Automated Defect Inspection in Reverse Engineering of Integrated Circuits

Ann-Christin Bette12, Patrick Brus2, Gabor Balazs12, Matthias Ludwig12, Alois Knoll1

1 Technical University of Munich, Germany, 2 Infineon Technologies AG, Munich, Germany

ac.bette@tum.de, prename.surname@infineon.com, knoll@in.tum.de

Abstract

In the semiconductor industry, reverse engineering is used to extract information from microchips. Circuit extraction is becoming increasingly difficult due to the continuous technology shrinking. A high quality reverse engineering process is challenged by various defects coming from chip preparation and imaging errors. Currently, no automated, technology-agnostic defect inspection framework is available. To meet the requirements of the mostly manual reverse engineering process, the proposed automated framework needs to handle highly imbalanced data, as well as unknown and multiple defect classes. We propose a network architecture that is composed of a shared Xception-based feature extractor and multiple, individually trainable binary classification heads: the HydREnet. We evaluated our defect classifier on three challenging industrial datasets and achieved accuracies of over 85\%, even for underrepresented classes. With this framework, the manual inspection effort can be reduced down to 5\%.

1. Introduction

Microchips can be found in all areas of life these days. With ever-growing complexity and increasing outsourcing to third parties, validation of device integrity fosters safe and secure applications. Reverse engineering (RE) enables an in-depth analysis of the structure and functionality of the individual hardware components of microchips, known as integrated circuits (ICs). This process allows searching for potential intellectual property infringements, performing benchmarking studies on competitor products, but also detecting possible malicious modifications and security vulnerabilities \cite{29}. The basic steps of the RE process include \cite{20,30}:

\begin{itemize}
 \item \textit{Delaying} to expose the internal components of the chip and analyze the die layer by layer
 \item \textit{Imaging} with a scanning electron microscope (SEM) to digitize each die layer
 \item \textit{Feature extraction} of the standard cells, metal tracks and vertical interconnection accesses (VIAs)
\end{itemize}

Moore’s Law reveals a major problem of physical RE. With each new generation of technology, the effort of delaying and imaging microchips is increasingly challenging. Consequently, the image quality becomes unreliable and successful feature extraction cannot be guaranteed. The success depends largely on the equipment of the laboratory as well as the skills and experience of the failure analysis (FA) expert: Etching and polishing processes remove the single chip layers down to the level of interest. Exposure of metal layers is particularly difficult with advanced technologies because the layer thicknesses, typically less than 150 nm, require overall planarity. The SEM settings are chosen at the discretion of the expert, matched to the technology to be visualized and the previous delayering methods. Both the ablation of the material and the manual settings on the microscope lead to errors, so-called defects, in the resulting images. These defects propagate unnoticed into subsequent steps and jeopardize the entire RE process. The division into distinct defect classes enables the feedback loop to support the FA and RE experts (Sec. 3.1).

In industrial manufacturing, defect classification using neural networks is very common. These fitted models are applied to consistent data in controlled environments. In this work, we propose a neural network-based defect inspection system for RE (Fig. 1). A particular challenge is the varying input data due to technology differences, as well as man-
ual chip delayering and imaging. The generalization of an adapted model thus appears very difficult. Therefore, we present a network architecture that is extensible, adaptable, flexible in deployment, enables low training overhead, and provides strong control over the learning process. The key contributions of this work can be summarized as follows:

- To the best of our knowledge, this is the first automatic defect inspection framework for RE of ICs that evaluates defects in the metal layers and uses neural networks to perform the classification task.
- A network architecture focused on the training time and control of training process: the HydRENnet.
- A highly data-centric approach to enable technology-agnostic defect classification, including the identification of unknown defects.

