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Abstract

Class Activation Mapping (CAM) methods have recently
gained much attention for weakly-supervised object local-
ization (WSOL) tasks. They allow for CNN visualization
and interpretation without training on fully annotated im-
age datasets. CAM methods are typically integrated within
off-the-shelf CNN backbones, such as ResNet50. Due to
convolution and pooling operations, these backbones yield
low resolution CAMs with a down-scaling factor of up to
32, contributing to inaccurate localizations. Interpolation
is required to restore full size CAMs, yet it does not con-
sider the statistical properties of objects, such as color and
texture, leading to activations with inconsistent boundaries,
and inaccurate localizations. As an alternative, we intro-
duce a generic method for parametric upscaling of CAMs
that allows constructing accurate full resolution CAMs (F-
CAMs). In particular, we propose a trainable decoding ar-
chitecture that can be connected to any CNN classifier to
produce highly accurate CAM localizations. Given an orig-
inal low resolution CAM, foreground and background pix-
els are randomly sampled to fine-tune the decoder. Addi-
tional priors such as image statistics and size constraints
are also considered to expand and refine object boundaries.
Extensive experiments1, over three CNN backbones and six
WSOL baselines on the CUB-200-2011 and OpenImages
datasets, indicate that our F-CAM method yields a signif-
icant improvement in CAM localization accuracy. F-CAM
performance is competitive with state-of-art WSOL meth-
ods, yet it requires fewer computations during inference.

1Code: https://github.com/sbelharbi/fcam-wsol

Figure 1: An illustration of the differences between inter-
polation and our trainable parametric upscaling with priors.
C is the interpolated CAM, and S2 is the F-CAM produced
using our proposed trainable decoder architecture. The fig-
ure also shows the elements required to train our method.
More details are presented in Fig. 2.

1. Introduction

Deep learning (DL) models, and in particular CNNs,
provide state-of-the-art performance in many visual recog-
nition applications, such as image classification and object
detection. However, they remain complex models with mil-
lions of parameters that typically require supervised end-
to-end training on large annotated datasets. Weakly super-
vised learning (WSL) has recently emerged as an appeal-
ing approach to mitigate the cost and burden of annotating
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large datasets, by exploiting data with limited or coarse la-
bels [53]. In particular, WSL is largely beneficial in ob-
ject localization to avoid costly annotations, such as bound-
ing boxes. Weakly-supervised object localization (WSOL)
methods have drawn much attention because they rely on
image-class labels, that is less costly to acquire for training.

An important family of WSOL methods includes class-
activation maps (CAMs), which visualize CNN decisions
by resorting to the feature-map activations of the deep layers
[52]. Such feature maps yield spatial information allowing
access to a coarse localization of the object. Despite the
growing interest and success of CAM methods, they tend to
cover only small discriminative parts of an object. Several
approaches have been proposed to improve CAMs, such as
data-enhancement methods [8, 30, 40, 46, 49] or methods
that seek to improve the feature maps [17, 25, 39, 41, 42,
43, 48, 50]. Gradients are also used to interrogate a CNN
such that specific target labels are localized [11, 18, 24].

All these methods are typically applied with an off-the-
shelf CNN backbone for feature extraction, such as Incep-
tion, VGG, or ResNet families. Given the multiple strided
convolutions and pooling operations, these backbones yield
low resolution CAMs with a downscale factor up to 322.
Therefore, each pixel in a CAM covers a patch of 32× 32
pixels in the input image, making the CAM vulnerable to in-
accuracies in object localization. Interpolation is often used
to generate full size CAMs, but it does not take into con-
sideration statistical properties of an object such as color
and texture or its shape. This results in a well-known is-
sue with CAMs, where they cover only small discrimina-
tive image regions, leading to bloby localization with inac-
curate boundaries (see Figs. 3 and 4). The downscale fac-
tor of CAMs can therefore be a bottleneck in localization
tasks3. Moreover, CAMs do not explicitly model the back-
ground, which plays a central role in increasing false posi-
tives/negatives because, e.g., parts of the background could
be considered as part of the object [27]. Finally, using only
global labels for supervision (without any pixel-level infor-
mation), is considered to be an ill-posed problem [7, 38]
that may lead to sub-optimal solutions.

The issue of low resolution CAMs is not sufficiently ad-
dressed in the literature [33, 45, 47]. For instance, [45]
proposes dilated residual networks that yield a downscale
factor of 8. [47] considers upscaling the feature maps
then performing classification and segmentation using two
branches. [33] uses a U-Net architecture to reconstruct the
image. To obtain full resolution CAMs during inference,
the reconstruction image is used in combination with the up-

2In practice, it is common to modify the convolution stride and max-
pooling layers to reduce the downsampling factor.

