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Abstract

We develop a transductive meta-learning method that
uses unlabelled instances to improve few-shot image clas-
siÞcation performance. Our approach combines a regu-
larized Mahalanobis-distance-based soft k-means cluster-
ing procedure with a modiÞed state of the art neural adap-
tive feature extractor to achieve improved test-time classi-
Þcation accuracy using unlabelled data. We evaluate our
method on transductive few-shot learning tasks, in which
the goal is to jointly predict labels for query (test) examples
given a set of support (training) examples. We achieve state
of the art performance on the Meta-Dataset, mini-ImageNet
and tiered-ImageNet benchmarks. All trained models and
code have been made publicly available1.

1. Introduction

Deep neural networks have transformed machine learn-
ing and computer vision [16, 50, 14, 11, 21, 12, 38, 40,
10, 46], enabled in part by the development of large and
diverse sets of curated training data [52, 13, 22, 47, 50].
However, in many image classiÞcation tasks, millions of la-
belled examples are not available; therefore, techniques that
can achieve sufÞcient classiÞcation performance with few
labels are required. This has motivated research on few-shot
learning [6, 57, 56, 3], which seeks to develop methods for
developing classiÞers with much smaller datasets. Given a
few labelled ÒsupportÓ images per class, a few-shot image
classiÞer is expected to produce labels for a given set of un-
labelled ÒqueryÓ images. Typical approaches to few-shot
learning adapt a base classiÞer network to a new support set
through various means, such as learning new class embed-
dings [48, 54, 51], amortized [41, 34] or iterative [58] partial
adaptation of the feature extractor, and complete Þne-tuning
of the entire network end-to-end [37, 7].

In addition to the standard fully supervised setting, tech-
niques have been developed to exploit additional unlabeled
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Figure 1: Transductive CNAPSÕ soft k-means Mahalanobis-
distance based clustering procedure. First, cluster parame-
ters are initialized using the support examples. Then, dur-
ing cluster update iterations, query examples are assigned
class probabilities as soft labels and subsequently, both soft-
labelled query examples and labelled support examples are
used to estimate new cluster parameters.

support data (semi-supervision) [39] as well as information
present in the query set (transduction) [28, 18]. In our work,
we focus on the transductive paradigm, where the entire
query set is labeled at the same time. This allows us to
exploit the additional unlabeled data, with the hopes of im-
proving classiÞcation performance. Existing transductive
few-shot methods reason about unlabelled examples by per-
forming k-means clustering with Euclidean distance [39] or
message passing in graph convolutional networks [28, 18].

Since few-shot classiÞcation requires handling a varying
number of classes, an important architectural choice is the
Þnal feature to class mapping. Previous methods have used
the Euclidean distance [39], the absolute difference [19],
cosine similarity [54], linear classiÞcation [7, 41] or ad-
ditional neural network layers [18, 51]. Bateni et al. [2]
introduced a class-adaptive Mahalanobis distance. Their
method, Simple CNAPS, uses a conditional neural-adaptive
feature extractor, along with a regularized Mahalanobis-
distance-based classiÞer. This modiÞcation to CNAPS
[41] achieved improved performance on the Meta-Dataset
benchmark [53], only recently surpassed by SUR [5] and
URT [27]. However, its performance suffers when there are
Þve or fewer support examples available per class.

Motivated by these observations, we explore the use of
unlabelled examples through transductive learning within
the same framework as Simple CNAPS. Our contributions
are as follows. (1) We propose a transductive few-shot
learner, namely Transductive CNAPS, that extends Sim-
ple CNAPS with a transductive two-step task encoder, as
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Figure 2: Overview of neural adaptive feature extraction in Transductive and Simple CNAPS. Figure adapted from [2].

well as an iterative soft k-means procedure for reÞning class
parameter estimates (mean and covariance) using both la-
belled and unlabelled examples.(2) We demonstrate the ef-
Þcacy of our approach by achieving new state of the art per-
formance on Meta-Dataset [53].(3) When deployed with
a feature extractor trained on their respective training sets,
Transductive CNAPS achieves state of the art performance
on 4 out of 8 settings on mini-ImageNet [48] and tiered-
Imagenet [39], while matching state of the art on another
2. (4) When additional non-overlapping classes from Im-
ageNet [42] are used to train the feature extractor, Trans-
ductive CNAPS is able to leverage this example-rich fea-
ture extractor to achieve state of the art across the board on
mini-ImageNet and tiered-ImageNet.