2. Related Work

2.1. Reverse engineering

Several articles have been published describing the complete RE process [14, 16, 21]. Lin et al. [15] describe a typical framework of how neural networks are used in RE: SEM images of each chip layer are acquired, stitched, then the features are extracted to finally stack the individual layers. The segmentations for extracting the features are performed by neural networks. The authors use the generative properties of the network architectures [17, 22] to correct errors directly in the image. Hong et al. [9] address the occurrence of errors directly by categorizing their images according to the degree of noise as a preprocessing step. We are critical of the error correcting approach because very small or merely synthetic data were used due to the lack of publicly available data. We expect severe overfitting and lack of generalizability to other technologies with this process-centric approach. Many authors reject the use of deep learning altogether due to the lack of training data and restrict themselves to purely rule-based traditional approaches for feature extraction [18, 33, 34]. Botero et al. [1] discuss the problems of using machine learning (ML) methods in the RE of ICs. They mention feature extraction and netlist generation as the two most promising application areas of ML methods. Like us, they demand that the first step is to ensure that the image content is not corrupted by delayering and stitching errors. Courbon [4] is the first to propose defect control on the way to feature extraction. The rule-based algorithms deal specifically with defects at the standard cell level of the IC. Our tool is optimized for exposing the metal layers, where there are more degrees of freedom overall. The layers are difficult to expose due to the low layer height, and imaging is difficult for modern nodes due to lack of material contrast of copper traces and copper VIAs.

2.2. Industrial defect inspection

Deep Learning based automated surface and texture defect inspection systems [6, 35] are now an integral part of manufacturing. In general, the experiments and neural network architectures are often evaluated against the NEU [13], the synthetic DAGM [32], or the PCB defect [28] datasets. We see the greatest similarity to our use case in the requirements of wafer surface inspection in semiconductor manufacturing. Imoto et al. [12] propose a defect classification based on a convolutional neural network (CNN) system that assists the expert in his decision making and reduces the manual effort to one-third. Images were acquired using an SEM and performance was improved by transfer learning. Cheon et al. [3] extend this approach by detecting unknown defects. They realize this with the help of a kNN algorithm. They justify the necessity of the addition with the dynamic manufacturing environments in which new defects arise irregularly. Harada et al. [7] also propose an approach to defect classification that is robust to process variations. They realize this by comparing the imaged part of the wafer with a defect-free reference image.

Our use case differs from semiconductor manufacturing in two ways: First, the errors are caused by human hands during the delayering, not by machines during the manufacturing process. Second, we do not have a static environment. The technologies under test change with each analysis, and the SEM settings must be manually adjusted each time.

2.3. Computer vision

Mullapudi et al. [19] propose the HydraNets as a dynamic architecture to perform efficient image classifications. HydraNets specialize in computing features for visually similar classes and maintain efficiency by using a gating function to select only a small number of components for inference. We adapt this architecture to gain more control over each training and inference. Following Tsoumakas et al. [31], we basically distinguish two methods for solving multi-label tasks: First, transformation methods that transform multi-label classifications into one or more single-label classifications. Second, algorithm adaptation methods, i.e., methods that adapt single-label classifications to directly process multi-label classifications. We compare these two approaches with our proposed network architecture. Minority class oversampling by synthetic images (SMOTE) [2] has led to strong performance improvements in many areas for imbalanced datasets. We have so far used this approach only for general data enrichment. In the future, targeted enrichment of individual samples of interest, e.g., through generative image generation with SinGAN [24], would be feasible and worth trying.
3. Proposed Methodology

In this section we present the individual components of our work: The defect inspection framework, the data used in the process, the network architecture of the proposed defect classifier, and finally details on the training to be performed.

3.1. Defect inspection framework

For a complete IC analysis, the FA expert first delayers the chip to the top metal layer and then digitizes the surface with the SEM. This process is repeated for each metal layer, the transistor level and the active area. The SEM scans the area of interest line-by-line and column-by-column, capturing individual images of a predefined field of view. This results in thousands of individual images per scanned layer, which are stitched together by a predefined overlap. The pixel size needs to be a few nanometers to reveal the smallest structures and their distances from each other, which are defined in the technology node. These images are forwarded to the RE expert to extract the important features using various image processing techniques. Then, the RE expert can continue the analysis in different ways, depending on the objectives.

