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Figure 1: I) Estimating depth in the comics domain is subject to many challenges, including a) occlusions between characters;
b) unusual object sizes (the bird here); c) unusual perspective; d) and e) different illustrative styles. II) Overview of our
model, which uses an unsupervised I2I translation method to translate the comics image to the natural image domain and
then, employs a contextual depth estimator with Laplacian edges and a feature-based GAN to ultimately predict depth.
III) Comparative depth estimation results using MIDAS [34], Contextual Depth Estimation (CDE) [20] and Ours. IV)
Application of our method to image retargeting, where our depth estimation model guides the retargetting model [3].

Abstract

Estimating the depth of comics images is challenging as
such images a) are monocular; b) lack ground-truth depth
annotations; c) differ across different artistic styles; d) are
sparse and noisy. We thus, use an off-the-shelf unsupervised
image to image translation method to translate the comics
images to natural ones and then use an attention-guided
monocular depth estimator to predict their depth. This lets
us leverage the depth annotations of existing natural im-
ages to train the depth estimator. Furthermore, our model
learns to distinguish between text and images in the comics
panels to reduce text-based artefacts in the depth estimates.
Our method consistently outperforms the existing state-of-
the-art approaches across all metrics on both the DCM and
eBDtheque images. Finally, we introduce a dataset to eval-

uate depth prediction on comics.

1. Introduction
Depth estimation for comics images can provide impor-

tant information for applications such as comics image re-
targeting [8, 36], scene reconstruction [10] and reconfigura-
tion of comics [35], i.e., transferring the stories from paper
to an interactive graphical media, for instance, video games
based on comics or comics animations. The problem of
depth estimation can be framed as that of predicting a met-
ric depth for each pixel in a given input image. In comics,
the depth estimation problem is monocular, which makes it
inherently ill-posed [34]. This is further complicated by the
fact that most scenes in the comics domain have large con-
tent variations, object occlusions, geometric detailing (dif-
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ferent perspectives and size scales), sparse or noisy scenes
and non-homogeneous illustrations as shown in Figure 1.
As a consequence, while estimating the depth of a comics
scene is easy for humans, it remains highly challenging for
computational models.

To address this, we explore the extensive research done
in the field of monocular depth estimation over the past
years, which reports computational models that leverage
monocular cues, such as perspective information, object
sizes, object localization, and occlusions, to estimate the
depth of scenes [30]. Note that, while much work has also
been done for depth estimation from stereo images [4, 40,
42] or video sequences [21, 28], such approaches do not
match the monocular setting we face in the comics domain.

Because the state-of-the-art monocular depth estimation
models [20, 34] have been trained on natural images, they
fail to predict the depth of comics images accurately, result-
ing in vague, overlapping or missing objects (Figure 1). An
immediate solution would be to retrain the depth models on
comics images, either in a supervised manner, which would
in turn require ground-truth depth annotations of comics im-
ages, or in an unsupervised manner, which would require
employing domain adaptation techniques [49]. As there
exist no dataset with ground-truth depth annotations for
comics images and manually annotating the depth of a large
number of comics images would be expensive and time-
consuming, we employ an unsupervised image-to-image
(I2I) translation method [5] to translate the images from the
comics domain to the real one. Once translated to the real
domain, we leverage the ground-truth depth of real images
to train our depth model and thereby predict the depth of
the translated comics−→real image. The result of this pro-
cess, compared to the direct application of a trained depth
estimation network, is shown in Figure 2.

To improve the performance of the depth estimation,
we exploit contextual attention, both spatially and channel-
wise, as focusing on the scene context parallels how humans
estimate the depth of a scene. To this end, we introduce a
local context model that leverages a Laplacian edge detector
to guide depth estimation. This builds on the intuition that
depth features significantly depend on edge cues and yields
a sharper foreground vs. background separation. Further-
more, we incorporate a feature-based GAN that encourages
the inner feature representations of the depth model to fol-
low similar distributions for the real and translated images.
Additionally, we include a text detector in our model to re-
move the artefacts in the depth predictions arising from the
text or speech balloons in comics images.

