron level in order to generalize dual modular redundancy
for deepnets to tackle hardware vulnerabilities and security
threats at the algorithmic level. However, there is a core lim-
itation in this baseline approach: the criterion for selecting
which neurons to be duplicated is determined only by the
magnitude of the neuron weights, which does not produce
correct outputs in many cases. One such situation is where
larger neuron weights are more sensitive to noise and thus
end up increasing the model’s vulnerability. Moreover, this
approach requires complex changes to the network in or-
der to achieve fine-grained neuron-level duplication and to
share common neurons. We will explicitly compare the per-
formance of our approach with this method in Section 4.4.

1.2. Our Contributions

In this paper, we first investigate the impact of the error
type and its location in deepnets. We next focus on select-
ing the important neurons which should be duplicated using
multiple ranking methods. Then, we discuss two different
error-protection mechanisms that duplicate selected parts of
the network using critical neurons to achieve higher robust-
ness with less system overhead. Finally, we substantiate the
practical feasibility of our approach and evaluate the perfor-
mance of our solutions.

The main contributions of this paper are as follows:

1. We present an application-level fault-tolerant mecha-
nism for deepnet applications to overcome transient er-
rors and protect output accuracy by duplication.

2. We provide practical insights into the vulnerability of
the weight and feature maps of deepnet applications
and the impact of error types in memory.

3. We present and compare various methods to rank the
importance of deepnet neurons.

4. We demonstrate the straightforward integration of our
solution into the widely used PyTorch framework and

𝑊!"#,! 𝐿𝑎𝑦𝑒𝑟 𝑙 𝐿𝑎𝑦𝑒𝑟 𝑙 + 1𝑊!,!%#

𝐼𝑛𝑝𝑢𝑡 𝑂𝑢𝑡𝑝𝑢𝑡… …

𝑜! 𝑜!%#

32

32

16

16

16

16

32

32

3
3

𝐿𝑎𝑦𝑒𝑟 𝑙 − 1

𝑜!"#

Figure 1: The structure of a general convolutional neural
network. In the plot, ol ∈ RCl×hl

f×wl
f is the feature map of

layer l, ol+1 ∈ RCl+1×hl+1
f ×wl+1

f is the feature map of layer
l+1, and W l,(l+1) ∈ RCl×Cl+1×h×w is the kernel mapping
ol to ol+1. Specifically, Cl(= 3) and Cl+1(= 4) are the
number of channels in layer l and layer l + 1, hl

f × wl
f (=

32× 32) and hl+1
f × wl+1

f (= 16× 16) are the feature map
size of layer l and layer l + 1, and h × w(= 3 × 3) is the
size of a convolutional kernel.

deepnet applications.

5. We evaluate the usefulness of the recovery mecha-
nisms with real-world perception applications: SSD-
VGG / SSD-MobilNetV1 on the Nvidia Xavier board
popular in the automotive industry.

2. Background
2.1. Convolutional Neural Network Architecture

A Convolutional Neural Network (ConvNet/CNN) is a
Deep Learning algorithm which can take an input image,
assign importance (learnable weights and biases) to various
aspects/objects in the image, and be able to differentiate one
from another. As shown in Figure 1, a ConvNet consists of
multiple kernels (= weights)1, and each kernel connects its
input layers and transforms the input to a desired output-
layer shape. W l,(l+1) ∈ RCl×Cl+1

are the weight-mapping
neurons from layer l to layer l + 1, Cl is the length of the
input and Cl+1 is the length of the output of the weight.

Each kernel can be represented by Cl × Cl+1 × h× w,
where Cl and Cl+1 are the lengths of the channels in layer
l and layer l+1 respectively, and h×w are the dimensions
of the kernel. The output from multiplying the kernel with
the input data once creates a single value. As the kernel is
applied multiple times to the entire input data, the result is a
two-dimensional data of output values that represent a con-
volution of the input. We call the direct output of ConvNets
the feature map ol, the shape of which is determined by the
kernel dimension, as well as its padding and stride size.

