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Abstract

In many situations, the data one has access to at test
time follows a different distribution from the training data.
Over the years, this problem has been tackled by closed-set
domain adaptation techniques. Recently, open-set domain
adaptation has emerged to address the more realistic sce-
nario where additional unknown classes are present in the
target data. In this setting, existing techniques focus on the
challenging task of isolating the unknown target samples,
so as to avoid the negative transfer resulting from aligning
the source feature distributions with the broader target one
that encompasses the additional unknown classes. Here, we
propose a simpler and more effective solution consisting of
complementing the source data distribution and making it
comparable to the target one by enabling the model to gen-
erate source samples corresponding to the unknown target
classes. We formulate this as a general module that can
be incorporated into any existing closed-set approach and
show that this strategy allows us to outperform the state of
the art on open-set domain adaptation benchmark datasets.

1. Introduction
Domain shift, referring to the training (i.e., source) and

test (i.e., target) data being drawn from different distribu-
tions, challenges the standard machine learning assump-
tion [4], thus typically causing dramatic training-testing
performance drops. Domain adaptation (DA) aims to alle-
viate this problem by reducing the gap between the source
and target distributions [39, 30, 3, 12, 25, 23]. A partic-
ularly popular approach to doing so was inspired by Gen-
erative Adversarial Networks [13], and involves the use of
an adversarial domain classifier. This classifier attempts to
discriminate the source and target features, while the feature
extractor aims to fool the discriminator. Many state-of-the-
art DA techniques have built on this idea [11, 38, 24, 28] and
have proven to be effective at mitigating the domain shift.

*Equal Contribution.

Figure 1: Illustration of our approach. Given source sam-
ples from known classes and target samples from both
known and unknown classes (a), existing open-set DA
methods (b) aim to adjust the decision boundaries to iden-
tify the unknowns. By contrast, our approach (c) generates
unknown source samples so as to turn the open-set DA into
a closed-set one.

Nevertheless, most existing DA techniques tackle the
closed-set DA scenario, where the source and target data
contain the same classes. As such, they cannot handle
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the presence of additional, unknown classes in the tar-
get domain, which may further accentuate negative trans-
fer by increasing the source-target distribution mismatch.
This more realistic, yet more challenging, scenario is ad-
dressed by open-set DA. In this context, the existing meth-
ods aim to separate the unknown classes from the known
ones, so that distribution alignment can focus on the lat-
ter [7, 2, 35, 9, 22]. While isolating the unknown tar-
get classes seems intuitive, the resulting methods have to
rely on either costly alternative optimization strategies [7],
carefully-tuned hyperparameters [2, 35] whose effective-
ness highly depends on the openness of the dataset, i.e.,
the ratio of unknowns to all target samples, or a classifier
trained on the source data [22], which may lead to nega-
tive transfer when the source and target distributions differ
significantly.

In this paper, we introduce a simpler yet more effective
approach to open-set DA. Specifically, we propose to com-
plement the source data by generating source samples de-
picting the unknown target classes so as to reduce the neg-
ative transfer entailed by these classes. This is achieved
by incorporating a generator that produces unknown source
samples into a DA model. To encourage the generated sam-
ples to truly encode unknown target classes, we align the
distributions of the target and augmented source data, while
training the final multi-class classifier to account for an un-
known class, so that the generated samples differ from those
containing known classes.

As illustrated in Fig. 1, by generating unknown source
samples, we turn open-set DA into a closed-set problem.
As such, our solution can be implemented in most existing
closed-set DA techniques. The resulting framework outper-
forms the state-of-the-art open-set DA methods on the chal-
lenging Office-Home [40], VisDA-17 [32] and Syn2Real-
O [33] benchmarks. In contrast to the existing open-set DA
methods, our approach is robust to openness without any
hyperparameter tuning. We will make our code publicly
available upon acceptance of the paper.