Our main contributions therefore are as follows:

• We introduce a cross-domain depth estimation method
by leveraging an off-the-shelf unsupervised I2I trans-
lation method.

• We exploit the contextual information for depth pre-

Comics Input CDE [20]- Comics Image

Translated Image CDE [20]- Translated Image

Figure 2: Leveraging monocular depth estimation mod-
els. When employed directly on a comics image, the state-
of-the-art monocular depth estimation model [20] fails to
predict accurate depth. We therefore, translate the comics
image to the natural image domain and then apply the CDE
depth estimator as mentioned in [20].

diction of a given scene. We use an inner feature-
based GAN to enforce similarity between the domains,
as well as a Laplacian edge detector to obtain distinct
foreground vs. background separations.

• By introducing a text detector in our cross-domain
depth model, we reduce the artefacts from text and
speech balloons in the depth predictions, which are
specific to comics.

• Finally, we introduce a benchmark dataset for comics
images with 450 manually annotated image-depth
pairs comprising 300 images from the standard
DCM [33] validation dataset and 150 images from the
standard eBDtheque [12] validation dataset. This can
be used as a benchmark for future papers for depth
evaluations, as there is no existing benchmark with
depth annotations for comics.

Our experiments on our manually annotated benchmark
show that our approach outperforms the state-of-the-art un-
supervised monocular depth estimation methods across all
the different comics styles.

2. Related Work

2.1. Monocular Depth Estimation

Over the past decade, there has been a significant devel-
opment in monocular depth estimation. Laina et al. [25]
proposed fully convolutional networks with the fast up-
projection method using residual learning to model the
mapping between RGB images and depth maps. Kuznietsov
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et al. [24] introduced a semi-supervised approach to over-
come the deficiency and limitation of sparse ground-truth
lidar maps. Godard et al. [11] suggested unsupervised train-
ing objective to replace the use of labeled depth maps. The
network generates the left and right disparity maps and cal-
culates the reconstruction, smoothness, and left-right con-
sistency losses. Guo et al. [13] incorporated a synthetic
depth dataset to acquire a considerable amount of ground-
truth images. Subsequently, they trained a network with
synthetic data and fine-tuned with a real dataset. Finally,
they mitigated the domain gap between the ground-truth
and synthetic dataset by distilling stereo networks. Amirko-
laee and Arefi [1] constructed a depth prediction network
with the encoder–decoder and skip connection structure to
integrate the global and local contexts. In [20], a con-
text based monocular depth estimation method exploits the
contextual information between objects via inter object at-
tention to extract visual cues for estimating depth. While
these approaches produce improved and consistent depth
results, training them is challenging because of 1) inher-
ently different representations of depth: direct vs. in-
verse depth representations [14, 19], 2) scale ambiguity: for
some data sources, depth is only given up to an unknown
scale [6, 46, 47], 3) shift ambiguity: some datasets provide
disparity only up to an unknown global disparity shift [44].
Further, in the presence of occluded regions (i.e. groups of
pixels that are seen in one image but not the other), these
methods produce meaningless values due to failed disparity
calculations. To mitigate this, in [34], the authors propose a
new loss function that is invariant to both scale and global
shift so that the monocular depth estimation model can learn
from diverse ground-truth depth maps obtained from dis-
parate domains. Nevertheless, it does not generalise well to
either paintings or comics domain.

With the development of image style transfer and its
connection with domain adaptation, researchers adopted
the style transfer and adversarial training to estimate depth
maps in real scenes [2, 23], which relied on the models
trained with a large amounts of synthetic data. DispNet [29]
was the first network that introduced image style transfer for
depth estimation. Thereafter, Zheng et al. [49] proposed a
two-module domain adaptive network, T2Net, where one
module was trained with synthetic and real images and re-
constructed each other with the reconstruction loss and gen-
erative adversarial loss [7, 22], and these outputs were input
into the other module to predict the real depth maps. As this
method is close to our approach, we consider the T2Net as
a baseline for comparison. Besides, there are more mod-
els with cycle consistency [48], cross-domain [13, 41], and
others for domain adaptation to predict monocular depth
maps. In this vein, we apply an unsupervised I2I translation
method to minimize the domain disparity between comics
and real world.