2.2. Error Type

We classify software and hardware errors into perma-
nent and transient errors. Permanent errors are caused by
device wear-out or environmental effects, and are present
under specific conditions causing applications to permanent

1We will use the terms ‘kernel’ and ‘weight’ interchangeably because
kernels consist of weights.
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(a) SSD-VGG
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(b) SSD-MobileNet

Figure 2: A comparison between kernel error and feature
map error rates. The plots show the different impact of error
location for (a) SSD-VGG and (b) SSD-MobileNet. Kernel
errors cause more damage to accuracy than what the same
feature map error rate does.

faults such as crashing or hanging [3, 34]2. Transient er-
rors can be random events caused by radiation particles af-
fecting memory elements in the system [14, 15] or faults
stemming from extremely low-voltage operation [8]. Error
correction-code (ECC)-enabled memory can prevent some
of the transient faults in DRAM [28]. Cyclic redundancy
checks in the GDDR interface prevent faults from occur-
ring during transfers across the memory bus [30]. However,
these mechanisms incur extra cost, and not all devices em-
ploy them. They also do not cover all failure models, such
as transient faults in computing or control logic [26]. A
transient error can be classified as a zero error, a random er-
ror or a bit-flip error [11,35]. A zero error happens when the
spot in memory is stuck and turns the value into all zeros.
A random error means that the value turns into a random
value. The most significant error is the bit-flip error; it re-
verses the value bit-wise and further leads it in the opposite
direction. In this work, we only consider zero errors, which
are more common [2, 12]3.

2.3. Error Location

The inference result of a neural network depends on the
convolution between a kernel and its input feature map.
Therefore, we consider the error in these two different lo-
cations: kernel error and feature map error.

Figure 2 shows the results from a kernel error and a fea-
ture map error using SSD-MobileNet and SSD-VGG. Both
error locations affect and degrade the accuracy of the mod-
els as the error rate increases. However, we observe that
the same percentage of the kernel error has a different im-
pact on accuracy than the feature map error. Some deepnet
models are more robust to the errors in the feature map than
in the kernel. For example, SSD-MobileNet with a 10%

2Recovering from permanent errors is beyond this paper’s scope. The
permanent faults constitute an orthogonal problem and need to be handled
by other mechanisms such as full replication of HW/SW or the hot/cold
standby approaches in [5, 6].

3Our approarch can be extended to the other error types.

feature map error shows about 62% accuracy, but a 10%
kernel error makes the accuracy of SSD-MobileNet drop
to 0%. Compared with SSD-MobileNet, SSD-VGG suf-
fers less from a kernel error. For example, the accuracy of
SSD-VGG remains the same (77%) for both 10% kernel and
feature map errors. This phenomenon can be explained by
the number of model parameters in the respective deepnets.
SSD-VGG has a bigger feature map size and more parame-
ters than the feature maps in SSD-MobileNet. Hence, there
are built-in redundancies which make the feature maps in
SSD-VGG more robust to errors.

3. Our Proposed Approach and Algorithms
3.1. Ranking Neurons

Weight-Sum: Weight-sum is a straightforward method,
which is commonly used in the model compression of neu-
ral networks. The weight-sum score indicates the impor-
tance of a neuron or convolutional kernel [25, 27]. It can
also be used to select important kernels for duplication. The
score s of the ith neuron in layer l is calculated by the sum
of its absolute weights:

sli =

Cl+1∑
j=1

|W l,(l+1)
i,j | (1)

where | · | calculates the absolute value, W l,(l+1) ∈
RCl×Cl+1

is the weight mapping neurons from layer l to
layer l + 1, Cl is the length of the input and Cl+1 is the
length of the output of the weight.

To calculate the ith weight-sum score in convolutional
layers, we consider the weight as a 4-dimensional (4D) ten-
sor (W l,(l+1) ∈ RCl×Cl+1×h×w), with Cl input channels,
Cl+1 output channels, where the height of each kernel is h,
and the width of each kernel is w. It calculates the score s of
the ith kernel in layer l by the sum of its absolute weights:

sli =

Cl+1∑
j=1

h∑
p=1

w∑
q=1

|W l,(l+1)
i,j,p,q | (2)

Figure 3(a) illustrates that the weight-sum score of a neu-
ron is calculated based on the sum of the absolute values of
its corresponding kernels.