2. Related Work
Closed-set Domain Adaptation: By aiming to mitigate

the domain shift between the source and target data, do-
main adaptation is broadly applicable to many areas, such
as computer vision, speech and natural language process-
ing, and robotics. Recent DA approaches can be roughly
divided into two categories: statistically-inspired meth-
ods [30, 3, 12, 39, 23, 42], which reduce the domain gap
by directly minimizing a distribution discrepancy measure
between the source and target domain in feature space, and
domain-adversarial methods [11, 38, 26, 24, 28], which are
motivated by GANs [13] and indirectly align the feature dis-
tributions by exploiting a domain discriminator.

Whether statistically inspired or domain adversarial, DA

has recently been shown to benefit from the use of pseudo-
labels in the target domain [34, 8, 44, 43]. In essence, this
strategy consists of labeling a portion of the target samples
with the source classifier and using such pseudo-labels as
supervision. This process can be performed recursively.

In any event, while the aforementioned unsupervised DA
approaches represent great progress in the field, they all
tackle the closed-set scenario, where the source and target
data contain the same classes. As such, they are vulnerable
to the presence of previously-unseen, unknown classes in
the target data, which lead to negative transfer.

Open-set Domain Adaptation: While open-set recog-
nition has been relatively well studied in the single-domain
scenario [29, 19, 36, 17, 5], the open-set DA literature re-
mains sparse. Assign-and-Transform-Iteratively (ATI) [7]
constitutes the first attempt at tackling this challenging, yet
more realistic scenario. To this end, it follows an approach
similar to pseudo-labeling, assigning the target samples to
one of the known or unknown classes based on the dis-
tance of the target features to the source class centroids.
By contrast, Factorized Representations for Open-set Do-
main Adaptation (FRODA) [2] separates the known and
unknown samples by factorizing them into shared and pri-
vate representations. Open Set Domain Adaptation by Back
Propagation (OSBP) [35] employs a domain adversarial ap-
proach, relying on a pre-defined threshold to identify the
unknown samples from the known ones. [9] extend OSBP
by exploiting a contrastive-center loss to preserve the dis-
criminative information in the known classes while push-
ing the unknown samples away from the decision bound-
ary. Separate To Adapt (STA) [22] alleviates the need for
a pre-defined threshold by exploiting a classifier that esti-
mates the probability of a target sample to belong to one of
the source classes or to the unknown ones. Rotation-based
Open Set (ROS) [6] exploits the self-supervised task of rota-
tion recognition to align the source and target domains and
separate known samples from the unknown ones in the tar-
get domain. Self-Ensembling with Category-agnostic Clus-
ters (SE-CC) [31] generalizes the Self-Ensembling tech-
nique [10] by using category-agnostic clusters in the target
domain, which provide domain-specific visual and struc-
tural cues. Inheritable Models for Open-Set Domain Adap-
tation (InheriTune) [20] defines an objective measure of in-
heritability to select the most suitable source-trained model,
which facilitates adaptation in the absence of the source do-
main. Progressive Graph Learning (PGL) [27] introduces
an end-to-end framework with episodic training to mini-
mize the conditional shift between the source and target dis-
tributions.

While promising, the existing open-set DA methods rely
on either complex architectures or optimization strategies,
or hyper-parameters that make them sensitive to the open-
ness of the dataset, i.e., the ratio of unknowns to all target
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samples. This is due to the fact that they aim to solve the
challenging problem of explicitly isolating the unknown tar-
get samples. Here, by contrast, we propose to embrace the
presence of unknown classes, and generate unknown source
samples to turn the open-set problem into a closed-set one,
thus building on the advances of the more mature closed-set
DA field.

Note that our approach is different in nature from the
ones that use generative models for data augmentation [1]
and few-shot learning [41, 15]. Specifically, the former [1]
aim to generate samples of observed, known classes, and do
not tackle the domain shift problem, and the latter [41, 15]
work under the assumption of having access to a few la-
beled images of the new classes, which lets them explicitly
focus on the given samples from this class to generate new
images, while transferring the modes of variations, e.g., dif-
ferent poses and surroundings, from the base classes. By
contrast, we work with two different domains, do not know
which target images depict new classes, i.e., the unknown
classes are mixed with the known ones, and have access to
no labeled target images.