2.2. Domain Adaptation via I2I Translation

The advent of I2I translation methods began with the in-
vention of conditional GAN[31], which have been applied
to a multitude of tasks, such as scene translation [18] and
sketch-to-photo translation [43]. While conditional GANs
yield impressive results, they require paired images during
training. Unfortunately, in comics−→real I2I translation
scenario, such paired training data is lacking and expensive
to collect. To overcome this, cycleGAN [50], with its cycle
consistency loss between the source and target domains, is
a possible solution for translating the comics images to real
images, thereby producing consistent images. Nevertheless,
neither conditional GANs, nor cycleGAN account for the
multi-modality of comics−→real I2I translation; in general,
a single comics image can be translated to real domain in
many different, yet equally realistic ways. This is also due
to the different artistic styles present in a single comics do-
main, which in turn, gives rise to intra-comics domain style
variability. Addressing this issue of multi-modality, more
recently, MUNIT [17] and DRIT [26] introduced solutions
by learning a disentangled representation with a domain-
invariant content space and a domain-specific attribute/style
space. While effective, all the above-mentioned methods
perform image-level translation, without considering the
object instances. As such, they tend to yield less realistic
results when translating complex scenes with many objects.
This is also the task addressed by INIT [38] and DUNIT [5].
While INIT [38] proposed to define a style bank to translate
the instances and the global image separately, DUNIT [5]
proposed to unify the translation of the image and its in-
stances, thus preserving the detailed content of object in-
stances. We, therefore, use DUNIT [5] as our I2I transla-
tion model to translate the comics images to real domain.
Once translated, we leverage a depth estimator trained with
depth annotations from real images, to ultimately, predict
the depth of comics images.

3. Methodology
3.1. Problem Formulation and Overview

We aim to learn a cross-domain depth mapping between
two visual domains C ⊂ RH×W×3 and R ⊂ RH×W×3,
where C is the comics domain and R is the real image do-
main. To this end, first we employ the DUNIT model [5] to
translate the given comics image to the real domain. Sec-
ond, we use a contextual monocular depth estimator on the
translated image. Thus, the problem can be formulated as
Dc = f(R(C)), where Dc is the depth prediction for the
given comics image C, R(C) is the comics−→real trans-
lated image and f(R(c)) is the depth estimator trained on
real images and applied to R(c). The detailed architecture
of our method is provided in Figure 3. We now explain the
components of our network in more detail.
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Figure 3: Detailed overview of our architecture. Top: Overall architecture as discussed in Section 3. Bottom Left: Global
Context Module as detailed in [20]. Bottom Right: Local Context Module [20] with the added Laplacian in the spatial
attention branch.

3.2. Training

To handle unpaired training images between the comics
and real domains, we follow the cycle-consistency ap-
proach. In essence, this process mirrors that described in
DUNIT [5]. Additionally, to study the effect of the I2I
translation model on the performance of the depth estima-
tor, we replace the DUNIT method with CycleGAN [50]
and DRIT [26]. These methods do not reason about the
instance-level translations and thus, perform poorly in con-
trast to DUNIT. We report these results in the next section.
Below, we detail the loss function and training procedure
for the resulting I2I translation based depth model.