The FA expert has so far only examined the delayered chip surfaces with an optical microscope for rough defects. The RE expert randomly inspected the obtained layout images. To replace this inadequate process, we are introducing a stand-alone defect inspection tool (Fig. 2) that triggers two different feedback processes: First, the FA expert receives feedback on the status of his chip preparation so that he can make necessary corrections and take appropriate error-reducing measures in the future. Second, the RE expert can assess whether manual error correction is worthwhile and select suitable feature extraction algorithms based on the type of defect. Therefore, the classification into the different types of defects is important for our application.

Each captured image is reviewed for errors using our proposed neural network. Afterwards, the results are presented in the stitched overview picture as a report. This allows a component specific analysis of the chip area. SEM imaging is based on the representation of material and topography contrasts. Therefore, defects can be very inconspicuous if they do not differ in material or stand out from the chip surface. Consequently, histogram and edge detection methods are not sufficient for defect inspection.

3.2. Dataset

Input images and labels The 252 original SEM images have a resolution of 4000 px × 4000 px and are stored as 8-bit gray scale images. The images are further decomposed into 250 px × 250 px crops, which serve as input for the neural network. As a result, 256 overlap-free partial images are generated from each original image. We have refrained from rescaling, but will integrate this iteratively in the future. The pixels of each image are normalized to values between 0 and 1. To enable supervised learning, a label must be assigned to each 250 px × 250 px input image. If a defect is present, the entry in the defect label is set to 1, otherwise it is set to 0.

Defect classes We defined four defect classes (Fig. 3). The first defect class contains Particles which are located on the sample surface and often appear very bright because of their non-uniform topography. The second class contains images of the class Underlying layer visible. This defect is characterized by the overlap of two metal layers. The falsely visible underlying layer has almost the same gray values as the layer of interest. The third class contains images of Overlying layer visible which usually appears as darker areas on top of the metal layer of interest. The final defect class contains defects of Smeared structures which result from overly invasive polishing and etching processes.
Table 1: Dataset distribution for a total of 64 270 images.
(a) High class imbalance which is preserved after 70–30 split.
(b) Multi-label classification task.

<table>
<thead>
<tr>
<th>Defect class</th>
<th>Train</th>
<th>Val</th>
<th>Test</th>
<th>Defects</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td>2360</td>
<td>1180</td>
<td>1553</td>
<td>0</td>
<td>53052</td>
</tr>
<tr>
<td>Underlying</td>
<td>2386</td>
<td>1234</td>
<td>1593</td>
<td>1</td>
<td>9951</td>
</tr>
<tr>
<td>Overlying</td>
<td>962</td>
<td>500</td>
<td>641</td>
<td>2</td>
<td>1262</td>
</tr>
<tr>
<td>Smeared</td>
<td>38</td>
<td>20</td>
<td>23</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>None</td>
<td>24 817</td>
<td>12 364</td>
<td>15 871</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Data distribution The dataset contains 64 270 partial images and has two issues: First, there is a high class imbalance due to the decomposition of the images (Tab. 1a). None indicates the error-free samples, but is generally not a class of its own. Second, multiple defects can occur in one image. Therefore, we refer to this as a multi-label classification task (Tab. 1b).

Data augmentation For the selection of the data augmentations, we relied on the characteristics of the IC structures and the imaging with the SEM. As a baseline, we chose horizontal and vertical reflection, as well as rotation in 90-degree increments. Other rotation angles are not useful because the metal structures in the IC layout images are always horizontal or vertical. According to Sim et al. [25], Gaussian noise is the most common type of noise in SEM images. Thus, Gaussian noise in varying strength is added to augment the data. As further augmentation techniques Gamma contrast and brightness are varied in the input images. Elastic deformations [22] are applied to vary the shape of the defects. Motion blur simulates smaller pixel dwell times, thus a faster scanning process. Zooming out by up to 50% helps to adapt to different pixel sizes of the defects. All of the above methods improved the performance of the model and were finally used. Only brightness and contrast changes were never made simultaneously, as this led to unrealistic image effects. The best performing strategy was the one that left 10% of the data unaugmented.