Second-Order Derivative: The second-order derivative
method is based on the Taylor expansion of the error (be-
tween the true label and the predicted output) with respect
to weights or feature maps [18,23]. As a larger score for the
second-order derivative means more influence on the final
loss, this approach also helps in selecting more important
neurons or channels:

sli =
1

B

B∑
j=1

1

2

(oli,j)
2

[H−1]li,i
(3)
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where ol is the output of layer l, and H = ∂2E
∂o2 is the Hessian

matrix of the loss E w.r.t. the output o. The score sli of the
ith neuron in layer l needs to be averaged over a batch B of
selected samples.

Usually the Hessian matrix and the inverse of a matrix
are hard to calculate. To simplify the computation, we use
the gradient to approximate the Hessian matrix [18]:

H =
∂2E

∂o2
' (

∂E

∂o
)2 (4)

so that Equation 3 becomes:

sli =
1

B

B∑
j=1

1

2
(oli,j)

2 · ( ∂E

∂oli,j
)2 (5)

To calculate the second-order derivative score in con-
volutional layers, we consider the 4D feature map (ol ∈
RB×Cl×hl

f×wl
f ), with Cl channels, with B samples in a

batch, feature map height hl
f , and feature map width wl

f ,
yielding

sli =
1

B

B∑
j=1

hl
f∑

p=1

wl
f∑

q=1

1

2
(oli,j,p,q)

2 × (
∂E

∂oli,j,p,q
)2 (6)

Figure 3(b) illustrates that the second-order derivative
score is calculated based on the feature map and the gra-
dient of the loss w.r.t. this feature map.

Entropy-Based Approach: Entropy is well-known in in-
formation science to measure the information in random
variables [19]. It is also used in different areas in machine
learning, such as model compression [29] or deepnet regu-
larization [9]. We now propose an entropy-based approach
for channel ranking.

Given a discrete random variable xi ∈ X , and its corre-
sponding probability p(xi), the entropy H of X is defined
as:

H(X) = −
n∑

i=1

p(xi) · log(p(xi)) (7)

A higher value of entropy indicates more information,
which is more robust to errors. Therefore, we aim to du-
plicate the channels with the lowest entropy, which are the
most vulnerable to errors. To calculate entropy, we consider
the 4D feature map ol ∈ RB×Cl×hl

f×wl
f , with B samples

in a batch, feature map height hl
f , and feature map width

wl
f . The ith sample is represented as oli. The jth channel

in the layer of the feature oli,j is flattened as an activation

vector ali,j ∈ Rhl
f ·w

l
f . Then, the entropy-based approach

generates the probability distribution of the activation vec-
tor with softmax:

pli,j = softmax(ali,j) (8)
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(c) Entropy-based approach

Figure 3: The illustration of our neuron-ranking methods.
(a) weight-sum approach: the score of an input channel is
the summation of its corresponding convolutional kernels;
(b) second-order derivative approach: the score of a chan-
nel is correlated with both the feature map value oli and its
gradient ∂E

∂oli
; (c) entropy approach: the score of a channel is

correlated with the entropy of its flatten feature map value.

With the probability distribution of the activation vector,
the score is given by:

sli = −
1

B

B∑
j=1

H(pli,j) (9)

where H(·) is the entropy. A lower entropy for a neuron
leads to higher importance, so we add the negative sign in
front of the formula. Figure 3(c) illustrates that the entropy-
based score of a neuron is calculated based only on its fea-
ture map.

3.2. Partial Duplication Approaches

We consider two duplication approaches to recover from
any zero errors in a neural network. The first approach,
called kernel recovery (KR), only recovers the weights
when the model makes the inference. Another approach,
called feature map recovery (FMR), recovers the feature
maps during inference time. Both approaches duplicate the
selected kernels at the beginning of the process. KR only
averages the kernel values and uses the duplicated kernel to
calculate the feature map during inference time, as shown
in Figure 4(b). Since this approach focuses only on the ker-
nel weights, the resulting accuracy can still be affected by
errors in the newly generated feature map.