Image-to-image translation module. Our method is
built on the DUNIT [5] backbone which embeds the in-
put images onto a shared style space and a domain specific
content space. As such, we use the same weight-sharing
strategy as DUNIT for the two style encoders (Es

x, E
s
y) and

exploit the same loss terms. They include:

• A content adversarial loss Lcontent
adv (Ec

x, E
c
y, D

c) rely-
ing on a content discriminator Dc and the two con-
tent encoders (Ec

x, E
c
y), whose goal is to distinguish

the content features of both domains;

• Domain adversarial losses Lx
adv(E

c
y, E

s
x, Gx, D

x) and
Ly
adv(E

c
x, E

ci
x , Es

y, Gy, D
y), one for each domain,

with corresponding domain classifiers Dx and Dy ,
corresponding domain generators Gx and Gy and in-
stance content encoder Eci

x ;

• A cross-cycle consistency loss
Lcc
1 (Gx, Gy, E

c
x, E

ci
x , Ec

y, E
s
x, E

s
y) that exploits

the disentangled content and style representations for
cyclic reconstruction [45];

• Self-reconstruction losses Lx
rec(E

c
x, E

ci
x , Es

x, Gx) and
Ly
rec(E

c
y, E

s
y, Gy), one for each domain, ensuring that

the generators can reconstruct samples from their own
domain;

• KL losses for each domain Lx
KL(E

s
x) and Ly

KL(E
s
y)

encouraging the distribution of the style representa-
tions to be close to a standard normal distribution;

• Latent regression losses Lx
lat(E

c
x, E

ci
x , Es

x, Gx) and
Ly
lat(E

c
y, E

s
y, Gy), one for each domain, encouraging
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the mappings between the latent style representation
and the image to be invertible;

• An instance consistency loss Lic
1 (P

xi
tl , P

yi
tl , P

xi
br , P

y
br)

encouraging the same object instances to be detected
in the source domain image and in the corresponding
image after translation, where P

(.)
(.) are the bounding

box top-left and bottom-right corner pixels for detected
instances in the two domains.

During training, the I2I module is trained along with the
depth estimation module in an end-to-end manner. It has
been observed in [2, 49] that an end-to-end approach yields
consistent results on unknown domains, though it comes
with a computational overhead. In our method, this com-
putational cost depends mainly on the employed I2I trans-
lation module. For instance, DUNIT [5] has a greater com-
putational overhead than DRIT [26] or CycleGAN [50]. For
further details we point the reader to the supplementary ma-
terial.

Depth estimation module. As shown in Figure 3, our
depth estimation module is an encoder-decoder model with
skip connections in between the encoder and decoder lay-
ers. These skip connections model the local context in be-
tween the visual features by taking into account the spatial
and channel attention. The architecture of our depth esti-
mator is inspired from [20]. It relies on a Global Context
Module (GCM), mirroring that of [20], which explores the
context of the entire scene, whereby it computes the spa-
tial and channel attention between the objects present in the
global image. To this end, the GCM is placed at the end
of the encoder to obtain the global context information and
pass meaningful features to the decoder. We further com-
plement the GCM with a local context module processing
the features extracted at different layers in the encoder of
the depth estimator as shown in [20]. Moreover, to clearly
contrast the edge boundaries of the objects, we incorporate
a Laplacian edge detector [16] to the spatial branch of the
local context module. Since depth leverages low-level vi-
sual cues, such as edge information, we have observed this
Laplacian to facilitate depth estimation. In particular, the
local context module feature (shown in blue in Figure 3),
extracted by the encoder of the depth estimator, is processed
spatially and channel-wise before being fed into the decoder
layer. While the channel-wise processing mirrors that of
CDE [20], the spatial processing (or the spatial attention
branch as shown in Figure 3) employs multiple ASPP [15]
and convolutions to obtain a spatially-pooled feature, which
is then multiplied with the original local context module
feature and the Laplacian [16]. Finally, the features from
both the spatial and channel branch are added to the origi-
nal feature, to produce the processed local context feature.
This feature is fed into the decoder layer.