3.3. Network architecture

Backbone CNN We compared different state-of-the-art CNN architectures for the initial multi-label classification task. We evaluated the F1-score averaged over the individual defect classes (Fig. 4). The ResNet-based approaches [8] achieve solid performances. SEResNeXt [10] performs best, but has twice as many parameters as ResNet50. The EfficientNets [27] based on compound scaling perform comparatively poorly. Overall, the ResNets, DenseNet121 [11], and the Xception network [5] perform similarly well. Our approach is based on the Xception network, but could also be realized with any other architecture.

Defect localization To interpret and debug the prediction results of the network (Fig. 6) we applied class activation mapping (CAM) [36]. A global average pooling layer must be inserted after the last convolution layer for this technique.
(a) Each input image passes through the shared stem. At the exit of the stem the feature map is passed to each head. There is exactly one head per defect class. Skip connections have been omitted for clarity.

Figure 5: Representation of the proposed HydREnet architecture based on the chosen Xception backbone.

3.4. Training

Training of the HydREnet is separated into two phases: The initial training of the backbone and the retraining of each individual head. Our approach is based on reusing pre-trained weights to thereby increase both training efficiency and prediction quality.

Stem First, the Xception backbone with four output neurons needs to be trained. Second, the stem is initialized with the associated weights of the trained backbone. We started the backbone training by initializing the network with the weights of ImageNet except for the last layer. ImageNet initialization outperformed random initialization by converging faster. The ImageNet variant with initially frozen layers did not improve the results.

We used Bayesian optimization in our search for the best hyperparameters (Tab. 3). Following Snoek et al. the optimization is executed for 14 iterations with \(\kappa = 10 \) in order to strongly favor exploration over exploitation. We used sigmoid activation with a binary cross entropy loss. The backbone was trained for a total of 70 epochs, and the best model was determined according to the highest validation \(F_1 \)-score. We did not use an early stopper because the small dataset caused fluctuations in validation loss.

Heads Each head is initialized with the associated weights of the trained backbone. The weights of the dense layer in the backbone are of the form \(C \times N_{\text{classes}} \), where in our case \(N_{\text{classes}} = 4 \). Therefore, each of the four heads can reuse the weights connected with the corresponding output neuron. Thus, the weights of the dense layer of each head have a form of \(C \times 1 \).

The weights of the stem are frozen so that it recognizes patterns of all defect classes. Each head is further trained separately for 30 epochs with the same hyperparameters as before. Overall, each input image first passes through the stem to create the feature map, and then through the respective head, whose weights are updated by its own loss function.

Data Sampling The dataset is used in two setups: The backbone training (multi-label classification) and the head training (binary classification). We analyzed four different sampling strategies in terms of performance and training time required (Tab. 4). No sampling results to high precision (P) due to the predom-

Table 3: Search space and results of Bayesian hyperparameter optimization after 14 iterations and \(\kappa = 10 \).

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Search space</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning rate</td>
<td>([1e^{-5}, 1e^{-3}])</td>
<td>2.5le-4</td>
</tr>
<tr>
<td>Batch size</td>
<td>8, 16, 32</td>
<td>16</td>
</tr>
<tr>
<td>Decay rate</td>
<td>[0.95, 1]</td>
<td>0.95</td>
</tr>
<tr>
<td>Decay steps</td>
<td>[1, 3]</td>
<td>2.682</td>
</tr>
<tr>
<td>Optimizer</td>
<td>RMSProp, Adam</td>
<td>Adam</td>
</tr>
</tbody>
</table>

Table 4: Evaluation of data sampling strategies for the backbone training. We applied 3-fold cross validation and executed the models on the test set. The averaged results are shown in the table. The training was executed on an NVIDIA Quadro P4000 GPU.