2. Related Work

2.1. Few-Shot Learning using Labelled Data

Early work on few-shot visual classiÞcation has focused
on improving classiÞcation accuracy through the use of bet-
ter classiÞcation metrics with a meta-learned non-adaptive
feature extractor. Matching networks [54] use cosine sim-
ilarities over feature vectors produced by independently
learned feature extractors. Siamese networks [19] classify
query images based on the nearest support example in fea-
ture space, under theL 1 metric. Relation networks [51]
and variants [18, 44] learn their own similarity metric, pa-
rameterised through a Multi-Layer Perceptron. More re-
cently, Prototypical Networks [48] learn a shared feature
extractor that is used to produce class means in a feature
space where the Euclidean distance is used for classiÞca-
tion. ReMP2 [59] extends this framework by incorporating
self-attention for learning of prototypes in a rectiÞed metric
space, maintaining metric consistency between training and
testing tasks.

Other work has focused on adapting the feature extrac-
tor for new few-shot tasks. Transfer learning by Þne-tuning
pretrained visual classiÞers [58] was an early approach that
proved limited in success due to issues arising from over-
Þtting. MAML [7] and its variants [31, 32, 37] learn meta-
parameters that allow fast task-adaptation with only a few
gradient updates. Work has also been done on partial adap-

2Note that we do not directly compare to these methods as they are
either unpublished (ArXiv) or were developed concurrent to our work.

tation of feature extractors using conditional neural adaptive
processes [34, 8, 41, 2]. These methods rely on channel-
wise adaptation of pretrained convolutional layers by ad-
justing parameters of FiLM layers [35] inserted throughout
the network. Our work builds on the most recent of these
neural adaptive approaches, speciÞcally Simple CNAPS
[2]. SUR [5] and URT [27] are two very recent methods
that employ universal representations stemming from mul-
tiple domain-speciÞc feature extraction heads. URT [27],
which was developed and released publicly in parallel to
this work, achieves state of the art performance by using a
universal transformation layer.

2.2. Few-Shot Learning using Unlabelled Data

Several approaches [18, 28, 39] have also explored the
use of unlabelled instances for few-shot visual classiÞca-
tion. EGNN [18] employs a graph convolutional edge-
labelling network for iterative propagation of labels from
support to query instances. Similarly, TPN [28] learns a
graph construction module for neural propagation of soft
labels between elements of the query set. These methods
rely on a neural parameterization of distance within the fea-
ture space. TEAM [36] uses an episodic-wise transduc-
tive adaptable metric for performing inference on query ex-
amples using a task-speciÞc metric. Song et al. [49] use
a cross attention network with a transductive iterative ap-
proach for augmenting the support set using the query ex-
amples. TAFSSL2 [25] improves few-shot learning accu-
racy in transductive and semi-supervised settings by per-
forming a search for a compact feature sub-space that is
discriminative for a given few-shot test-task.

The closest approach to our work is that of Ren et al.
[39]. Their method extends prototypical networks [48] by
performing a single additional soft-label weighted estima-
tion of class prototypes. Our work, on the other hand,
differs in three ways. First, we produce soft-labelled esti-
mates of both class mean and covariance. Second, we use
an expectation-maximization (EM) algorithm that performs
a dynamic number of soft-label updates, depending on the
task at hand. Lastly, we employ a neural-adaptive proce-
dure for feature extraction that is conditioned on a two-step
learned transductive task representation, as opposed to a
Þxed feature-extractor. As we discuss in Section 4.2, this
novel task-representation encoder is responsible for sub-
stantial performance gains on out-of-domain tasks.
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Figure 3: Overview of the transductive task-encoding pro-
cedure,g! (S, Q), used in Transductive CNAPS.