Our method uses two depth estimators, one taking the
real images as input and the other the translated images. We
use the zero-shot cross domain MIDAS model [34] to gen-
erate pseudo ground-truth depth for the real domain. Note,
however, that we could use any existing real-image dataset
with ground-truth depth annotations, such as KITTI [9] or
NYU [32]. However, these datasets are restrictive on the di-
versity of their scenes, i.e., they are not representative of the
extreme scene diversity in comics that contain both indoor
and outdoor scenes. Therefore, we use the MIDAS model,
which was trained on a collection of five diverse real-world
datasets comprising both indoor and outdoor scenes. We
generate the pseudo ground-truth only once, before training
our depth estimators.

Nevertheless, MIDAS fails when directly applied on
comics images (shown in supplementary Figure 2), hence
the need for our cross-domain context aware depth estima-
tors. To train them, we initialize both with the MIDAS
weights, setting a low learning rate of 10−6 to update the
weights for 100 epochs with the Adam optimizer and the
default hyper-parameters of [20]. During the training phase,
we use a shift and scale-invariant log loss function [34] as
objective function Ldepth for the depth estimator in the real
domain. It can be expressed as

  L_{depth}(y,y^{*}) = \frac {1}{n}\sum _{i}{d_{i}^{2}} - \frac {1}{2{n^{2}}}\left ({\sum _{i}{d_{i}}^{2}}\right )\;,





















 (1)

where di = log(yi) − log(y∗i ), y is the predicted depth, y∗

is the pseudo ground-truth depth in the real domain and n is
the number of pixels indexed by i.

As it learns the depth mappings, the depth estimator in
the real domain shares its weight with the estimator in the
comics−→real translated domain. We then add an adver-
sarial loss Ladv to train the feature-based GAN between
the two depth estimators [49], which encourages the inner
feature representations of the two depth estimators to share
similar distributions, since both stylistically represent real
images. This loss is written as

 \begin {aligned} L_{adv}(f, D_{depth}) = E_{f_{c'}\in f_{C}}[log(1-D_{depth}(f_{c'}))]\\ + E_{f_{r'}\in f_{R}}[log(D_{depth}(f_{r'}))]\;,\end {aligned}  

 
(2)

where fC and fR represent the encoded features extracted
by the encoder of the depth estimators in the translated do-
main and the real domain respectively, and Ddepth is the
discriminator of the feature GAN.

Altogether, we write the overall objective function to
train our depth estimators as

 \begin {aligned} L_{obj}(f,D_{depth}) = \alpha _{adv}L_{adv}(f, D_{depth}) + \\ \alpha _{depth}L_{depth}(f)\;.\end {aligned} 


(3)

Text detection module. When the comics images are
translated to the real domain, the translated images com-
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prise text areas or speech balloons, which are in turn un-
known to the depth estimator trained on the real domain.
This leads to text-based artefacts in the depth results as the
depth estimator considers such text areas as objects. There-
fore, to control the position of the text areas in the translated
images, we train a U-net [37] in a supervised manner us-
ing the eBDtheque dataset [12], which contains text/speech
balloon annotations. We mask the depth maps by multi-
plying them pixel-wise with the compliment of the text-
area mask, before using the L1-loss between the (masked)
pseudo ground-truth depth and the depth predictions. The
detailed architecture for our method with the text detection
module is given in the supplementary material.

4. Experiments and Results
To validate our method, we conduct experiments on the

following datasets.

4.1. Datasets

The main datasets used for this work are DCM [33]
and eBDtheque [12] for the comics domain and the COCO
dataset [27] for the real-world domain. The DCM dataset
comprises 772 full-page images with multiple comics panel
images within. We extract 4470 single panel images from
these full-page images using the panel annotations. Note
that the panel annotations do not contain depth informa-
tion. We thus, use these DCM panel images to train the I2I
model. The eBDtheque dataset contains 100 full-page im-
ages with multiple comics panel images within. Again, we
extract 850 single panel images as before. The eBDtheque
dataset contains annotations for speech balloons and text
lines, which we use to train a U-net [37] to predict the text
areas in a comics image. The detected text areas are then
used by our depth model to remove text-based artefacts
from the depth predictions. We employ the MS-COCO
dataset [27], comprising 5000 real-world images, as real-
world domain to train the I2I model.