FMR calculates two streams of the feature map sepa-
rately; one from the original kernels and the other from the
duplicated kernels. The final output feature map is the av-
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(a) Kernel Duplication + Feature Map Recovering

(b) Kernel Duplication + Kernel Recovering

(a) Feature map recovery

(a) Kernel Duplication + Feature Map Recovering

(b) Kernel Duplication + Kernel Recovering

(b) Kernel recovery

Figure 4: Illustration of the duplication approaches: (a)
FMR duplicates kernels and calculates the feature map sep-
arately. The final output feature map is the average of both
the original and the duplicated feature maps. (b) KR du-
plicates kernel only. It averages the original and duplicated
kernels first and then generates a final feature map from the
averaged kernel.

erage of both the original feature map and the duplicated
feature map, as shown in Figure 4(a). This can reduce the
impact of the errors in the feature maps. However, this ap-
proach requires more computational and memory overhead
to calculate and store the feature map of duplicated kernels.
We therefore mainly use the averaging approach to recover
from kernel and feature map errors. However, our underly-
ing observations and framework can also be used for other
types of recovery with the duplication approach.

3.3. Implementation

To implement the neuron-ranking approach of Sec-
tion 3.1, we first train the whole neural network without
any duplication until it converges. Next, we select the tar-
get kernels to be duplicated according to the ranking scores
and the replication percentage. However, the ranking meth-
ods in SSD-VGG and SSD-MobileNet have different im-
plementation details, due to their deepnet structures. For
example, Figure 5 illustrates the difference between SSD-
VGG and SSD-MobileNet when the weight-sum ranking
method is used. The implementation of other ranking meth-
ods are similar to the weight-sum ranking method. For
SSD-VGG Figure 5(a), we directly get the score from the
convolutional kernels. SSD-MobileNet contains a unique
architecture, including depthwise convolutional kernels and
pointwise convolutional kernels. Since the SSD-MobileNet
decomposes the convolutional kernel into a depthwise con-
volutional kernel and a pointwise convolutional kernel, we
treat the pair as a unit. Furthermore, we find that the point-
wise convolutional kernel contains more information than
the depthwise convolutional kernel. To preserve the corre-
lation between the depthwise convolutional and pointwise
convolutional kernels, we duplicate a part of the pointwise
convolutional kernel and the entire depthwise convolutional
kernel as shown in Figure 5(b). For example, in Figure 5,
we duplicate the two kernels of W l,l+1. Since layer l has
three channels, we need to duplicate all the three kernels of
W l−1,l.

After selecting the target kernels, the recovery process
of SSD-MobileNet is similar to SSD-VGG. As shown in
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(a) SSD-VGG

(b) SSD-MobileNet
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(b) SSD-MobileNet

Figure 5: Implementation of the neuron-ranking method for
(a) SSD-VGG and (b) SSD-MobileNet: SSD-MobileNet
decomposes a convolutional kernel into a depthwise con-
volutional kernel W l−1,l followed by a pointwise convolu-
tional kernel W l,l+1. In the weight-sum approach, we cal-
culate the score of layer l − 1 for SSD-MobileNet with the
summation of only pointwise convolutional kernels.

the executing inferencing stage, the duplicated kernels con-
tinually recover from the original deepnet error. By design,
KR only recovers from the kernel errors. Specifically, in our
work, we average the original and the duplicated kernels to
mitigate the influence of errors. The averaged kernels are
then used to generate a feature map. FMR focuses on pro-
tecting the feature maps. The original and the duplicated
kernels first generate their own feature map independently;
then we average the two sets of feature maps to mitigate
the influence of errors. The averaged feature maps will be
passed to the input of the next layer.

4. Evaluation
This section presents the evaluation of our error recovery

mechanisms using different types of neuron-ranking meth-
ods as well as the choice of different recovery methods. We
evaluate our approach with two deepnets: SSD-MobileNet
and SSD-VGG, which are executed on an RTX 2070 Ti
GPU. We further implement the experiments in an Nvidia
Jetson Xavier to compare the overhead of our approach on
different platforms. We use 64-bit Ubuntu 18.04, CUDA
10.0, and PyTorch in our experiments. The dataset we use
in our experiments is PASCAL VOC2007 [13]. We first
train SSD-VGG and SSD-MobileNet on the training data
until convergence. SSD-VGG reaches 77.26% accuracy and
SSD-MobileNet has 67.5% accuracy. Errors are next in-
jected into both the kernel and feature maps of SSD-VGG
or SSD-MobileNet. The error type is zero error; thus, when
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Figure 6: The accuracy of SSD-MobileNet and SSD-VGG
using different neuron-ranking methods.

an error happens, the value in the kernel or feature map is
stuck at 0. Since a transient error can happen randomly in
different positions of the kernel and feature maps, we per-
form our experiments with three different random seeds to
show a clear trend. Therefore, in Figure 6, the solid line and
shade respectively represent the mean value and the stan-
dard deviation of the three experiments. In the evaluation,
we present the results when using the weight-sum, second-
order derivative and entropy-based approaches. We repeat
all experiments three times with different random seeds for
the error injections to generalize the results.