3. Method

3.1. Problem DeÞnition

Following [48, 2, 41, 7], we focus on a few-shot clas-
siÞcation setting where a distributionD over image clas-
siÞcation tasks(S, Q) is provided for training. Each task
(S, Q) ! D consists of a support setS = { (x i , yi )} n

i =1 of
labelled images and a query setQ = { x !

i } m
i =1 of unlabelled

images; the goal is to predict labels for these query exam-
ples, given the (typically small) support set. Each query
imagex!

i " Q has a corresponding ground truth labely!
i

available at training time. A model will be trained by min-
imizing, over some parameters! (which are shared across
tasks), the expected query set classiÞcation loss over tasks:
E(S,Q )" D [

!
x !

i #Q # logp! (y!
i |x !

i , S, Q)]; the inclusion of
the dependence on all ofQ here allows for the model to
be transductive. At test time, a separate distribution of
tasks generated from previously unseen images and classes
is used to evaluate performance. Let us also deÞneshotas
the number of support examples per class, andway as the
number of classes within the task.

3.2. Simple CNAPS

Our method extends the Simple CNAPS [2] architecture
for few-shot visual classiÞcation. Simple CNAPS performs
few-shot classiÞcation in two steps.

First, it computes task-adapted features for every support
and query example. This part of the architecture is the same
as that in CNAPS [41], and is based on the FiLM meta-
learning framework [35]. Second, it uses the support set
to estimate a per-class Mahalanobis metric, which is used
to assign query examples to classes. The architecture uses
a ResNet18 [13] feature extractor. Within each residual
block, Feature-wise Linear Modulation (FiLM) layers com-
pute a scale factor" and shift# for each output channel,
using block-speciÞc adaptation networks$! that are condi-
tioned on a task encoding. The task encodingg! (S) consists

of the mean-pooled feature vectors of support examples pro-
duced byd! , a separate but end-to-end learned Convolution
Neural Network (CNN). This produces an adapted feature
extractorf ! (which implicitly depends on the support set
S) that maps support/query images onto the corresponding
adapted feature space. We will denote byS! , Q! versions
of the support/query sets where each image is mapped into
its feature representationz = f ! (x).

Simple CNAPS then computes a Mahalanobis distance
relative to each classk by estimating a meanµ k and reg-
ularized covarianceQk in the adapted feature space, using
the support instances:

µ k =
1

nk

"

i

I [yi = k] zi (1)

Qk = %k ! k + (1 # %k ) ! + #I, %k =
nk

nk + 1
(2)

HereI [yi = k] is the indicator function andnk =
!

i I [yi =
k] is the number of examples from classk in the support set
S. The ratio%k balances a task-conditional sample covari-
ance! and a class-conditional sample covariance! k :

! =
1
n

"

i

#
zi # µ

$#
zi # µ

$T
(3)

! k =
1

nk

"

i

I [yi = k]
#
zi # µ k

$#
zi # µ k

$T
(4)

whereµ = 1
n

!
i zi is the task-level mean. When few

support examples are available for a particular class,%k

is small, and the estimate is regularized towards the task-
level covariance! . As the number of support examples
for the class increases, the estimate tends towards the class-
conditional covariance! k . Additionally, a regularizer#I
(we set# = 1 in our experiments) is added to ensure in-
vertibility. Given the class means and covariances, Simple
CNAPS computes class probabilities for each query feature
vectorz!

i through a softmax over the squared Mahalanobis
distances with respect to each class:

p(y! = k | z! ) $ exp
#

# (z # µ k )T Q$ 1
k (z # µ k )

$
(5)

3.3. Transductive CNAPS

Transductive CNAPS extends Simple CNAPS by taking
advantage of the query set, both in the feature adaptation
step and the classiÞcation step. First, the task encoderg!

is extended to incorporate both a support-set embeddinges

and a query-set embeddingeq such that,

es =
1
K

"

k

1
nk

"

i

I [yi = k] d! (x i ), (6)

eq =
1
nq

"

i !

d! (x !
i ), (7)

whered! is a learned CNN. The support embeddinges is
formed by an average of (encoded) support examples, with
weighting inversely proportional to their class counts to pre-
vent bias from class imbalance. The query embeddingeq

uses simple mean-pooling; bothes andeq are invariant to
