3In the supplementary materials, we provide a simulation to show that
the downscale factor of a CAM does indeed impose an upper bound perfor-
mance in localization tasks. We measure the pixel-wise localization with
respect to the downscale factor using a simulated CAM.

scaled CAM, in addition to other post-processing methods
such as Sobel filtering and region growing methods. Such
methods either yield small CAMs, are difficult to scale to
large number of classes, or require post-processing steps. In
this paper, we explicitly investigate this issue and propose a
method to improve the resolution and localization accuracy
of CAMs. As an alternative to interpolation, we propose to
equip a classifier employed for WSOL with a parametric
decoder architecture. The decoder is trained to gradually
upscale the resolution of feature maps, yielding a full res-
olution CAM (Fig.2). We explicitly model the foreground
and background using the decoder, allowing for robust lo-
calization. The decoder outputs two activation maps4, one
for the foreground and the other for the background, with
the same size as the input image.

Using a decoder such as in Fig. 2, which has a U-Net
form [26], is mainly motivated by deep image prior [36]. It
has been successfully applied to super-resolution task and
other tasks, including denoising and inpainting [36]. It was
shown in [36] that such U-Net architectures with skip con-
nections capture a large part of low-level image statistics.
As shown in the recent research in [39], such low-level de-
tails play a critical role in improving localization accuracy.
The authors of [39] aggregate low-level features to yield de-
tailed CAMs that are also used to collect pseudo-labels for
pixel-alignment. This suggests that exploiting fine-grained
details in deep networks is a promising direction to im-
prove localization accuracy. Fig.1 shows the intuition of
our method and its connection to deep image prior [36]. In

Figure 2: Our proposal: training (left), inference (right).

contrast the transductive learning setup used in [36] for un-

4This could be easily extended to multi-label case.

3491



supervised super-resolution, we consider an inductive learn-
ing allowing for fast inference. In particular, we propose us-
ing local and global constraints to train the decoder without
additional supervision. The local constraints entail pixel
alignment with pseudo-annotation that are collected from
CAMs produced by a WSOL classifier. In addition, condi-
tional random field (CRF) [34] is used as a consistency loss
to align the activations with object boundaries, by exploit-
ing statistical properties of the image such as color and local
proximity between pixels. An additional global constraint
allows recovering the complete part of the object using a
size prior.

Our main contributions are summarized below.
(1) We propose a simple, yet efficient alternative to inter-
polation to improve the quality of CAMs for WSOL task.
Given a trained CNN classifier for WSOL, we propose in-
tegrating a decoder architecture to perform a parametric up-
scaling of CAMs. It leverages low/top-level features from
the classifier, and original low resolution CAMs to pro-
duce full-resolution CAMs (F-CAMs) that yield accurate
localizations. In addition, the decoder explicitly models the
foreground and background. The proposed guidance loss is
named pixel alignment loss. (2) Training of the decoder is
performed using loss terms that enhance localization accu-
racy, consistency, and completeness of F-CAMs, using only
global image-class annotations. We exploit low resolution
CAMs in addition to image statistics and object size pri-
ors to train the decoder. Our method is generic, and can be
combined with any WSOL method with a CNN classifier,
such as ResNet, VGG, and Inception families. It aims at
improving CAM quality and, therefore, CAM localization
accuracy without altering the classification performance.
(3) Following the experimental WSOL protocol in [7], we
combine F-CAM with several baseline methods, includ-
ing CAM [52], GradCAM [28], GradCam++ [6], Smooth-
GradCAM++ [21], XGradCAM [11], LayerCAM [14], on
two challenging benchmark datasets for WSOL, CUB-200-
2011 [37] and OpenImages [4, 7]. The results indicate that
F-CAM can provide significant improvements in CAM lo-
calization for these baselines. In addition, F-CAMs pro-
duced with our method have better properties than stan-
dard CAM methods for WSOL, e.g., better robustness to
the threshold values. The enhanced results made these sim-
ple WSOL baselines competitive with recent state-of-the-art
WSOL methods. Finally, we provide ablation studies and a
time complexity analysis. The inference time obtained with
F-CAM is lower than the average time of fine-tuned base-
line methods, and is competitive with other CAM methods.

2. Related work
Authors in [52] introduce Class Activation Maps

(CAMs), showing that spatial feature maps of standard DL
models, trained using only image-class labels already, can

rich spatial information which can be used for object local-
ization without additional supervision. CAMs allow high-
lighting important regions of an input image associated with
a CNN’s class predictions. Since the CNN is trained for a
classification task using global image-class labels, CAMs
tend to activate only on small discriminative regions while
missing coverage for large parts of the body.

