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Abstract

Large-scale pretraining of visual representations has led
to state-of-the-art performance on a range of benchmark
computer vision tasks, yet the benefits of these techniques
at extreme scale in complex production systems has been
relatively unexplored. We consider the case of a popular
visual discovery product, where these representations are
trained with multi-task learning, from use-case specific vi-
sual understanding (e.g. skin tone classification) to gen-
eral representation learning for all visual content (e.g. em-
beddings for retrieval). In this work, we describe how we
(1) generate a dataset with over a billion images via large
weakly-supervised pretraining to improve the performance
of these visual representations, and (2) leverage Transform-
ers to replace the traditional convolutional backbone, with
insights into both system and performance improvements,
especially at 1B+ image scale. To support this backbone
model, we detail a systematic approach to deriving weakly-
supervised image annotations from heterogenous text signals,
demonstrating the benefits of clustering techniques to handle
the long-tail distribution of image labels. Through a com-
prehensive study of offline and online evaluation, we show
that large-scale Transformer-based pretraining provides sig-
nificant benefits to industry computer vision applications.
The model is deployed in a production visual shopping sys-
tem, with 36% improvement in top-1 relevance and 23%
improvement in click-through volume. We conduct extensive
experiments to better understand the empirical relationships
between Transformer-based architectures, dataset scale, and
the performance of production vision systems.

1. Introduction

Visual representation learning is a core foundation in on-
line content search and recommendation systems [38, 3, 19].
In recent years, we have increasingly seen the paradigm of
training a single, high-capacity, deep neural network model
jointly across many heterogeneous tasks, especially in in-

dustry settings with complex use-cases [24, 38, 3]. There
are multiple benefits, including (1) the ability to jointly uti-
lize large amounts of strongly and weakly supervised data,
instead of training domain-specific models in isolation, some-
times leading to better performance compared with domain-
specific models [38], (2) an infrastructure benefit due to
reduced operational overhead to maintain fewer models, and
(3) a reliable source model to build upon for downstream
modeling tasks via transfer learning.

Many search, recommendation, and content understand-
ing tasks require a representation capturing both visual and
semantic components (Figure 1). This work focuses on the
single multi-task image representation model powering vi-
sual understanding for a widely-used visual discovery prod-
uct, referred to as the “Unified Visual Embedding”. This
model powers tens of production use cases and is an area of
substantial investment. Some production use-cases include:

• Retrieval: the embeddings are used through Approx-
imate Nearest Neighbors in several retrieval systems,
including Visual Search and Visual Shopping.

• Features: the embeddings are used as features in other
content understanding models that need information
extracted from images. Such models can be purely vi-
sual (e.g. skin-tone classification), aggregating multiple
images (e.q. video understanding), or combining other
signals such as text and graph structure [42, 36, 34]. It
is a computationally efficient way to leverage visual
signals in model training and serving.

In our paper we describe the implementation, experimen-
tation, and productionization of large scale pretraining on
over a billion images, along with the adoption and deploy-
ment of a Transformer-based architecture (Vision Trans-
formers), supplanting a CNN architecture approach that has
been an industry standard in recent years. We focus on
a weakly supervised label preparation methodology along
with ablations including dataset size variation to construct
the critical dataset Annotations-1.3B, and describe how our
billion-scale pretrained Vision Transformer model benefits
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the multi-task image representation model, along with the
end-to-end production system relevance, and engagement
impact through human judgement and A/B experimenta-
tion. We conclude with insights into generalization (few-
shot, cross-domain) performance. To the best of our knowl-
edge, this is the first large-scale industry application of pure
Transformer-based models for image retrieval.

2. Related Work
2.1. Visual Search Systems

Visual search has been widely adopted in social and e-
commerce applications, including Facebook [28], Pinterest
[38], eBay [35], Google, Microsoft [15], Alibaba [40, 41],
and Amazon [44]. In prior work, GrokNet [3] and Shop
the Look [25] have described the recent details of industrial-
scale visual search systems. These visual search systems
leverage multi-task learning to optimize a single embedding
for different applications in the organization. The visual
embedding models powering these systems are trained using
deep metric learning, including classification-based methods
[22, 37] and triplet-loss-based methods [14, 32].