4.1. Overall Accuracy In The Presence of Errors

We first evaluate the overall accuracy using the KR ap-
proach w.r.t. the kernel weight and feature map errors. In
the experiments, the errors are injected into all layers of the
feature extraction layer of SSD-MobileNet (13 layers) and
SSD-VGG (16 layers). As noted earlier, we use only zero
errors in our experiment, and the errors are placed randomly
in kernel and feature maps.

The duplication percentage is 50% uniformly distributed
among all the layers, which means half of the feature ex-
traction layers are duplicated. We now present the results of
the weight-sum, second-order derivative and entropy-based
approaches to select duplicated kernels. The duplicated ker-
nels are selected from the original kernels with the highest
score in descending order. We test two kernel weight error
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Figure 7: Comparison of kernel recovery and feature map
recovery.

rates: 1% or 10%, and vary the feature map error rate from
1% to 10% to show how the different ranking types protect
accuracy against different error rates. The results of SSD-
MobileNet and SSD-VGG are shown in Figure 6. All our
duplication methods provide 10% better accuracy compared
with the original baseline without duplication. To show the
clear benefit of the ranking methods, we also present the
results with a random selection as a comparison. The ran-
dom selection provides better accuracy than the baseline
without duplication, but all of our ranking methods out-
perform the random method. This is more obvious in Fig-
ure 6(b) FMR duplication. Finally, we observe that SSD-
MobileNet is more sensitive to the error rate. As shown in
Figure 6(a), the 10% feature map error leads to nearly 10%
accuracy of SSD-MobileNet, but SSD-VGG (Figure 6(c))
maintains over 74% accuracy with the same error rate. Fig-
ure 6(d) shows that SSD-VGG maintains over 69% accu-
racy with 10% weight error. The reason for this outcome
is that SSD-VGG has many more parameters than SSD-
MobileNet, with SSD-MobileNet designed for running on
edge devices that are less powerful and easier to get affected
by errors.

4.2. Kernel Recovery vs. Feature Map Recovery

Accuracy can be affected by the duplication methods,
as discussed in Section 3.2. We now compare the perfor-
mance between kernel recovery (KR) and feature map re-
covery (FMR). For KR, we duplicate the selected kernels,
and during inference time, we recover the weights by aver-
aging the original kernels and duplicated kernels. For FMR,
we also duplicate the selected kernels. Instead of averaging
the original kernels and the duplicated kernels, we use both
kernels to generate the feature maps and average them.

Figure 7(a) shows that FMR yields better overall accu-
racy than KR w.r.t feature map errors. This is because FMR
recovers the errors in both kernel weights and feature maps.
As the feature-map error rate increases, FMR provides bet-
ter accuracy than KR. However, FMR suffers from a big-
ger computational overhead to calculate the feature maps
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SSD-VGG Original Kernel Recovery Feature Map Recovery
x86 31.39 ms 32.02 ms 60.35 ms
Nvidia Xavier 106.09 ms 104.84 ms 181.01 ms
SSD-MobileNet Original Kernel Recovery Feature Map Recovery
x86 7.53 ms 9.00 ms 13.54 ms
Nvidia Xavier 36.68 ms 37.03 ms 51.43 ms

Table 1: Computational Overhead

from duplicated kernels and to average them with the fea-
ture maps from the original kernels. Besides, the newly cal-
culated feature maps require extra memory space. These
overheads also increase the recovery time. We note that KR
can provide similar accuracy as FMR when the feature-map
error rate is expected to be lower with less overhead. Mean-
while, Figure 7(b) illustrates that KR provides overall better
accuracy than FMR w.r.t. the weight error. This is because
KR focuses on protecting the kernel weights by averaging
the kernel values and recovering from weight errors. To
maintain the best inference accuracy against severe errors,
FMR with a higher duplication percentage is recommended.