<table>
<thead>
<tr>
<th>Sampling Strategy</th>
<th>Time per epoch [min]</th>
<th>P</th>
<th>R</th>
<th>mIoU</th>
<th>(F_1)</th>
<th>(F_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No sampling</td>
<td>13</td>
<td>88.0</td>
<td>78.4</td>
<td>70.8</td>
<td>82.2</td>
<td>77.2</td>
</tr>
<tr>
<td>Oversampling</td>
<td>57</td>
<td>83.0</td>
<td>84.3</td>
<td>71.9</td>
<td>83.6</td>
<td>83.5</td>
</tr>
<tr>
<td>Undersampling</td>
<td>7</td>
<td>72.4</td>
<td>86.2</td>
<td>64.9</td>
<td>78.4</td>
<td>82.2</td>
</tr>
<tr>
<td>Resampling (ours)</td>
<td>7</td>
<td>74.1</td>
<td>86.6</td>
<td>66.5</td>
<td>79.6</td>
<td>83.9</td>
</tr>
</tbody>
</table>
inantly negative examples. Oversampling up to the majority class None works especially well for the strongly represented defect classes. Undersampling the majority class to the level of the largest minority class, while oversampling all other classes to that level strongly increases the recall (R). As final implemented strategy, we additionally resampled the majority class None samples every five epochs to include previously unused images. In direct comparison, the precision benefits the most, since more negative samples are considered. Overall, this approach has the advantage that we can perform a 70 epoch training in 8 hours and even achieve the highest average F2-score. For the binary classification, we adopted the procedure from the multi-label case by lowering the majority class to 50% and raising the minority class—which represents the particular defect—to this level.

4. Experiments and Results

To demonstrate that the proposed HydREnet is capable of handling the real RE process, three datasets of SEM images were compiled. Each of the datasets comes from real IC analyses with typical requirements and deficiencies. Using these datasets, we now systematically test the generalization capability of the proposed HydREnet. For this purpose, we address the following problems: The training complexity of the network, the detection of unknown defects, and the extensibility of the network through retraining.

4.1. Training complexity comparison

The proposed HydREnet is evaluated in terms of performance and training complexity. We realize binary classification by training four single output neuron Xception networks, where each network predicts one error class. In the first variant, we initialize each network with the weights of ImageNet and train it from scratch for 70 epochs. In the second variant, we initialize the networks with the weights of the trained backbone model (transfer learning) and train it for only 30 epochs. We realize multi-label classification by training a single four output neuron Xception network for 70 epochs. All hyperparameters are the same as defined in Sec. 3.3.

Dataset-40TT This dataset is used to train and test (TT) the model (Sec. 3.2). It contains layout images of the lower metal layers of four different 40 nm technologies. Thus, the test set is very similar to the training set.

Performance analysis Our proposed HydREnet performs similarly well to the four individual binary networks (Tab. 5). Prior initialization with pretrained weights (transfer learning) does not provide any added value.

The HydREnet architecture has been evaluated for different splits. The model with split at add_9 achieves the highest average F1-score. This architecture performs best in predicting poorly represented classes. The CAMs prove the impact of fine-grained expert training in the head (Fig. 6).

Training complexity analysis The training time ratio (Tab. 3) is determined by multiplying the number of trainable parameters by the epochs to be trained. This sum is divided by the corresponding value of the HydREnet-add_9 split to obtain a ratio. The use of the multi-label architecture has the advantage that only one network needs to be trained. However, it is very difficult to control the prediction quality for each class. The binary networks are scalable and allow for individual retraining, but have a very long training time.

4.2. Identifying unknown defects

We evaluate the performance of our trained HydREnet-add_9 model on the given dataset-150UD. We show that our model can also recognize new unknown defects. Unknown defects do not belong to the four defined error types. To identify these defects, we discuss the added value of a Misc class whose images are manually evaluated by experts. The goal is to collect the unknown errors in this Misc class so that the expert will be aware of the insufficiently scanned image areas in the manual review.