2.2. Large-Scale Pretraining

Large-scale image datasets have proven to be useful in the
pretraining of general visual representations. Some of the
earliest work in this area involved pretraining AlexNet [18]
on YFCC100M [29], showing that pretraining on a large
dataset of Flickr images could perform comparably to
ILSVRC-2012 [7], a fully supervised dataset of 1.3 mil-
lion images. The quality of the text metadata has limited
the effectiveness of YFCC100M, and in subsequent work,
many of the improvements stem from the selection of higher
quality sources of textual supervision. JFT-300M [27] is a
large-scale dataset developed at Google, consisting of around
300M images and 18k labels in the dataset taxonomy. The
labels for each image are derived from a mixture of web
signals. Recently this dataset has been leveraged in the
BigTransfer [17] work to achieve state-of-the-art results on
ILSVRC-2012 (hereafter referred to as ImageNet-1k) and
the Visual Task Adaptation Benchmark (VTAB) [39]. Face-
book [20] investigated pretraining on billions of Instagram
images using hashtags as a form of weak supervision, achiev-
ing competitive ImageNet-1k performance. Large subsets
of Instagram images, selected randomly without bias to the
hashtag distribution, have also been useful in the context
of self-supervised learning [5]. OpenAI has explored the
effectiveness of image-to-caption matching in CLIP [23],
introducing the WebImageText dataset of approximately 400
million (image, text) pairs. The webly-supervised pretrain-
ing paradigm offers benefits to more complex vision tasks,
such as object detection [2] and video understanding [26].
Similar to CLIP, the task of pairing videos with their as-

sociated title, description, and other metadata, has led to
state-of-the-art results on action recognition tasks when us-
ing a dataset of 70 million YouTube videos [6].

2.3. Transformer Architectures

Transformer [31] architectures have become the state-of-
the-art solution for many natural language processing tasks,
based on a simple and scalable application of multi-head
attention. BERT [8] and GPT-3 [4] have demonstrated that
these architectures have a large pretraining capacity, with few
signs of saturating performance as the dataset size and model
size continue to increase. Fully Transformer-based architec-
tures have recently been successful for image classification,
with Vision Transformers [9, 30] achieving state-of-the-art
ImageNet-1k performance, while offering compelling advan-
tages in training compute and memory efficiency relative to
the equivalent ResNet [11] architectures.

3. Methodology

3.1. System Overview

Figure 1 (A) describes the overall setup for Unified Visual
Embeddings, which includes optimization objectives span-
ning across many modes of classification (single-class, multi-
label, multi-label softmax [20]), metric learning (normalized
sampled softmax [37], distance weighted sampling [32])
and auxiliary regularization losses. To evaluate model im-
provements, we compare both qualitative and quantitative
evaluation metrics across tens of datasets. Visual Search [16]
remains one of the most important applications of unified
visual embeddings, where performance is predominantly de-
termined by the representation quality and is the focus of our
offline evaluations and A/B experiments.

Figure 1 (B) describes an overview of our modifications
to the prior unified embedding setup with our billion-scale
weakly supervised pretraining and end-to-end Transformer
encoder. We go into details of our methodology below,
describing these two components that each led to significant
improvements across the majority of the evaluation metrics.

3.2. Billion-Scale Weakly Supervised Dataset

Motivated by prior work leveraging user-provided text
for large-scale weak supervision [20], we leverage multiple
text understanding models to create our billion-scale dataset.
We apply term clustering techniques and filter the candidates
according to visual concreteness and top-level interest-match
in order to create our Annotations-1.3B dataset.

3.2.1 Label Generation

We leverage multiple content understanding models to derive
weakly-supervised image annotations from over a billion
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Figure 1: (A) The overall architecture for Unified Visual Embeddings [38], consisting of one backbone convolutional
neural network model consuming a variety of datasets including classification and metric learning across a set of loss and
regularization functions. The embedding is consumed by a variety of customers across retrieval, as an input feature, and
for fine-tuning domain-specific models. We also show (B) our proposed methodology with grey boxes denoting unchanged
components. We introduce billion-scale image pretraining to produce a strong backbone encoder and leverage the Vision
Transformer encoder as a replacement of the CNN backbone.