4.3. Overhead Evaluation

We further evaluate the overhead of our method on an
x86 system with a discrete GPU and an Nvidia Xavier em-
bedded platform. The whole process can be separated into
three different stages: training stage, ranking stage and ex-
ecuting stage. Once the model is deployed on the devices,
only the executing stage accounts for the overhead. We an-
alyze both computational and memory overheads. The KR
approach requires memory space to keep the duplicated and
averaged kernels. It also needs additional computational
power to average the original and duplicated kernels.

The FMR approach needs more memory to store the du-
plicated kernels, newly calculated feature maps and aver-
aged feature maps from the original and duplicated kernels.
Therefore, the convolution operation from the duplicated
kernels and averaging feature maps also impose more com-
putational overhead.

The final overhead for both approaches is shown in Ta-
ble 1. We calculate the mean and standard deviation of
whole inference times for different methods: original, KR,
and FMR. SSD-MobileNet needs less inference time than
SSD-VGG because the latter has more parameters, thereby
consuming more time to calculate convolutions. The infer-
ence times for KR and FMR of SSD-MobileNet show sim-
ilar results on the x86 platform because of the faster CPUs.
Meanwhile, FMR costs more time than KR on Xavier.

We further estimate the memory consumption of each
method here. SSD-VGG has about 36.1 million parame-
ters in total, including 14.7 million parameters in the fea-
ture extraction layers. Both KR and FMR duplicate 50%
kernels from the original feature extraction layers, contain-
ing 7.4 million parameters. Assuming that each parame-
ter is a 32-bit float, KR consumes 29.6MB more space in

Kernel Recovery Feature Map Recovery
SSD-VGG 29.6MB 78MB
SSD-MobileNet 6.4MB 16.8MB

Table 2: Estimated Memory Overhead

memory. FMR requires extra space for feature maps, 12.1
million (48.4MB) for SSD-VGG, so the overhead for FMR
is 78MB. The SSD-MobileNet has about 5.1 million pa-
rameters, including 3.2 million parameters in feature ex-
traction layers. Both KR and FMR duplicate half of the
kernels in the feature extraction layers, so the duplicated
kernels contain 1.6 million parameters. Therefore, KR has
about 6.4MB memory overhead. FMR requires extra space
for feature maps, which is 2.6 million (10.4MB) for SSD-
MobileNet, so the overall overhead for FMR is 16.8MB.
The comparison of estimated memory overhead is shown in
Table 2.

4.4. Case Study

We compare our performance with the baseline fault-
tolerant approach D2NN [27]. We choose D2NN for com-
parison because it takes advantage of full network duplica-
tion and reduces overhead by sharing neurons between the
original and duplicated networks.
Targeted Saftey-Critical Application: Our case studies
are motivated by the software system of a self-driving car.
Among various safety-critical applications of the car, we
chose a Thermal infrared (TIR) camera-based real-time ob-
ject detector [4]. TIR images lack the texture and details
that come with the visible spectrum and have less resolu-
tion than RGB images. Hence, a TIR camera-based object
detection deepnet can be more vulnerable to errors in soft-
ware calculations or hardware memory. We trained SSD-
MobileNet V1 deepnet with 14,000 images from the FLIR
TIR dataset [1] and our own 35,000 data with manually la-
beled 8 class annotations.
Dual Modular Redundancy (D2NN) Solution Imple-
mentation: To get the evaluation results of D2NN on the
same experiments, we re-implemented the D2NN method
in a different fashion but kept the same logic. First, we
split the entire neural network into two parts as indicated
in [27]. The first unshared part contains neurons (or ker-
nels in our case) that we will duplicate, and the second part
contains the shared neurons (kernels). We find the neurons
to be duplicated by weight-sum ranking, described earlier.
This neuron selection method is also consistent with the
“sensitivity”-based selection method proposed in D2NN.
Then, we duplicate the whole network into two: Primary
Network and Secondary Network. Next, we use different
strategies to inject errors for the shared and unshared parts
of the two neural networks. We inject the same random
errors in the second shared parts of the two networks We
next introduce different random errors only in the unshared
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Dupliation No No FMR FMR KR KR D2NN D2NN
Type Error Dupliation