Dataset-150UD The imaged technology is fabricated in a 150 nm node. Consequently, the metal tracks are made of aluminum and the VIAs are made of tungsten. Tungsten has a very high electron density and requires different SEM settings than copper based technologies. In this scan, the SEM parameters were not chosen optimally, resulting in new unknown defects (UD). The dataset contains 1280 test images with new unknown defects, as well as Particles and Underlying layer visible.

Performance analysis The model detects 88.8% of all Particles (Tab. 5). However, only 57.1% of all visible defects of the Underlying layer are found. The low accuracy is mainly due to inconsistent labels. The model does not identify the defect, because the two visible layers have no overlapping area (Fig. 6). So it actually behaves correctly. Only 33.3% of the images classified as negative actually have an underlying visible layer. The high false positive rate results from the unknown defects (Fig. 7). These defects arise from a very high brightness setting and would lead to fatal errors in feature extraction with threshold-based segmentation. Overall, our model finds unknown defects reliably, albeit in an incorrectly assigned class. To control this behavior, we introduce a Misc class.
Table 5: Evaluation of the different defect classification architectures in terms of performance and the training time required. The number of trainable parameters of the HydREnet-add-9 split serves as the base value for ratio calculation.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Trainable Parameters</th>
<th>Training time</th>
<th>P-R-F</th>
<th>Class Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary network</td>
<td>83 236 004</td>
<td>1.5</td>
<td>2.4</td>
<td>87.5</td>
</tr>
<tr>
<td>Binary network – transfer learning</td>
<td>104 051 152</td>
<td>1.9</td>
<td>1.6</td>
<td>86.2</td>
</tr>
<tr>
<td>Multi-label network</td>
<td>20 815 148</td>
<td>0.4</td>
<td>0.6</td>
<td>86.5</td>
</tr>
<tr>
<td>HydREnet-add-8 split (ours)</td>
<td>47 976 880</td>
<td>0.9</td>
<td>0.9</td>
<td>87.0</td>
</tr>
<tr>
<td>HydREnet-add-9 split (ours)</td>
<td>54 432 784</td>
<td>1.0</td>
<td>1.0</td>
<td>87.1</td>
</tr>
<tr>
<td>HydREnet-add-10 split (ours)</td>
<td>60 888 688</td>
<td>1.1</td>
<td>1.1</td>
<td>87.2</td>
</tr>
</tbody>
</table>

Difference of HydREnet-add-9 split to best performing model: | -0.4 | -0.4 | -0.2 | 0.0 | 0.0 |

Figure 6: Results of the HydREnet-add-9 split architecture: CAMs with confidence score for three different images with two defects each. The red areas indicate the image regions that were crucial for the decision making of the model.

Table 6: Performance evaluation for Misc classes of different sizes based on the specified confidence interval.

<table>
<thead>
<tr>
<th>Defect class</th>
<th>Confidence interval</th>
<th>Manual inspec. (%)</th>
<th>P</th>
<th>R</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td>[0.1, 0.9]</td>
<td>5.5</td>
<td>89.4</td>
<td>89.4</td>
<td>89.4</td>
</tr>
<tr>
<td></td>
<td>[0.2, 0.8]</td>
<td>3.4</td>
<td>86.9</td>
<td>87.8</td>
<td>87.3</td>
</tr>
<tr>
<td></td>
<td>[0.3, 0.7]</td>
<td>2.1</td>
<td>84.3</td>
<td>88.3</td>
<td>86.3</td>
</tr>
<tr>
<td></td>
<td>[0.4, 0.6]</td>
<td>0.5</td>
<td>80.5</td>
<td>88.8</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>0.0</td>
<td>79.8</td>
<td>88.8</td>
<td>84.1</td>
</tr>
<tr>
<td>Underlying</td>
<td>[0.1, 0.9]</td>
<td>4.7</td>
<td>71.4</td>
<td>62.5</td>
<td>66.6</td>
</tr>
<tr>
<td></td>
<td>[0.2, 0.8]</td>
<td>3.8</td>
<td>70.0</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>[0.3, 0.7]</td>
<td>2.1</td>
<td>50.0</td>
<td>58.3</td>
<td>53.9</td>
</tr>
<tr>
<td></td>
<td>[0.4, 0.6]</td>
<td>0.9</td>
<td>38.1</td>
<td>57.1</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>0.0</td>
<td>33.3</td>
<td>57.1</td>
<td>42.1</td>
</tr>
</tbody>
</table>