1. Annotation Selection

(EN, jaguar, 0.90)
(EN, panthera onca, 0.90)
(EN, jaguar print, 0.95)
(EN, best design, 0.92)
(EN, print design, 0.75)

jaguar
panthera onca
jaguar print
best design

2. Visual Dictionary Restriction

3. Annotation Clustering

ANIMALS : CLS_1
VEHICLES: CLS_2
W_FASHION: CLS_3
M_FASHION: CLS_4

4. L1 Interest Restriction

jaguar →ANIMALS:CLS_1
panthera onca → ANIMALS:CLS_1
jaguar → VEHICLES:CLS_2
jaguar print → W_FASHION:CLS_3
jaguar print → M_FASHION:CLS_4

Figure 2: Overview of the label generation procedure.

web images. Figure 2 depicts a high-level overview of our
process, which is described in detail below.

Annotation Selection: We use high-confidence outputs
of a keyword prediction model as the basis for our label
generation method. To simplify the subsequent steps in the
pipeline, we select only the canonical, non-sensitive English
keywords, referred to as “annotations.” Furthermore, we
select a confidence score threshold such that annotations
are discarded if their score falls below the threshold. This
ensures a high level of precision in the resulting output.
Similar to hashtag-based pretraining approaches [20], it is
possible that applicable annotations are missing from the
signal output due to incompleteness of the text candidate
sources (e.g., content is missing a title and description).

Visual Dictionary Restriction: One challenge in work-
ing with the predicted annotations is that some terms may
be helpful for general content understanding, but are less
helpful for learning visual features due to the abstract nature
of the terms. The relationship between the visual concrete-
ness of terms and the ability of machine learning algorithms
to learn cross-modal relationships based on these terms has
been investigated in prior work [20, 13]. However, manually
assigning a concreteness score to each term in the annota-
tions dictionary would involve a large amount of human
effort. Therefore, we developed an algorithmic approach to
defining a concreteness score for each term.

For each term in the annotations dictionary, we train a
semi-supervised binary classifier to distinguish the applica-
bility of that term to a given image. We sample images with
an annotation matching that term at score greater than the
high-confidence threshold, and sample an equal number of
random negative examples that do not have a matching anno-
tation. We train and evaluate a lightweight embedding-based
MLP classifier for each term using the production unified
visual embedding as input to the model. The top-1 accu-
racy of the term’s classifier serves as the visual concreteness
score for the term, since the performance reflects the general
ability of a model to distinguish the applicability of the term
based on the visual information only.

Applying this method, we analyze the visual concreteness
of 218,879 terms in the annotations dictionary. In Figure 3,
we present the distribution of the concreteness scores. We
identify a decision boundary for the concreteness scores
based on a quantitative analysis of the pretraining perfor-
mance after removal of the low-quality terms from the dictio-
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Figure 3: Visual concreteness distribution for terms in the
annotations dictionary and visual dictionary threshold.

nary. The visual dictionary consists of all terms not falling
below the decision boundary. During the label generation
procedure, if an annotation is not present in the visual dictio-
nary, it is removed from further processing.

Annotation Clustering: Another challenge with the pre-
dicted annotations is the large size of the label space, which
consists of hundreds of thousands of terms. This creates
practical challenges for training and motivates the use of
clustering techniques to reduce the size of the label space.
Our method first uses a classification model to map each
annotation to its corresponding top-level interests (“L1 inter-
ests”). There are 24 high level interests (e.g., home decor,
food and drinks, fashion) in the human-curated taxonomy.
Within each of the L1 interest groups, k-means clustering
is applied to the text embeddings of the terms within that
interest group in order to yield a set of cluster identifiers.
Each image is mapped to the cluster identifiers correspond-
ing to its previously selected annotations. Note that each
annotation may map to multiple cluster identifiers, since
each annotation may map to multiple L1 interests.

L1 Interest Restriction: We apply a classification model
to map each image to top-level interests (“L1 interests“)
based on the image’s associated text metadata and user in-
teractions. We remove the cluster identifiers where the L1
interest of that cluster fails to match the L1 interest of the
image. This helps to address polysemy in the annotations
space. Per the example in Figure 2, the keyword “jaguar”
could be used in reference to an animal, a vehicle, or a fash-
ion item, whereas the top-level interests for the image help
to reduce the ambiguity of the textual content.