Duplication NA 0% 50% 20% 50% 20% 50% 20%
Ratio
Car 0.56 0.41 0.50 0.46 0.49 0.48 0.46 0.44

pedestrian 0.26 0.17 0.22 0.20 0.21 0.21 0.20 0.19
Cyclist 0.28 0.15 0.20 0.18 0.21 0.20 0.18 0.17

Van 0.73 0.38 0.56 0.48 0.54 0.51 0.49 0.45
Truck 0.69 0.40 0.53 0.47 0.55 0.54 0.46 0.44
Bus 0.74 0.38 0.61 0.53 0.60 0.58 0.50 0.45

Traffic cone 0.39 0.11 0.18 0.14 0.17 0.16 0.19 0.15
Channelizer 0.28 0.06 0.19 0.10 0.16 0.14 0.17 0.15

mAP 0.49 0.26 0.37 0.32 0.36 0.35 0.33 0.30
FPS 119 119 69 65 100 103 NA NA

Table 3: Accuracy Results with Weight Error 1% + Feature
Map Error 1%

parts of the primary network. Finally, we run inferencing
on both networks and take the average of their outputs. In
this manner, we are able to replicate the propagation method
proposed in D2NN without the need to hack into Pytorch or
Tensorflow’s encapsulated implementation of their linear/-
convolutional layers.

Experiment: We inject the same 1% error rate in both
weights and feature maps and compare the accuracies be-
tween the FMR, KR and D2NN approaches with differ-
ent duplication ratios. In this experiment, we use only the
weight-sum ranking approach. Table 3 capture the per-
class accuracies and speed performance of the deepnet with
respect to these different error scenarios and duplication
methods. Based on our experiments, we infer the follow-
ing.

Observation 1. KR duplication provides a similar accuracy
protection capability and better speed performance com-
pared to the FMR method. We note that KR drops only
by 10% in speed performance. To maintain the best in-
ference speed with reasonable accuracy protection against
software, we recommend the use of KR with more duplica-

tion for a safety-critical application with limited resources.
Each object class has a different vulnerability and recov-
ery ratio with duplications against errors. Car and pedes-
trian classes are more robust than other classes overall, with
27% and 35% accuracy drops respectively. This is because
these classes have been trained with more data than other
classes and the trained weight parameters with the classes
become less sensitive against errors. Car, pedestrian and
bus classes show better accuracy recovery from duplication
than other classes. For example, FMR with 50% duplica-
tion in all the experiments provide more than 50% recovery
with these classes.
Observation 2. Our approaches out-perform D2NN re-
covery. FMR and KR improve the accuracy to 24% and
22% with 50% duplication, respectively. D2NN yields only
15% improvement with the same amount of duplication.
Our recovery strategy is to cancel out the errors in weights
and feature maps by compensation using partial duplica-
tion. The D2NN approach reduces the impact of the errors
by attempting to duplicate the network’s robustness itself.
Hence, the performance of D2NN relies on the original net-
work’s robustness.

D2NN requires many changes in the original network
implementation because the duplicated network shares the
primary network. Since we simplified the implementation
of the D2NN approach, it may not be entirely fair to com-
pare the higher overhead of the D2NN implementation with
that of our recovery methods. The overall overhead of the
D2NN approach is similar to that of our FMR approach be-
cause both need to recalculate the feature maps from the
duplicated parts.

5. Concluding Remarks
In this paper, we presented several findings on the vul-

nerabilities of deep-learning applications to transient faults.
We proposed neuron-based network duplication approaches
to improve the accuracy of a deepnet against these faults.
Specifically, we tested and compared various methods to
rank the importance among neurons. We next presented
two fault-recovery mechanisms that duplicate a partial net-
work by picking critical neurons in the inference stage to
improve accuracy in the presence of transient faults. We
demonstrated the benefits of our fault recovery solutions by
presenting case studies using real-world convolutional neu-
ral network applications on multiple NVIDIA platforms: a
GeForce GTX 2070Ti GPU and the popular Nvidia Xavier
embedded platform. Our analysis of the impact of errors
and recovery mechanisms can be useful to incorporate into
highly automated vehicles with stringent safety and robust-
ness requirements. As a next step, we plan to expand our
solution to a fault-tolerance framework that handles both
transient and permanent faults under real-time constraints.
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