Several extensions have been proposed to alleviate this
issue. In particular, WSOL methods based on data enhance-
ment [8, 30, 40, 46, 49] aim to encourage the model to be
less dependent on most discriminative regions and seek ad-
ditional regions. For instance, [30] divides the input image
into patches, and only a few of them are randomly selected
during training. This forces the model to look for diverse
discriminative regions. However, given this random infor-
mation suppression in the input image, the CNN can easily
confuse objects from the background because most discrim-
inative regions were deleted. This leads to high false posi-
tives.

Other methods consider improving the feature maps [17,
25, 39, 41, 42, 43, 48, 50]. For instance, [41] considers us-
ing dilated convolutions to adapt to objects with different
sizes. [48] argues that a WSOL task must be divided into
object classification and class-agnostic localization tasks.
The latter generates noisy pseudo-annotations, then per-
forms bounding box regression with them for an accurate
localization. This is achieved separately from the classifica-
tion task to avoid undesired interaction between both tasks.
In [39], authors enhance the features by considering shallow
features of DL models, yielding state-of-the-art localization
accuracy, and demonstrating the benefit of shallow features
for object localization.

The aforementioned methods are model-dependent, i.e.
they require training a specific model architecture. Other
families of WSOL methods are model-independent, and al-
low to interrogate the localization of target label over a pre-
trained classifier, e.g., Gradient-weighted Class Activation
Mapping (Grad-CAM), Grad-CAM++, Ablation-CAM, and
Axiom-based Grad-CAM [11, 18, 24]. Dilated residual net-
works (DRN) [45] explicitly addressed the issue of low res-
olution of CAMs. Given an input image of 224× 224, the
DRN can produce a map of size 28× 28 which is an im-
provement compared to ResNet family [13] that can pro-
duce a map of 7× 7. Despite this improvement, the CAMs
are still low resolution with a downscale factor of 8. [33]
Uses U-Net model to reconstruct the image. During infer-
ence, a series of post-processing steps are used including:
applying Sobel filter, and region growing algorithm guided
with the upscaled low resolution CAM to yield full resolu-
tion CAM. While this provides high resolution CAMs, they
still required different post-processing steps.

Finally, authors in [47] use a shared backbone, which is
followed by two branches for classification over high res-
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olution feature maps and segmentation. CAMs are refined
using CRFs, with the collected labels used for segmenta-
tion. Our work differs from [47] in terms of the architecture
and loss, in addition to the main application. We consider
U-Net architecture to exploit low and high-level features of
the classifier. The classifier’s CAMs are low-resolution, en-
abling scaling to large numbers of classes. We also exploit
an unsupervised size constraint, and other methods to col-
lect reliable regions.

3. Proposed approach
Notation. Consider a training set D = {(X, y)i}Ni=1, where
X : Ω ⊂ R2 denotes an image and y ∈ {1, · · · ,K} its
global label, with K the number possible classes. Our
model (Fig. 2) is composed of: (a) module g for the classifi-
cation task, and (b) decoder f to output two activation maps,
one for the foreground and the other for background, used
for the object localization task. The classifier is composed
of: (1) feature encoder backbone for constructing features,
and (2) pooling head to compute classification scores. For
simplicity, θ refers to the parameters of the entire model
(Fig. 2). Furthermore, g(X) ∈ [0, 1]K denotes the per-
class classification probabilities where g(X)k = Pr(k|X).
The softmax activation maps generated by the decoder
are denoted S = f(X) ∈ [0, 1]|Ω|×2 where S1,S2 are the
background and foreground maps, respectively. Map S2

is class-agnostic, meaning it can hold the activation of any
class y. The classifier yields a low-resolution CAM of the
target y, which is then interpolated to have the same resolu-
tion as the image. The high-resolution CAM is referred to
as C. We denote Sp ∈ [0, 1]2 as a row of matrix S, with
index p ∈ Ω denoting a given point.
Generation of sampling regions (SRs). In order to guide
the fine-tuning of the decoder, we employ local information
at pixel level as a supervisory signal. A WSOL task aims
at producing a bounding box, with the foreground inside
and the remaining region considered as background. Simi-
larly, we rely on the activation magnitude in C to decide a
pixel state (i.e. foreground or background). Since such ac-
tivations hint the presence or absence of an object, we can
assume that pixels with high activations are more likely to
be foreground, while lower activations are background [10].
We denote C+ and C− as foreground and background re-
gions, respectively, estimated as follows,

C+ = ψ+(C), C− = ψ−(C, n−) , (1)

where ψ+(C) is the set of top5 pixels in C, which is or-
dered from high to low activation. Without adding addi-
tional hyper-parameters, ψ+(C) takes all pixels in C with
activation magnitude above Otsu [22] threshold obtained

5In this context, the top n elements of a list ordered from value a toward
b are the initial n elements of the list.

over C. ψ−(C, n−) is the set of top n−% pixels in C,
which is ordered from low to high activation. ψ−(C, n−)
sorts activation magnitudes inC from low to high and takes
the n−% of top pixels. We denote by n−% the portion of
pixels that we are allowed to consider as background. Pix-
els in C+ are assigned pseudo-label 1 for foreground and
pixels in C− are assigned 0 for background.