3.3. Training Datasets

We follow the label generation procedure to derive the
Annotations-1.3B pretraining dataset from the application’s
image corpus. This dataset consists of 1329M images with
18k labels in the taxonomy and approximately 2.88 labels
per image. We use a near-duplicate removal process to
ensure that each image that is present in the training dataset
is unique and non-overlapping with the validation sets.

The pretrained backbone network is used for initialization
of the encoder in the Unified Embedding fine-tuning process.
The multi-task training setup for the Unified Embedding
follows the previous description in [38, 25]. Compared to
the prior multi-task setting [25], there are three additional
classification datasets: Image Style, Skin Tone, and Home
Decor Color. Figure 1 depicts the relationship between the
pretraining setting and the multi-task training setting.

3.4. Model Architecture

We experiment with two families of model architectures:
CNN-based ResNext architectures [33] and Transformer-
based ViT architecture [9, 30]. In this work, we use the
ResNeXt-101 32x8d variant for all our CNN-based experi-
ments (as it is the baseline in production), thus we will refer
to it in short as ResNeXt-101 throughout this paper. We
use the ViT-Base model variants in our experiments, which
contain 12 Transformer encoder layers, 12 attention heads,
hidden size of 768, and MLP size of 3072 (86M parame-
ters) [9]. We consider the ViT-B/32 and ViT-B/16 variants,
which use an image patch size of 32x32 and 16x16, respec-
tively. Due to limitations on GPU memory and compute, and
the quadratic complexity of the Vision Transformer model
with respect to input sequence length, it was not practical to
evaluate variants with smaller patch sizes. For pretraining,
we use a prediction head trained with the multi-label soft-
max loss [20], which yielded better results than training with
per-cluster sigmoid outputs and binary cross entropy loss.

4. Experiments
4.1. Offline Evaluation

We studied the effect of large-scale pretraining through
the transfer performance of the fine-tuned Unified Visual
Embedding on the key downstream tasks.

4.1.1 Retrieval Evaluation

We use three offline evaluation sets described in the previous
works [38, 25] to measure the image retrieval performance of
the fine-tuned Unified Visual Embedding: Visual Shopping
(VS), Flashlight (F), and Lens (L). The metric average Preci-
sion@20 is used for Lens and Flashlight tasks, and metric
P@1 is used for fine-grained Visual Shopping task. In this
work, we use the methodology described in Shiau et al. [25]
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Model Pretraining VS F L C

RN-101 IN-1k 39.6 59.7 17.2 85.2
RN-101 IG-940M 46.7 67.6 20.2 87.9
RN-101 ANN-1.3B 52.4 70.8 22.7 88.8

ViT-B/32 IN-1k 29.2 44.7 15.2 82.3
ViT-B/32 ANN-1.3B 46.4 68.9 24.9 86.5
ViT-B/16 ANN-1.3B 54.7 74.3 26.7 89.7

Table 1: Summary of Unified Embedding retrieval perfor-
mance for different pretraining datasets and model architec-
tures. “VS” = Visual Shopping Precision@1, “F” = Flash-
light Average Precision@20, “L” = Lens Average Preci-
sion@20, “C” = Average Precision@1 of ten image clas-
sification tasks. “RN-101” = ResNeXt-101, “IN-1k” =
ImageNet-1k, and “ANN-1.3B” = Annotations-1.3B.

Method Label Count VS

Annotation Clustering 34k —
+ Visual Dictionary 26k +0.9%
+ L1 Interest Restrict 18k +1.1%

Table 2: Comparison of retrieval performance and pretrain-
ing label count for variants of the label generation procedure.
Improvements are relative to variant in previous row.

Model Resolution VS F L C

RN-101 224x 52.4 70.8 22.7 88.8
RN-101 384x 52.3 71.4 22.5 89.0

ViT-B/16 224x 53.1 73.7 26.3 89.2
ViT-B/16 384x 54.7 74.3 26.7 89.7

Table 3: Summary of retrieval performance for different
input image resolutions and model architectures.

to collect a Visual Shopping offline evaluation set with ∼40k
(query, product) pairs plus ∼110k distractor set.