3. Our Approach

Let us now introduce our approach to open-set domain
adaptation. To this end, let Ds = {(xs

i , y
s
i )}

ns

i=1 denote
the set of ns labeled source samples, where ysi ∈ Ys =
{1, . . . , C − 1} is a label coming from one of the C − 1
known classes. Furthermore, let Dt =

{
xt
j

}nt

j=1
denote the

set of nt unlabeled target samples, where xt
j ∈ Xt. Our

goal is to learn a classifier F : Xt → Yt that, given a target
sample xt, produces a label ŷt ∈ Yt = {1, . . . , C − 1, C},
where C jointly accounts for additional, unknown classes,
not observed in the source data.

To this end, as depicted by Figure 2, we propose to in-
corporate a generator network G that, given a noise vec-
tor z as input, produces a source sample xg from an un-
known target class. Our generator consists of six decon-
volution layers, with 512, 256, 128, 64, 32, and 3 chan-
nels, respectively. These layers use kernels of size 4 and
are connected by batch normalization and ReLU nonlinear-
ities. They map an embedding vector of size 100 to an im-
age of size 3 × 224 × 224. For the generated samples to
be effective and contain useful information for our under-
lying open-set DA problem, they must satisfy two proper-
ties. First, they must be correctly classified to class C so
as to avoid confusion with the known classes. Second, once
processed by a feature-extractor backbone network, the data
obtained by combining the generated samples with the orig-
inal source samples must follow the same distribution as the
target data. Below, we discuss our approach to enforcing
these two properties.

For the first one, let θG denote the parameters of the gen-

erator G(z), θF those of the feature-extractor backbone net-
work F (x), and θH those of a multi-class classifier H(f)
acting on the features f computed by the backbone. Our
goal then is to learn these parameters so as to solve the prob-
lem

min
θG,θF ,θH

Lh(θG, θF , θH) , (1)

where Lh is

1

ns + ng

(
ns∑
i=1

L (H (F (xs
i )) , y

s
i ) +

ng∑
i=1

L
(
H
(
F
(
xg
i (θG)

))
, C
))

,

(2)
with ng the number of generated samples, and L(·) the

cross-entropy loss function.
Solving (1) is of course not sufficient, because it does

not exploit the target data at all, and thus cannot encode
the second property, i.e., the fact that the distribution of the
augmented source data should match that of the target data.
To model this, we note that, by augmenting the source data
with unknown samples, we have in essence turned open-set
DA into a closed-set problem. Therefore, we can exploit
the same distribution-alignment strategies as in closed-set
DA. Below, we discuss the two most popular such strate-
gies, which we used in our experiments. Note, however, that
our formalism extends to most closed-set DA techniques.

Distribution alignment with an adversarial domain
classifier. In the context of deep closed-set DA, one of the
most popular trends to minimize the discrepancy between
the source and target distributions, introduced by [11], con-
sists of jointly training a binary domain classifier D(f). The
goal then becomes learning a feature representation that
fools this classifier, i.e., makes the target features indistin-
guishable from the source ones. In our context, and com-
bining this idea with the previous loss function, this can be
expressed as the minimax problem

min
θG,θF ,θH

Lh(θG, θF , θH)− λdLd(θG, θF , θD) (3)

min
θD

Ld(θG, θF , θD) ,

where θd denotes the discriminator parameters, λd trades
off the influence of the two loss terms in the first optimiza-
tion problem, and Ld(·) is a discriminator loss. As shown
by [11], both optimization problems can be solved jointly
using a gradient reversal layer. Note that, w.l.o.g., we as-
sume that source samples to be ordered, the original ones
first followed by the generated ones. Furthermore, fs,gi de-
notes the feature vector of either an original source sample
or a generated one.

In [11], the discriminator loss is the binary cross-entropy
defined as

Lb = − 1

ns + ng

ns+ng∑
i=1

log [D (fs,gi )]− 1

nt

nt∑
j=1

log
[
1−D

(
f tj
)]

.