Figure 4: Benchmark for evaluation. Left: Illustration of
the idea of inter-object and intra-object depth ordering, used
to annotate the comics images. The closer object is assigned
a lower first number l1; and the closer point within the same
object is assigned a lower second number l2. Right: Anno-
tated example from the benchmark.

Benchmark for evaluation. To evaluate and compare the
different depth models, we introduce a benchmark includ-
ing 300 DCM [33] images and 150 eBDetheque [12] im-
ages, from their validation set, along with the corresponding
manually annotated ground-truth depth orderings, as illus-
trated in Figure 4. To manually annotate their depth, we
carefully select 450 images from DCM and eBDtheque val-
idation sets, such that, they contain diverse scenes across ten
different artistic styles. These images were further tested for
inter-observer variability, for instance, their diversity and
artistic styles were analysed by three comics domain ex-
perts. Further, all three observers tested the manually anno-
tated depth of comics images. We use depth orderings to an-
notate the images. In particular, the image pixel coordinates
(x, y) are assigned two numbers (l1, l2). The first number,
l1, represents the inter-object depth ordering, such that two
different l1 values imply two different objects. Closer ob-
jects are assigned a lower number. The second number, l2,
represents the intra-object depth ordering, such that annota-
tions with the same first number but different second num-
bers indicate that the two points belong to the same object.
A lower l2 value indicates a closer point on the same object.

4.2. Evaluation Metrics

To evaluate our method, we evaluate the following four
standard performance metrics, as used in [20, 34].

Absolute relative difference (AbsRel). The absolute rel-
ative difference is given by 1

|N |
∑

y∈N |y − y∗|/y∗ where
N is the number of available pixels in the manually anno-
tated ground-truth.

Squared relative difference (SqRel). The squared rela-
tive difference is defined as 1

|N |
∑

y∈N ∥y − y∗∥2/y∗.

Root mean squared error (RMSE). The root mean
squared error is defined as

√
1

|N |
∑

y∈N ∥y − y∗∥2.

RMSE (log). The RMSE (log) is defined as√
1

|N |
∑

y∈N ∥ log y − log y∗∥2.

4.3. Quantitative Results

To evaluate our method, we compare it with the follow-
ing four state-of-the-art depth estimation approaches.

• T2Net [49], which comprises a depth prediction model
trained on synthetic image-depth pairs.

• Song et al. [39], which incorporates a Laplacian pyra-
mid into the decoder architecture. In particular, the en-
coded features are fed into different streams for decod-
ing depth residuals, defined by the Laplacian pyramid,
and the corresponding outputs are progressively com-
bined to reconstruct the final depth map from coarse to
fine scales.
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• MIDAS [34], which introduces a scale and shift-
invariant loss to estimate depth from a large collec-
tion of mixed real-world datasets, thereby presenting
a depth model that generalises across multiple real-
world datasets.

• CDE [20], which proposes an architecture that lever-
ages contextual information in a given scene for
monocular depth estimation. Thus, using the contex-
tual attention it obtains meaningful semantic features
to enhance the performance of the depth model.

We report the standard evaluation metrics for our method
in comparison with the four state-of-the-art methods in Ta-
ble 1 and Table 2 on the DCM and eBDtheque images,
respectively. Note that to report the performance metrics,
we compare the predicted depth by each method with our
manually annotated ground-truth depth. For the results in
Table 1, we use the 300 manually annotated DCM image-
depth pairs from our benchmark. Further, for the results
in Table 2, we use the 150 manually annotated eBDtheque
image-depth pairs from our benchmark. Our method out-
performs the baselines on all the performance metrics for
both DCM and eBDtheque images. Note that to evalu-
ate the performance of the four state-of-the-art methods,
the comics image is translated to the real domain using a
pretrained DUNIT model and then, the respective methods
are applied to predict its depth. This is imperative as the
above state-of-the-art methods are trained on real domain,
and thus to evaluate them fairly on comics, we translate
the comics image to the real domain. To maintain con-
sistency, we also evaluate our approach on the translated
comics−→real image. Nevertheless, our approach can also
be directly applied on a comics image to predict its depth.
We show this qualitatively in the supplementary material.