In Table 1, we see that improvements to the pretrain-
ing procedure yield consistent benefits for the CNN-based
backbone. Switching from ImageNet-1k to a generic large-
scale dataset (IG-940M) yielded an average relative improve-
ment of +15.5% across the three retrieval tasks of interest.
When using a domain-specific large-scale dataset of compa-
rable scale (Annotations-1.3B), we obtained a further +8.5%
average relative improvement to the retrieval performance.
Finally, by leveraging the Vision Transformer model archi-
tecture with large pretraining capacity, we obtained an addi-
tional +6.7% average relative improvement to the retrieval
performance. The finding is consistent with [9, 30], when
the pretraining dataset is small, CNN-based backbone has
slight advantage. Vision Transformer starts to outperform
when we use the Annotation-1.3B pretraining dataset.

We studied the impact of design choices in the label gen-
eration procedure in Table 2. The decisions to limit the
selected terms to those in the visual dictionary and restrict
the selected clusters to those matching the top-level inter-
ests of the content item yielded improvements to the Visual
Shopping retrieval performance. Furthermore, reducing the
size of the clustered label space benefits the computational
efficiency of the prediction head in pretraining.

Per the results in Table 3, we found that the Vision Trans-
former backbone can take advantage of higher-resolution
inputs (384x384 images) in the fine-tuning process, whereas
the ResNeXt-101 backbone did not see consistent benefits
from higher-resolution inputs.

4.1.2 Classification Evaluation

We observed consistent improvements across classification
tasks when replacing the ImageNet-1k backbone with one
that is pretrained on a large-scale dataset. For this evalua-
tion, we measured the average P@1 across 10 tasks, namely,
Camera Categories, Home Decor Color, Fashion Color,
Pattern, Fabric, Image Style, Lowerbody Length, Dress
Style, and Skin Tone. We found that using a ResNeXt-101
model pretrained on a generic large-scale dataset (IG-940M)
yielded an average improvement of +2.7% across these tasks,
while pretraining on a domain-specific large-scale dataset
(Annotations-1.3B) yielded a larger average improvement
of +3.6% over the ImageNet-1k baseline model. By adopt-
ing the ViT-B/16 backbone, we obtained the largest average
improvement of +4.5% over the baseline model.

Furthermore, we observed large improvements for impor-
tant downstream tasks where no training data had yet been
integrated. The unified visual embedding is a key part of a
near-duplicate image detection system [10], and we measure
the performance of the visual embedding for this application
using R@P95 on a held-out eval set. For the ResNeXt-101
model architecture, performance improved from 42.4% to
60.8% as the pretraining dataset is varied from ImageNet-1k
to IG-940M. Furthermore, we found that as the pretrain-
ing dataset is varied from IG-940M to Annotations-1.3B,
performance improved again from 60.8% to 84.9%. This
task improvement was achieved without any specific data
collection or optimization for the target use case.

4.2. Human Relevance

We deployed large-scale pretrained models to a visual
shopping system, and measured the real-world relevance
improvement with different pretraining datasets and model
architectures through end-to-end human relevance evaluation
as shown in Table 4. We sampled roughly 8,000 traffic
weighted user image queries in production, with half of the
queries from fashion and half from home decor domain. For
each model variant, we compute binary embeddings for the
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Model Pretraining Offline VS P@1 E2E Extremely Similar@1 E2E Similar@1

Production [25] IG-940M 44.7 17.3 39.0

ResNeXt-101 ImageNet-1k 39.6 14.9 32.1
ResNeXt-101 IG-940M 46.7 17.9 36.8
ResNeXt-101 Annotations-1.3B 52.4 19.1 38.8
ViT-B/16 224x Annotations-1.3B 53.1 23.6 40.6
ViT-B/16 384x Annotations-1.3B 54.7 23.9 42.3

Table 4: Visual Shopping end-to-end retrieval performance using Unified Embedding with different pretraining datasets and
model architectures. The end-to-end system retrieval performance is measured by our in-house human evaluators. Two levels
of relevance (Extremely Similar and Similar) are shown in the table.

Model C-vol CT-vol C-er CT-er

Production [25] — — — —

ResNeXt-101 +10% +8% +7% +7%
ViT-B/16 224x +22% +23% +17% +22%

Table 5: Visual Shopping A/B experiment using large-scale
Annotations-1.3B pretrained Unified Embedding with CNN-
based and transformer-based architectures. We report click
(C-vol) and click-through volume (CT-vol) relative improve-
ment over our current production system. We also report
relative improvement of number of users who click (C-er) or
click-through (CT-er) on the product recommendations.

queries and retrieve top-1 results from the shopping product
corpus. The pairs of (query, product) are then rated by in-
house human evaluators. We reported two levels of relevance.
The pair is rated extremely similar when all key attributes,
such as color, pattern and materials, match. The pair is rated
similar when 1-2 attributes have minor mismatches.