(4)
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Figure 2: Proposed framework. We introduce a generator (G) that produces source samples from the unknown target classes.
To ensure that these samples contain the correct information, we align the target feature distribution to the augmented source
one via standard closed-set DA strategies, including an MMD-based loss and an adversarial domain classifier (D), with hd

the probability of classifying a sample in domain d. Furthermore, we encourage the generated samples to be classified as
unknowns by the multi-class classifier (H). Our entire framework, including the generator, is trained in an end-to-end fashion.

Following CDAN [24], we modify this formulation to
further condition the discriminator D on the prediction of
the multi-class classifier H . Specifically, let h denote the
multi-class probability vector output by the classifier H . We
then write the discriminator loss as

L′
d = − 1

ns + ng

ns+ng∑
i=1

log [D (T⊗(f
s,g
i ,hs,g

i ))]

− 1

nt

nt∑
j=1

log
[
1−D

(
T⊗(f

t
j ,h

t
j)
)]

,

where T⊗(·) is the multilinear map, i.e., outer product in
our case, defined as T⊗(f ,h) = f ⊗ h . This was shown
by [24] to be more effective than concatenating f and h.

Finally, as suggested by [24], to prevent the minimax
problem from giving equal importance to the samples with
uncertain predictions in the adaptation procedure, we re-
weight their influence according to uncertainty. Specifi-
cally, we measure uncertainty using the entropy e(h) =

−
∑C

c=1 hc loghc, where hc denotes the probability of
classifying a sample in class c. This gives the discriminator
loss

Ld = − 1

ns + ng

ns+ng∑
i=1

e(hs,g
i ) log [D (T⊗(f

s,g
i ,hs,g

i ))]

− 1

nt

nt∑
j=1

e(ht
j) log

[
1−D

(
T⊗(f

t
j ,h

t
j)
)]

.

MMD-based distribution alignment. Another popular
approach to align the source and target distributions in the

closed-set DA literature consists of using the MMD [14].
This metric measures the discrepancy between two empir-
ical distributions as the distance between their means in a
reproducing kernel Hilbert space. In our context, we can
express this as the loss function

L′
mmd =

∥∥∥∥∥∥ 1

ns + ng

ns+ng∑
i=1

ϕ (fs,gi )− 1

nt

nt∑
j=1

ϕ
(
f tj
)∥∥∥∥∥∥

2

H

,

(5)
where ϕ(·) encodes the mapping to the reproducing kernel
Hilbert space H.

Following the same intuition as in the domain classifier
case, we propose to re-weigh the contribution of each sam-
ple in this loss according to its uncertainty. This lets us
re-write our MMD loss as

Lmmd =

∥∥∥∥∥∥ 1

ns + ng

ns+ng∑
i=1

e(hs,g
i )ϕ

(
fs,gi

)
−

1

nt

nt∑
j=1

e(ht
j)ϕ

(
f tj
)∥∥∥∥∥∥

2

H
(6)

We then incorporate this loss function in (3) to obtain our
complete learning formulation

min
θG,θF ,θH

Lh(θG, θF , θH)− λdLd(θG, θF , θD) (7)

+ λmLmmd(θG, θF , θH)

min
θD

Ld(θG, θF , θD) ,

where λm sets the relative influence of the MMD term.
Note that, by setting either λd or λm to 0, our formalism
allows us to employ a single distribution-alignment strat-
egy. As will be evidenced by our experiments, our method
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remains highly effective in such cases. Note that, the gen-
erated data is unlikely to be from the known classes. For a
dataset with C − 1 classes, H is a C-way classifier, which
we train by classifying the generated samples to class C.
Generating samples from the other classes would confuse
this classifier and thus degrade its accuracy.