The estimated sampling regions C+ and C− are uncer-
tain and can contain incorrect labels. Since standard CAMs
are often bloby, the foreground C+ could contain back-
ground regions. Similarly, C− is expected to hold back-
ground pixels but also parts of the object since CAMs are
typically incomplete. Due to this uncertainty and noise in
labels, we avoid fitting the model directly on C+/C− all at
once. Instead, we randomly select a few pixels at each train-
ing iteration, while dropping the remaining pixels [30, 31].
This prevents overfitting over C+ and C−. To this end,
we define a stochastic set of pixels randomly selected from
foreground and background for an image at a training itera-
tion,

Ω′ = U(C+) ∪ U(C−) , (2)

where U(C) consists of a sampled set of one pixel6 uni-
formly sampled from the set C. We denote by Y the
partially pseudo-labeled mask for the sample X , where
Yp ∈ {0, 1}2 with labels 0 for background, and 1 for fore-
ground.
Overall training loss. Our training loss combines two
main terms: a standard classification loss, and our proposed
loss for fine-tuning the decoder named pixel alignment loss.
This loss entails local (i.e., pixel level) and global terms.
The local term aims at aligning the output activations S
with the pseudo-labeled pixels selected in Ω′ using standard
partial cross-entropy H . To promote the consistency in ac-
tivations, and align them with the object boundaries, we ex-
ploit statistical properties of the image such as the color, and
pixel proximity allowing nearby pixels with similar color to
be assigned similar state (i.e., foreground or background).
To this end, we include the CRF loss [34] denoted by R.
(See supplementary materials for more details.)

CAMs are known to highlight minimal discriminative re-
gions. This could easily lead to unbalanced partitioning,
where the background region dominates the foreground in
term of size, which gives raise to false positives. To circum-
vent this issue, the activations of the foreground are explic-
itly pushed to expand by constraining their total area to be
large. In parallel, the background is pushed to be large as
well, so as to avoid foreground dominance. By doing so,
we push both regions to compete over pixels but without vi-
olating other competing losses, i.e. CRF and portial cross
entropy. In particular, we consider the absolute size con-
straint (ASC) [3] over both the foreground and background.

6We can however sample more pixels at once.
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We do not assume whether the background is larger than
the foreground [23] nor the opposite. The ASC loss en-
courages both regions to be large. To avoid a trivial solu-
tion, with half the image as foreground and the other half
as background, control terms are necessary. In this work,
partial cross entropy and CRF losses control the growth
of the size, so as to ensure consistency with the object
boundaries and sampling regions. The size loss is unsu-
pervised and formulated through inequality constraints to
maximize the area of activation of the map at hand. The
constraints are solved via standard log-barrier method [5].
We note: H(Yp,Sp) = −

∑2
t Y

t
p log(St

p) as the standard
cross-entropy between the Sp and the pseudo-label mask Yp
at pixel p, and α, λ are balancing coefficients. Our overall
pixel alignment loss is formulated as,

min
θ

− log(g(X)[y]) + α
∑
p∈Ω′

H(Yp,Sp) + λ R(S,X) ,

s.t.
∑

Sr ≥ 0 , r ∈ {1, 2} ,
(3)

It is important to note that training with our method (Eq.
3) does not require any additional supervision besides the
already provided global image-class annotation y. This la-
bel is used to build the CAM of the target as presented in
Fig. 2. Another important aspect is the semantic meaning
of the foreground in S2. Since C+ holds pixels that are
assumed to be foreground estimated from the CAM C of
the true label y, the foreground predicted in S2 is expected
to be consistent with the global annotation y of the image.
Once the foreground full-resolution CAM is obtained, lo-
calization is carried out using the same standard method
used for any CAM (see Fig. 2, inference).