The general improvement trend found in offline evalua-
tion experiments holds true for the industry scale visual shop-
ping application. With CNN-based backbone, when we up-
date the pretraining dataset from ImageNet-1k, to IG-940M,
to Annotations-1.3B, the end-to-end extremely similar@1
metrics improves from 14.9% to 19.1% (∼ 28% relative
improvement). With Transformer-based backbone, we can
better leverage the largest pretraining dataset Annotations-
1.3B, and further improves the metrics to 23.9% (∼ 60%
relative improvement). Comparing to the current produc-
tion model, the end-to-end extremely similar@1 metrics
improves ∼38% relative.

4.3. A/B Experiments

We take two model variants for online visual shopping
A/B experiment: ResNeXt-101 and ViT-B/16 224x pre-
trained on Annotations-1.3B dataset. The relevance improve-
ment from large-scale pretraining translates to better user
engagement as shown in Table 5. ViT-B/16 224x pretrained

Model RN-101 ViT 224x ViT 384x

Train throughput
(#image/s) 265 231 59

Inference throughput
(#image/s) 306 327 94

Latency
(ms/image) 15.6 8.7 13.3

Table 6: Comparison of computation efficiency for different
model architectures. Train and inference throughput are mea-
sured with maximum batch size for a single GPU. Latency
refers to single-image batch inference. “ViT” = ViT-B/16.

on Annotations-1.3B improves both the volume of click-
throughs and the number of users who click-through the
recommendations by more than 20%.

Though ViT-B/16 384x scores higher in terms of rele-
vance metrics (Table 4), it is computationally more expen-
sive. For this application, ViT-B/16 224x provides better
trade-offs between the retrieval performance and the compu-
tational requirements of the model in training and inference.

4.4. Computational Efficiency

There are three model architectures that we consider for
production deployment: ResNeXt-101, ViT-B/16 224x and
ViT-B/16 384x. We benchmark various practical aspects
of the computational efficiency on a single GPU shown in
Table 6. The detailed environment setup for running the
benchmark is found in the supplementary material.

For batch operations such as distributed training and batch
inference, ResNeXt-101 and ViT-B/16 224x have similar
throughput, and thus cost similarly to train the model and
compute the embeddings for the visual search corpus. For
real-time applications such as visual shopping, we run single
image inference. ViT-B/16 224x has the lowest single image
inference latency. Overall, we found that ViT-B/16 224x
model is the most computationally efficient model to deploy
in the production environment.
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Figure 4: Retrieval performance (Visual Shopping P@1)
with respect to the size of the pretraining dataset.

4.5. Pretraining Dataset Scale

The sample count of the pretraining dataset has a sig-
nificant impact on the Unified Visual Embedding retrieval
performance. In Figure 4, we notice a consistent trend of
improvements as the size of the pretraining dataset is in-
creased. When training with 1% of the Annotations-1.3B
dataset, the ResNeXt-101 model architecture has a slight
performance advantage (+0.4%) relative to the ViT-B/16
model architecture. However, as the sample count increases,
the performance advantage of the ViT-B/16 model becomes
more clear. These findings are consistent with the results
in Table 1, where pretraining on ImageNet-1k vs. Anno-
tations 1.3B yields an absolute difference of 12.8% in VS
P@1 performance for the ResNeXt-101 model architecture,
whereas the absolute difference in performance of 25.5% for
the ViT-B/32 model architecture is significantly greater. For
future work, it would be valuable to study the performance
tradeoffs at even larger pretraining dataset sizes, especially
with parallel scaling of the Transformer model capacity.