4. Experiments

We compare our approach with the open-set domain
adaptation methods ATI-λ [7], OSBP [35], ROS [6], SE-
CC [31], InheriTune [20], STA [22], and PGL [27] on
the three most challenging open-set DA datasets: Office-
Home, VisDA-17, and Syn2Real-O. Furthermore, we re-
port the results of two closed-set domain adaptation base-
lines representative of the two adaptation strategies we em-
ploy: the use of MMD [14] in a deep network, and the do-
main discriminator-based DANN [11]. Note that to make
a fair comparison, and since pseudo-labeling can be incor-
porated in all existing open-set and closed-set DA meth-
ods to further improve their performance, we report the
results of PGL [27] without pseudo-labeling in the tables.
Finally, we also provide the results of not performing any
domain adaptation using either a ResNet-50 [16] or a VG-
GNet [37], according to the backbone used in the DA net-
works. For MMD, DANN, and ResNet-50/VGGNet, we
utilize OSVM [18] to reject the unknown target samples.

All networks were trained using SGD with a learning
rate of 0.001, a weight decay of 5 × 10−5, and a momen-
tum of 0.9. Following the learning rate annealing strategy
of [11, 24], we adjust the learning rate by (1+αp)−β , where
p is the training progress, and α = 0.001, β = 0.75. For
our approach, we used the same architectures as in [24] to
define our classifier H and domain discriminator D. Dur-
ing training, we set λm to 1, and, relying on the progres-
sive training strategy of [11, 24], increase λd from 0 to 1 as
1−exp(−10p)
1+exp(−10p) , with p the training progress. We report the two
widely-used metrics of normalized accuracy for the known
classes (OS∗), and normalized accuracy for all classes (OS).

4.1. Datasets

Office-Home [40] is a challenging domain adaptation
benchmark containing 15,500 images from 65 classes of ev-
eryday objects. There are 4 domains in the dataset: Art
(Ar), Clipart (Cp), Product (Pr), and Real-World (Rw).
For our experiments, we follow the same setting as in [22],
consisting of taking the first 25 classes in alphabetical or-
der as known classes and the remaining classes as unknown
ones. For this set of experiments, all DA networks rely on a
ResNet-50 [16] pre-trained on ImageNet as backbone net-
work.

VisDA-17 [32] is a standard domain adaptation bench-
mark dataset comprising two domains, Synthetic and Real,

which share 12 object classes. The Synthetic domain con-
tains 152,397 synthetic images generated by 3D render-
ing. The Real domain consists of 55,388 real-world im-
ages taken from the MSCOCO [21] dataset. For our experi-
ments, we follow the same protocol as in [35, 22], choosing
6 classes as the known set, and the remaining 6 classes as
the unknown one. In this set of experiments, all DA net-
works employ a VGGNet [37] pre-trained on ImageNet as
backbone network.

Syn2Real-O [33] constitutes the most challenging
synthetic-to-real benchmark for open-set domain adapta-
tion. It consists of synthetic and real objects from 12
categories which forms the known set in the Synthetic
source domain and in the Real target domain. We take 50k
MSCOCO images from irrelevant classes to form the un-
known set in the target domain. Even though Syn2Real-O
introduces 33 additional categories from ShapenetCore as
unknowns in the source domain, we did not use that part of
the data. This is consistent for all the methods we evalu-
ate. In essence, we follow the open-set setting of [33], tak-
ing 12 classes as known ones for the source and target do-
mains, and the other 69 COCO categories as the unknown
classes in the target domain. In this set of experiments, all
DA networks employ a ResNet-50 pre-trained on ImageNet
as backbone network.

4.2. Results

As shown in Tables 1, 2, 3, and 4, our method outper-
forms the state-of-the-art baselines in most cases, consis-
tently improving the average accuracy (OS), by 1.8%, 2%
and 1.8% on Office-Home, VisDA-17, and Syn2Real-O, re-
spectively. Note that VisDA-17 and Syn2Real-O are among
the most challenging open-set DA datasets.

Visualization: The t-SNE plot of Fig. 3(a) compares the
distributions of the feature vectors fi of the generated sam-
ples and the unknown target samples, computed after train-
ing the whole framework (including the feature extractor
F ). Note that our generated unknown samples (in orange)
cover a large portion of the true unknown target sample dis-
tribution (in blue). While this confirms the effectiveness of
our approach, small parts in the true distribution nonethe-
less remain unaccounted for, which, we believe, explains
our slightly disappointing unknown class recognition accu-
racy. However, we expect this to be improved via the use
of pseudo-labeling, which has proven to be effective in re-
cent closed-set domain adaptation methods [8, 44, 43], and
would thus easily extend to our formalism.