4. Results and discussion
4.1. Experimental methodology:

Datasets. To evaluate our method, two datasets from [7]
are adopted: CUB-200-2011 (CUB) [37] and OpenImages
[4, 7]. CUB contains 200 categories of birds with 5,994
training images and 5,794 testing images. In addition, 1000
extra images annotated in [7] are used as a validation set for
model and hyper-parameters selection. OpenImages con-
tains 37,319 images of 100 classes. 29,819 samples are
used for training, while 2,500 samples are used for valida-
tion. The 5,000 remaining images are used for test. Differ-
ent from CUB, OpenImages WSOL dataset provides pixel
annotation of objects instead of bounding boxes for a fine
localization. We follow the protocol in [7] for both datasets.
Evaluation metrics. Following [7], we report 5 localiza-
tion metrics and one classification metric. For localiza-
tion, we report: (1) MaxBoxAcc (also known as CorLoc
[9], and GT-known [30]): fraction of images for which
the predicted bounding box has more than σ = 50% IoU

with the ground truth, independently from classification
prediction, (2) MaxBoxAccV2: the same as MaxBoxAcc
but averaged over threes sizes σ ∈ {30%, 50%, 70%}, (3)
top-1 localization accuracy: fraction of images with the
correct class prediction and more than σ = 50% IoU with
the ground truth box, and (4) top-5 localization accuracy:
fraction of images with class label belonging to the top-5
predictions and more than σ = 50% IoU. With OpenIm-
ages, (5) we report the PxAP metric proposed in [7] which
computes the area under the precision-recall curve. As in
[7], the CAM’s threshold is marginalized over the interval
τ ∈ [0, 1] with a step of 0.001.

Implementation details. In all experiments, we follow the
same protocol as [7] including backbones, training epochs
(50 for CUB and 10 for OpenImages), and batch size of
32. We validated our method over three backbones, VGG16
[29], InceptionV3 [32], and ResNet50 [13]. In Eq.3, the
hyper-parameter λ for the CRF is set to the same value as
in [34] which is 2e−9. For log-barrier optimization, hyper-
parameter t is set to the same value as in [1, 15]. It is initial-
ized to 1, and increased by a factor of 1.01 in each epoch
with a maximum value of 10. α is searched in {1, 0.1}
through validation. We find that large values, such as 1, do
not harm the performance, suggesting that sampling regions
are less noisy. In all experiments with our method, we used
a learning rate of 0.01 using SGD for optimization. Simi-
lar to [7], images are resized to 256× 256, then randomly
cropped to 224× 224 for training. n− is chosen using the
validation set from the set [0.1, 0.7] with a step of 0.1.

Baseline models. To validate our F-CAM method, we com-
pare with recent WSOL methods, including: CAM [52],
HaS [30], ACoL [49], SPG [50], ADL [8], CutMix [46],
CSTN [20], TS-CAM [12], MEIL [19], DANet [42],
SPOL [39], ICL [16], NL-CCAM [44], I2C [51], Grad-
CAM [28], GradCam++ [6], Smooth-GradCAM++ [21],
XGradCAM [11], LayerCAM [14]. We present the re-
sults reported in [7] for the methods: CAM, HaS, ACoL,
SPG, ADL, and CutMix. For GradCAM, GradCam++,
Smooth-GradCAM, XGradcam, and LayerCAM, we have
reproduced their results. We also reproduced results for
CAM [52], and name its results as CAM* to distinguish
it from CAM’s results in [7]. For the rest of the methods,
we present what was reported in the original papers. Miss-
ing values are shown here by −−. [7] provides results us-
ing few-shot learning (FSL) where a few fully supervised
samples are used to train the model. A simple baseline is
also provided in [7] which is a center-Gaussian baseline. It
generates isotropic Gaussian score maps centered at the im-
age. This represents a lower bound performance obtained
without any training. We study the impact of combining
our method with 6 baseline WSOL methods over localiza-
tion performance. Our choice is based on low complexity
– we chose methods that yield CAMs by a simple forward
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pass, such as CAM [52], or a forward and a backward pass,
such as GradCAM family while using standard pretrained
classifiers. In addition, these methods simply interrogate a
classifier without changing its architecture, making the in-
tegration of our decoder with the classifier straightforward.
To this end, we select the following WSOL methods: CAM,
GradCAM, GradCAM++, Smoth-GradCAM, XGradCAM,
and LayerCAM. All the baselines use the same pooling
method which is a global average pooling [52]. To integrate
our F-CAM method, the WSOL baseline method is trained
only using the classification term in Eq.3 until convergence.
Then, we freeze the classifier, and continue fine-tuning our
decoder using the pixel alignment loss in Eq.3. Such separa-
tion in training is meant to avoid any undesirable interaction
between classification and pixel-wise assignment tasks [2],
and to provide clear conclusions about the results. More-
over, it allows the baseline method to converge and yield
accurate localization which will be used to guide the de-
coder’s fine-tuning.