4.6. Pretraining Label Distribution

Figure 5 highlights the Zipfian [43] distribution of
Annotations-1.3B and the non-Zipfian distribution of other
common pretraining datasets, including ImageNet-1k and
ImageNet-21k. To handle the large class imbalance of
webly-supervised data, it has been demonstrated in prior
work that resampling according to the inverse square root
of class frequency yields improvements to the learning of
rare classes and can improve the transfer performance of the
pretrained representation [21, 20]. We explored the benefits
of this dataset resampling technique for the Annotations-
1.3B dataset, finding that resampling the dataset for ViT-
B/16 224x pretraining improved the VS P@1 from 41.0% to
53.1% as compared to uniform sampling of the dataset.
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4.7. Few-Shot Learning

Given the significant costs associated with collecting hu-
man labels, we study the extent to which pretraining can
improve the sample efficiency of fine-tuning as a way to
help reduce these costs for future label collection efforts.
We consider the Image Style multi-label classification task
as an example for our analysis. This dataset consists of
72k images and has an average of 6.2k labels per category.
The dataset categories, such as “Screenshot,” “Mosaic,” and
“Infographic,” are useful for content understanding at scale.
In Figure 6, we present the Precision@1 performance for
the Image Style task head when varying the number of im-
ages per category (1, 5, 10, 25, 100, 250, 500, all) used in
fine-tuning. During fine-tuning, the other Unified Visual
Embedding dataset sizes remain the same.

As suggested in the context of language modeling [12],
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Model Pretraining ImageNet-1k ObjectNet

ViT-B/32 ANN-1.3B 81.4 48.4
ViT-B/32 JFT-300M 80.7 —

ViT-B/16 ANN-1.3B 83.6 50.7
ViT-B/16 JFT-300M 84.1 —

ResNet-50 JFT-300M 77.5 42.5
ResNet-101 JFT-300M 80.6 49.1
ResNeXt-101 IG-940M 82.2 —

Table 7: Cross-domain generalization performance
(ImageNet-1k and ObjectNet top-1 accuracy) for different
pretraining approaches and model architectures [20, 17, 9] .
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Figure 7: Cross-domain generalization performance with
respect to the size of the pretraining dataset.

large-scale pretraining can serve as an effective multiplier of
the size of each fine-tuning dataset. When fine-tuned with
only 500 samples per category, the ResNeXt-101 model pre-
trained on Annotations-1.3B achieves a similar level of per-
formance (94.6%) as compared to the ResNeXt-101 model
pretrained on ImageNet-1k and fine-tuned on the full dataset
(94.7%). Furthermore, when the smaller-size dataset was
used in conjunction with the Annotations-1.3B pretrained
Vision Transormer backbone, it was able to outperform the
full-size dataset used in conjunction with the ImageNet-1k
pretrained backbone (95.0%). In the extreme case of fine-
tuning with only 5 samples per category, the large-scale
pretrained backbone yields a +20% absolute improvement.

4.8. Cross-Domain Generalization

The ability of the pretrained model to generalize is impor-
tant as the requirements for the Unified Visual Embedding
continue to evolve over time. We study the cross-domain
generalization performance of our pretraining approach by
analyzing the transfer performance on image classification
benchmarks, including ImageNet-1k and ObjectNet [1], a
challenging real-world test set that controls for the biases of
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Figure 8: Example of retrieval results using the control (pro-
duction) model, the ResNeXt-101 Annotations-1.3B model,
and the ViT-B/16 Annotations-1.3B model. The ViT model
generally matches more similar product results.

rotation, viewpoint, and environment in the dataset construc-
tion. In Figure 7 we see that generalization performance
improves as the sample count of the pretraining dataset is
increased from 13M to 1.3B and as the spatial resolution
is increased in the comparison between ViT-B/32 and ViT-
B/16. Per Table 7, without any specific optimization for the
ImageNet taxonomy in the dataset construction, Annotations-
1.3B achieves competitive transfer performance on the tasks
relative to other large-scale image datasets.

5. Conclusion

We presented a scalable approach for pretraining with
over a billion images in order to improve a production Uni-
fied Visual Embedding model. By leveraging heterogeneous
sources of textual supervision in a principled fashion, we con-
structed a large-scale image dataset known as Annotations-
1.3B that obtained strong transfer performance and enabled
adoption of the state-of-the-art Vision Transformer architec-
ture. The embedding yielded significant improvements to
the Visual Shopping system when deployed in production
and demonstrated strong advantages across a variety of use
cases. This work suggests the promise of further scaling of
the Transformer-based pretraining paradigm as a way to sys-
tematically improve complex computer vision applications.
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