One potential source of errors in our approach would be
that the generated samples depict known classes, instead
of unknown ones. This, however, is prevented by classi-
fier H , which forces the generated examples to be classi-
fied as unknown. Specifically, for a dataset with C − 1
classes, H is a C-way classifier, which we train by clas-
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Table 1: Normalized accuracy for the known classes (OS∗), and for all classes (OS) (%) on the first 6 pairs of source/target
domains the from Office-Home benchmark using ResNet-50 as backbone. Ar: Art, Cp: Clipart, Pr: Product, Rw: Real-
World.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Rw Cl→Pr Cl→Ar

OS OS∗ OS OS∗ OS OS∗ OS OS∗ OS OS∗ OS OS∗

ResNet+OSVM 37.5 38.7 42.2 42.6 49.2 51.4 53.8 55.5 48.5 50.0 39.2 40.3
DANN+OSVM 52.3 52.1 71.3 72.4 82.3 83.8 73.2 74.5 62.8 64.1 61.4 62.3
MMD+OSVM 50.6 52.4 65.5 67.9 77.8 80.7 57.8 60.1 62.9 65.4 70.2 73

ATI-λ [7] 53.1 54.2 68.6 70.4 77.3 78.1 74.3 75.3 66.7 68.3 57.8 59.1
OSBP [35] 56.1 57.2 75.8 77.8 83.0 85.4 75.5 77.2 69.2 71.3 64.6 65.9
STA [22] 58.1 - 71.6 - 85.0 - 75.8 - 69.3 - 63.4 -
ROS [6] 51.5 50.6 68.5 68.4 75.9 75.8 65.6 65.3 60.3 59.8 54.1 53.6
InheriTune [20] 60.1 - 70.9 - 83.2 - 75.7 - 70 - 64 -
PGL (w/o pro.) [27] 50.5 51.1 62.3 63.2 82.6 84.1 72.7 73.9 62.2 63.1 59.9 60.7

Ours 57.6 58.6 79.3 80.5 85 86.5 76.4 77.6 69.1 71.7 65.8 67.2

Table 2: Normalized accuracy for the known classes (OS∗), and for all classes (OS) (%) on the remaining 6 source/target
pairs from the Office-Home benchmark using ResNet-50 as backbone. Ar: Art, Cp: Clipart, Pr: Product, Rw: Real-World.

Method Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

OS OS∗ OS OS∗ OS OS∗ OS OS∗ OS OS∗ OS OS∗ OS OS∗

ResNet+OSVM 53.4 55.1 43.5 44.8 70.6 72.9 65.6 67.4 49.5 50.8 72.7 75.1 52.1 53.7
DANN+OSVM 63.5 64.5 46.0 46.3 77.2 78.3 70.5 71.3 55.5 56.2 79.1 80.7 66.2 67.2
MMD+OSVM 59.2 61.4 47.7 49.4 74.3 77.1 68.2 70.9 56.3 58.3 76.2 79.1 63.9 66.3

ATI-λ [7] 61.2 62.6 53.9 54.1 79.9 81.1 70.0 70.8 55.2 55.4 78.3 79.4 66.4 67.4
OSBP [35] 64.6 65.3 48.3 48.7 79.5 81.6 72.1 73.5 54.3 55.3 80.2 81.9 68.6 70.1
STA [22] 65.2 - 53.1 - 80.8 - 74.9 - 54.4 - 81.9 - 69.5 -
ROS [6] 57.6 57.3 47.5 46.5 71.1 70.8 67.1 67.0 52.3 51.5 72.3 72.0 62 61.6
InheriTune [20] 66.1 - 54.2 - 81.3 - 74.9 - 56.2 - 78.6 - 69.6 -
PGL (w/o pro.) [27] 58.9 59.7 44.6 44.9 75.2 76.5 72.2 73.3 49.9 50.6 76.3 77.7 63.9 64.9