4.2. Comparison with state-of-the-art:

CUB (MaxBoxAcc) OpenImages (PxAP)
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean

CAM [52] (cvpr,2016) 71.1 62.1 73.2 68.8 58.1 61.4 58.0 59.1
HaS [30] (iccv,2017) 76.3 57.7 78.1 70.7 56.9 59.5 58.2 57.8
ACoL [49] (cvpr,2018) 72.3 59.6 72.7 68.2 54.7 63.0 57.8 58.4
SPG [50] (eccv,2018) 63.7 62.8 71.4 66.0 55.9 62.4 57.7 58.6
ADL [8] (cvpr,2019) 75.7 63.4 73.5 70.8 58.3 62.1 54.3 58.2
CutMix [46] (eccv,2019) 71.9 65.5 67.8 68.4 58.2 61.7 58.7 59.5

Best WSOL 76.3 65.5 78.1 70.8 58.3 63.0 58.7 59.5
FSL baseline 86.3 94.0 95.8 92.0 61.5 70.3 74.4 68.7
Center baseline 59.7 59.7 59.7 59.7 45.8 45.8 45.8 45.8

CSTN [20] (icpr,2020) Resnet101 [13]: 76.0 – – – –
TS-CAM [12] (corr,2021) Deit-S [35]: 83.8 – – – –
MEIL [19] (cvpr,2020) 73.8 – – – – – – –
DANet [42] (iccv,2019) 67.7 67.03 – – – – – –
SPOL [39] (cvpr,2021) – – 96.4 – – – – –

CAM* [52] (cvpr,2016) 61.6 58.8 71.5 63.9 53.0 62.7 56.8 57.5
GradCAM [28] (iccv,2017) 69.3 62.3 73.1 68.2 59.6 63.9 60.1 61.2
GradCAM++ [6] (wacv,2018) 84.1 63.3 81.9 76.4 60.5 64.0 60.2 61.5
Smooth-GradCAM++ [21] (corr,2019) 69.7 66.9 76.3 70.9 52.2 61.7 54.3 56.0
XGradCAM [11] (bmvc,2020) 69.3 60.9 72.7 67.6 59.0 63.9 60.2 61.0
LayerCAM [14] (ieee,2021) 84.3 66.5 85.2 78.6 59.5 63.5 61.1 61.3

CAM* [52] + ours 87.3 82.0 90.3 86.5 67.8 71.9 72.1 70.6
GradCAM [28] + ours 87.5 84.4 90.5 87.4 68.6 70.0 70.9 69.8
GradCAM++ [52] + ours 91.5 84.6 91.0 89.0 64.8 67.1 66.3 66.0
Smooth-GradCAM++ [52] + ours 89.1 86.8 90.7 88.8 60.3 65.4 64.4 63.3
XGradCAM [52] + ours 86.8 84.4 90.4 88.8 68.7 71.3 70.4 70.1
LayerCAM [52] + ours 91.0 85.3 92.4 89.7 64.3 64.9 65.3 64.8

Best WSOL + ours 91.5 86.8 92.4 89.7 68.7 71.9 72.1 70.6

Table 1: Performance on MaxBoxAcc and PxAP metrics.

Quantitative comparison. Tab.1 shows the performance
obtained with the proposed and baseline methods accord-
ing to the MaxBoxAcc and PxAP metrics. We observe that
results with the 6 selected baselines range from the lower
performance using CAM* to the higher performance using
LayerCAM. This provides a good scenario to evaluate our
method when combined with weak and strong baselines.
Note that compared to the methods reported in [7], Grad-

top-1 localization top-5 localization
Methods VGG Inception ResNet VGG Inception ResNet

CAM [52] (cvpr,2016) 45.8 40.4 56.1 – – –
HaS [30] (iccv,2017) 55.6 41.1 60.7 – – –
ACoL [49] (cvpr,2018) 44.8 46.8 57.8 – – –
SPG [50] (eccv,2018) 42.9 44.9 51.5 – – –
ADL [8] (cvpr,2019) 39.2 35.2 41.1 – – –
CutMix [46] (eccv,2019) 47.0 48.3 54.5 – – –

ICL [16] (accv,2020) 57.5 56.1 56.1 – – –
CSTN [20] (icpr,2020) Resnet101 [13]: 49.0 – – –
TS-CAM [12] (corr,2021) Deit-S [35]: 71.3 Deit-S [35]: 83.8
I2C [51] (eccv,2020) – 56.0 – – 68.3 –
MEIL [19] (cvpr,2020) 57.4 – – – – –
DANet [42] (iccv,2019) 52.5 49.4 – 61.9 60.4 –
NL-CCAM [44] (wacv,2020) 52.4 – – 65.0 – –
SPOL [39] (cvpr,2021) – – 80.1 – – 93.4