Misc class and manual effort: Low confidence predictions are defined by a sigmoidal activation output close to 0.5, which corresponds to a random decision in the given binary classifications. The Misc class is used to capture low confidence predictions and present them to the human expert for manual review. This process improves the accuracy of defect recognition and contribute to the discovery of new types of defects. We evaluate various confidence intervals, expressed as sigmoid activation thresholds that would fall into the Misc class (Tab. 6). In addition, we report the resulting percentage of samples to be manually inspected, with scores referring to the percentage of samples that do not fall into the Misc class. By transferring the images within the confidence interval of [0.1, 0.9], the manual effort is reduced to about 5% of the total images. The remaining incorrect predictions for the images that are not manually checked result mainly from the aforementioned labeling inconsistencies.

4.3. Extensibility through retraining

We first evaluate the performance of our HydREnet-add-9 model on the dataset-40SD. With this dataset we...
would like to provoke the failure of the model. We perform a targeted retraining of the heads. Each HydREnet head is trained for 10 epochs and the best head is stored according to the best F₁ score of the validation. Finally, we discuss the costs and benefits of our approach.

Dataset-40SD The imaged sample is fabricated in a 40 nm technology node. The images show serious defects (SD) beyond anything the model has seen in training. The dataset contains 1126 training and 282 test images showing all four defect classes.

Performance analysis The initial model performs well on the classes strongly represented in the training. As expected, it fails on the two absolute minority classes (Tab. 4). Briefly continuing to train with the additional new training data solves this problem satisfactorily for the class Overlying layer visible. The Smeared structures class would need more representatives during training to achieve higher accuracy. The newly trained model also performs well on the original test dataset of 40TT. This indicates that no overfitting to the newly introduced data has occurred.

Cost-benefit-analysis The retraining of the head for the Particles class took 134 minutes with a NVIDIA Quadro P4000 GPU. All four heads can be updated within one working day or night. If multiple GPUs were deployed in parallel, training would be complete after a few hours. This short training duration enables iterative, fast and flexible work. Based on new, manually collected data, the model can be easily extended. Another advantage is the situational use of individual heads. Based on the results obtained, it is reasonable to use the retrained heads for predicting the images of dataset-40SD. For new analyses, reusing the initial heads for classification of Particles and Overlying layer visible is probably more valuable. The expert can variably handle the differently trained heads. In the long run, this approach prevents a data drift.

5. Conclusion

In this work, a defect inspection framework is proposed that enables automated defect classification in SEM layout images of delayered ICs. The framework serves as a feedback tool for the human experts who plan and execute the RE process. The task of image classification is performed by the proposed HydREnet. Each input image first passes through the shared stem to create the feature map, and then through the respective head for the final defect classification. Our approach is based on reusing the pretrained weights of the Xception backbone to increase both training efficiency and prediction quality.

Our network outperforms comparable multi-label and binary networks in terms of training complexity while maintaining high accuracy. Especially the poorly represented classes benefit from the hydra-like network composition. Unknown defects are predicted with a lower confidence level. Therefore, these defects can be collected in a Misc class and reviewed manually. Network extensibility can be realized by retraining the heads with new data within a few hours. Subsequently, the expert can variably use and adapt the differently trained heads for future analyses.

Acknowledgement

AI4DI receives funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union’s Horizon2020 Framework Programme and National Authorities, under grant agreement n° 826060.
References