Ours 68.4 69.1 53.1 54.5 81.2 82.8 76.4 77.5 62.1 63.4 81.8 83.2 71.4 72.7

sifying the generated samples to class C. To confirm that
this approach is effective, we compare the distributions of
the generated unknowns versus the known classes for the
Syn2Real-O dataset in Fig. 3(b). Note that the generated
unknown samples have only little overlap with the known
classes. Moreover, despite the fact that the generated sam-
ples do not resemble images from the unknown classes, as
shown in Fig. 4, the distribution of the resulting features ex-
tracted from these samples is close to that of real unknown
samples, which makes them helpful to classify the target
images.

To further analyse the effectiveness of the generated
samples and how our method helps for feature alignment,
we computed histograms of pairwise distances between the
features of generated samples versus unknown target sam-
ples, known target samples, and source samples. As can

be seen in Fig. 5, the generated images are more distant
from the known source and target samples than from the
unknown target examples.

4.3. Method Analysis

In this section, we evaluate different aspects of our ap-
proach.

Ablation Study: First, while our complete framework
combines the MMD and a domain classifier to align the tar-
get and augmented source distributions, it can in principle
rely on either one of these standard approaches individu-
ally. To evidence this, in Table 5(left), we compare our
complete framework with these three alternatives, referred
to as Ours w Lh + Lmmd, Ours w Lh + Ld, and Ours
w Lh + Ld w/o Entropy Cond., and with the state-of-the-
art PGL baseline. Note that, while accuracy is improved by
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Table 3: Accuracy comparison on VisDA-17 with VGGNet as backbone. OS∗ denotes normalized accuracy for the known
classes, and OS denotes normalized accuracy for all classes.

Method Bic Bus Car Mot Tra Tru unk OS OS∗

VGGNet+OSVM 31.7 51.6 66.5 70.4 88.5 20.8 38 52.5 54.9
MMD+OSVM 39.0 50.1 64.2 79.9 86.6 16.3 44.8 54.4 56.0
DANN+OSVM 31.8 56.6 71.7 77.4 87.0 22.3 41.9 55.5 57.8

ATI-λ [7] 46.2 57.5 56.9 79.1 81.6 32.7 65.0 59.9 59.0
OSBP [35] 51.1 67.1 42.8 84.2 81.8 28.0 85.1 62.9 59.2
STA [22] 52.4 69.6 59.9 87.8 86.5 27.2 84.1 66.8 63.9
InheriTune [20] 53.5 69.2 62.2 85.7 85.4 32.5 88.5 68.1 64.7
PGL (w/o pro.) [27] 52.5 68.7 44.0 91.6 71.6 13.7 44.6 55.2 57.01

Ours 66.2 83.1 59.9 88.4 76.7 41.2 75.5 70.1 69.2

Table 4: Accuracy comparison on Syn2Real-O with ResNet-50 as backbone. OS∗ denotes normalized accuracy for the known
classes, and OS denotes normalized accuracy for all classes.

Method Aer Bic Bus Car Hor Kni Mot Per Pla Ska Tra Tru unk OS OS∗

ResNet+OSVM 29.7 39.2 49.9 54.0 76.8 22.2 71.2 32.6 75.1 21.5 65.2 0.6 45.2 44.9 44.8
MMD+OSVM 51 56.9 55.2 45.2 77 27.1 61.8 57.8 44.7 35.1 73 9.6 14.3 46.8 49.5
DANN+OSVM 50.8 44.1 19.0 58.5 76.8 26.6 68.7 50.5 82.4 21.1 69.7 1.1 33.6 46.3 47.4

OSBP [35] 75.5 67.7 68.4 66.2 71.4 0.0 86.0 3.2 39.4 23.2 68.1 3.7 79.3 50.1 47.7
STA [22] 64.1 70.3 53.7 59.4 80.8 20.8 90.0 12.5 63.2 30.2 78.2 2.7 59.1 52.7 52.2
SE-CC [31] 82.1 80.7 59.7 50.0 80.6 36.7 83.1 56.2 56.6 21.9 57.7 4.0 70.6 56.9 55.8
PGL (w/o pro.) [27] 43.7 80.7 58.8 64.6 85.7 15.5 94.3 35.5 87.9 25 71.2 12.6 43.7 55.3 56.2