CAM* [52] (cvpr,2016) 33.5 40.9 47.8 52.7 54.8 66.5
GradCAM [28] (iccv,2017) 18.5 41.6 32.3 41.7 56.2 56.4
GradCAM++ [6] (wacv,2018) 20.8 41.4 34.7 47.5 56.8 61.4
Smooth-GradCAM [21] (corr,2019) 17.7 44.4 33.1 40.2 60.2 57.7
XGradCAM [11] (bmvc,2020) 18.5 40.9 48.3 41.7 55.2 67.3
LayerCAM [14] (ieee,2021) 24.8 43.9 44.2 47.8 59.7 70.3

CAM* [52] + ours 44.0 54.6 59.1 70.1 73.8 82.6
GradCAM [28] + ours 22.1 56.1 38.8 50.0 75.4 68.5
GradCAM++ [6] + ours 23.2 55.9 39.0 52.0 76.0 68.9
Smooth-GradCAM [21] + ours 22.9 57.3 38.9 51.2 77.6 68.6
XGradCAM [11] + ours 22.0 55.8 59.3 49.6 75.3 82.7
LayerCAM [14] + ours 23.1 56.4 47.7 51.9 76.6 76.1

Table 2: The top-1 and top-5 localization accuracy of
WSOL methods on CUB according to the MaxBoxAcc
metric. In red are the cases where our method decreases
performance over the corresponding baseline.

CAM family reported much higher performance. Comb-
ing our method with each of these baselines yields a con-
siderable improvement for all CAM methods, CNN back-
bones, and over both datasets. For instance, CAM* alone
yields a MaxBoxAcc of 71.5% over CUB using ResNet50.
When combined with our method, its performance climbs
to 90.3%. The same improvement is observed over Open-
Images but with a smaller margin. Note that OpenIm-
ages is more challenging than CUB as it has a high varia-
tion among classes of different objects (CUB contains only
birds’ species). Results indicate that by simply combing
a decoder with these baselines, we can increase their per-
formance to a level that is competitive with recent state-of-
the-art methods, such as TS-CAM and CSTN and even ap-
proaching the performance of SPOL. In addition, these re-
sults are competitive with FSL, and in some cases, surpass-
ing FSL performance. Similar behavior is observed over
MaxBoxAccV2 performance7.

Tab.2 shows top-1 and top-5 localization perfor-
mance over CUB. When using our method, WSOL base-
lines obtained competitive top-5 localization over Incep-
tion and ResNet architectures. However, top-1 localiza-

7MaxBoxAccV2 performance on CUB is reported in supp. material.
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Figure 3: Test samples from CUB. Top: CAM*. Middle:
GradCAM. Bottom: GradCAM++. First row: WSOL base-
line. Next row: WSOL baseline + ours. First column:
CAM. Next column: localization. Colors: predicted boxes
in red, and true box in green. Thresholded mask is in red.
σ = 50%.

Figure 4: Test samples from OpenImages. Top: Layer-
CAM. Middle: Smooth-GradCAM. Bottom: XGradCAM.
First row: WSOL baseline. Next row: WSOL baseline +
ours. First column: CAM. Next column: localization. Col-
ors: green false negative, red : true positive, blue: false
positive. τ = 0.8.

tion is poor even with the assistance of our method. Since
top-1 localization is directly tied to classification per-
formance, the improvement of our method is bounded by

the number of correctly classified samples. By inspect-
ing the classification performance of WSOL baselines, only
CAM* yields high accuracy over the CUB dataset for the
three architectures. This explains why top-1 CAM* is
much higher than others. The average classification ac-
curacy ranges from 44% to 59%. In addition, all WSOL
baselines yield high classification using VGG16 over CUB
which again explains the high top-1 localization. Over
OpenImages, all methods yield relatively the same classi-
fication accuracy with an average that ranges from 63% to
70%. Since the aim of our method is to improve localiza-
tion performance without changing the classification per-
formance, our method can only improve the localization
of correctly classified samples. This gives advantage to
other methods that have high classification accuracy. Note
that model selection during the training of our baselines is
achieved through the localization performance on the val-
idation set as proposed in [7]. It was observed in [7] that
the localization task converges in the early training epochs
while the classification task takes longer to converge. We
observed similar behavior when training our baselines8.
Visual comparison: WSOL baselines with F-CAMs.
Figs.3 and 4 illustrate the impact of our method on WSOL
baselines in term of activations and localization. It is well
known that standard CAM methods tend to activate only
over minimal discriminative regions as shown in these fig-
ures. However, the optimum threshold allows other low (in-
visible) activations to participate in defining the final local-
ization such as in the first row in Fig.3. As a result, non-
discriminative regions could be easily included in the lo-
calization. Moreover, such low activations downgrade the
interpretability aspect since they yield a box that covers re-
gions without any visible activation over an object. In com-
parison, our method yields sharp and complete CAMs al-
lowing bounding boxes to be tight around the object making
it robust to thresholding while improving the interpretabil-
ity aspect. Similarly, over OpenImages, WSOL baselines
yield minimal activation that are sensitive to thresholding.
Note that in PxAP metric, authors in [7] do not define an
optimum threshold as in MaxBoxAcc and MaxBoxAccV2
since PxAP defines an area under the precision-recall curve.
Using high threshold such as 0.8 yields very small true pos-
itive regions with high false negative. On the other hand,
our method easily covers the object with minimal false pos-
itives. In the next section, we analyze the score of the CAMs
as an attempt to understand their sensitivity to thresholding.

Activation distribution shift: WSOL baselines with F-
CAMs. Fig.5 shows the change in MaxBoxAcc and PxAP
metrics with respect to τ over the test set using CAM* base-

8Training curves and classification performance for all WSOL base-
lines methods are reported in the supplementary materials.
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(a) MaxBoxAcc metric.

(b) PxAP metric.

Figure 5: Localization accuracy as a function of threshold
value τ for CAM* (orange) and CAM* + ours (green). (A)
CUB. (b) OpenImages.

Figure 6: Distribution of activations over the test set for
CAM* (orange) and CAM* + ours (green) for different
backbones. Top: CUB. Bottom: OpenImages.

line compared to CAM* + ours9. For MaxBoxAcc met-
ric, notice that the CAM*’s functioning region is concen-
trated near 0 while the localization performance completely
drops to zero when τ starts to increase. This indicates
that often the optimum threshold for these methods is very
small. On the other hand, when combined with our method,
MaxBoxAcc becomes less sensitive to τ . Over PxAP met-
ric (Fig.5b), using our method improves the metric by push-
ing the curve to the top right corner. Following [7], we
inspect the activation distribution of CAMs since they are
related to the shape of the metrics curves (Fig.6). CAM*

9The rest of the methods are presented in the supplementary material.

shows a single mode with high concentration of activation
near zero which explains the shape of the MaxBoxAcc and
PxAP metrics (Fig.5). In addition, this makes the search
of the optimum threshold difficult. Moreover, changing the
threshold slightly could lead to high variation in localiza-
tion performance since the threshold is expected to sepa-
rate the foreground from background. The single mode in
the distribution means that the method is unable to sepa-
rate foreground and background regions, and reflects more
uncertainty in CAM interpretability. On the other hand, us-
ing F-CAM allows the appearance of a second mode near
one. (Mode near zero is for background pixels, while the
mode near one is for foreground pixels.) This second mode
is more clear over OpenImages dataset. Moreover, both
modes are sharper than CAM* alone. This reflects assign-
ing foreground and background to each pixel with more cer-
tainty. The reason for this behavior is that our activations
are trained using cross-entropy (Eq.3) which pushes activa-
tions to be certain (0/1). These results explain why metrics
over baseline CAM* perform well only near zero with large
sensitivity to thresholding while our method shows less sen-
sitivity. It is important to note that CAM activation distribu-
tions (Fig.6) are heavily influenced by the object size. For
datasets with small objects, background pixels which are
expected to have low activation magnitude will lead typ-
ically to density around zero that is higher than the den-
sity around one. This can be observed over CUB for our
method. On the other hand, over datasets with large ob-
jects, density around one is typically expected to be high
which is observed over OpenImages using our method.
Note: Supplementary materials contain failure cases, CRF
loss, ablation studies, run-time analysis, results on the im-
pact of CAM size vs. localization accuracy, convergence
curves of WSOL baselines, and more visual results.

5. Conclusion
CAM methods typically rely on interpolation in order

to restore full size CAMs in WSOL tasks. To improve the
localization accuracy of CAMs, this paper proposes to con-
nect a trainable decoding architecture to a CNN classifier,
allowing for parametric upscaling of CAMs to accurate full
resolution CAMs (F-CAMs). Low resolution CAMs and
variants priors are used to fine-tune the decoder. Evalu-
ated in combination with six baseline WSOL methods and
three CNN backbones, our F-CAM methods improves the
performance of these baselines by a large margin on CUB
and OpenImage datasets. F-CAM performance is competi-
tive with state-of-the-art WSOL methods, yet it requires less
computation resources during inference.
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