Ours 86.3 65.7 69.7 64.6 88.7 13.7 91.4 52 63.9 34.6 75.9 6.3 50.9 58.7 59.4

Table 5: Analysis of different aspects of our method on Syn2Real-O. (Left) Comparison of different distribution-alignment
losses. (Right) Ablation study of the different components of our framework.

Method OS OS∗

SE-CC [31] 56.9 55.8
Ours w Lh + Lmmd 55 59.2
Ours w Lh + Ld 54.8 55.7
Ours w Lh + Ld w/o Entropy Cond. 54.2 54.7

Ours 58.7 59.4

Method UNK OS OS∗

Ours w Noise 20.9 44.8 46.8
Ours w/o Entropy Cond. in Lmmd 48.7 58 58.8
Ours w/o Entropy Cond. in Ld 43.9 57.7 58.9
Ours w/o Entropy Cond. in Ld + Lmmd 45.2 56.9 57.8

Ours 50.9 58.7 59.4

combining Lmmd and Ld, using each one separately within
our model still consistently outperforms STA, and is com-
parable to SE-CC, thus showing the benefits and generality
of our approach. Moreover, the accuracy of our approach
with DAN only, as in OSBP, refereed to as Ours w Lh+Ld

w/o Entropy Cond. still outperform OSBP and the STA.

As a second analysis, we perform an ablation study to
evaluate the influence of different components of our ap-
proach. In particular, to evidence the importance of gen-
erating samples that correspond to the unknown classes, as

opposed to random noise treated as unknowns, we evaluate
an Ours w Noise baseline, consisting of removing the gen-
erator from our approach and using random noise images
instead. Furthermore, we report the results of our approach
without the use of entropy conditioning to reweigh the sam-
ples in Lmmd and Ld, referred to as Ours w/o Entropy
Cond. in Lmmd, Ours w/o Entropy Cond. in Ld, and
Ours w/o Entropy Cond. in Ld + Lmmd respectively. As
shown in Table 5(right), using random noise as unknown
samples yields a huge performance degradation, showing
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(a) Generated unknowns vs target unknowns.

(b) Generated unknowns vs source knowns.

Figure 3: t-SNE plots comparing the distributions of the
generated unknowns with the target unknowns (a) and
source knowns (b).

Figure 4: Target unknowns vs. generated images. While the
generated images do not resemble target unknowns, their
features are close, as evidenced by Figs. 3 and 5.

the importance of learning the distribution of the unknown
data. By contrast, entropy conditioning only has little influ-
ence on the average accuracy. However, it helps to correctly
classify the unknown samples.

Figure 5: Histogram of pairwise distances between the gen-
erated samples and source/target samples.

Robustness Analysis to Varying Openness: Finally,
we analyze the robustness of our approach to the openness
of the data. To this end, following the same protocol as
in [35, 22], we vary the openness of the Syn2Real-O data
in {0.25, 0.5, 0.75, 0.9} by removing different portions of
the unknown samples. In Fig. 6, we compare the results of
our approach with those of OSBP and STA. Our approach is
more stable than OSBP and consistently outperforms both
baselines by a large margin.

Figure 6: Accuracy vs. openness on Syn2Real-O.

5. Conclusion
We have introduced an approach to open-set DA that,

in contrast to existing ones, does not aim to isolate
the unknown target samples, but rather complements the
source data by generating samples from the unknown tar-
get classes. In essence, this has allowed us to turn open-set
DA into a closed-set problem, and thus to benefit from the
great advances in closed-set DA. Our approach is simpler
than existing open-set DA techniques, yet, as evidenced by
our experiments on the three most challenging open-set DA
benchmarks, consistently outperforms them. Furthermore,
it is broadly applicable to most closed-set DA frameworks.
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