Method AbsRel↓ SqRel↓ RMSE↓ RMSE log↓
T2Net [49] 0.351 0.416 1.117 0.415
Song et.al. [39] 0.339 0.401 1.098 0.402
MIDAS [34] 0.309 0.381 1.033 0.375
CDE [20] 0.304 0.374 1.024 0.367
Ours 0.251 0.318 0.971 0.305

Table 1: Quantitative comparison (DCM images). We
compare our approach with the state-of-the-art methods on
the translated DCM validation images [33] from our bench-
mark. We report the Absolute Relative Difference (Ab-
sRel), Squared Relative Difference (SqRel), Root Mean
Squared Error (RMSE), and RMSE log (lower the bet-
ter). Our contextual depth estimator with the feature-based
GAN, Laplacian and text detection module gives the best
result. The best results are in bold and the second-best are
underlined.

Method AbsRel↓ SqRel↓ RMSE↓ RMSE log↓
T2Net [49] 0.491 0.555 1.459 0.777
Song et.al. [39] 0.479 0.520 1.431 0.711
MIDAS [34] 0.419 0.503 1.416 0.659
CDE [20] 0.424 0.511 1.415 0.647
Ours 0.376 0.448 1.364 0.553

Table 2: Quantitative comparison (eBDtheque images).
We compare our approach with the state-of-the-art methods
on the translated eBDtheque validation images [12] from
our benchmark. We report the Absolute Relative Differ-
ence (AbsRel), Squared Relative Difference (SqRel), Root
Mean Squared Error (RMSE), and RMSE log (lower the
better). Our contextual depth estimator with the feature-
based GAN, Laplacian and text detection module gives the
best result. The best results are in bold and the second-best
are underlined.

4.4. Qualitative Results

In Figure 5, we compare our method with the depth pre-
dictions obtained by MIDAS [34] and CDE [20]. The ex-
amples demonstrate that our network can benefit from I2I
translation in addition to the feature-based GAN and Lapla-
cian. Moreover, we also qualitatively show the effect of
our text-detection module. For instance, in the middle row
of Figure 5, while MIDAS and CDE have text-based arte-
facts in the predictions, including vague depth values in the
background from the speech balloons and incorrect depth
from the text box in the foreground, our method correctly
removes the speech balloon artefacts. Further, our model
predicts the human object in the same depth plane as that of
the text box in the foreground. Note that these predictions
were verified by comics domain experts. Our method thre-
fore, yields sharper depth maps with clearer foreground vs.
background separation and with well-defined object edges.
Furthermore, in contrast to the baselines, the depth predic-
tions by our method show greater consistency in their intra-
object and inter-object depth values.

4.5. Ablation Study

We now evaluate different aspects of our method. First,
we study the influence of the I2I translation module on our
depth model (including the feature GAN, Laplacian and
the text module). To this end, we compare the results ob-
tained using our depth model with the different state-of-the-
art I2I method, namely, cycleGAN [50], DRIT [26] and
DUNIT [5]. We report the AbsRel, SqRel, RMSE and
RMSE (log) on the DCM validation images [33] from our
benchmark in Table 3. We observe that DUNIT consistently
improves the results across all metrics, thereby demonstrat-
ing the benefits of instance-level translations on our method,
in contrast to the image-level translations in cycleGAN and
DRIT.
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Comics input MIDAS [34] CDE [20] Our

Figure 5: Qualitative comparison of depth estimation on
the translated DCM validation images [33] from our bench-
mark, using the text detection module (top row and middle
row) and without using the text detection module (bottom
row). We show, from left to right, the input image in the
comics domain, the result using the MIDAS [34] model di-
rectly on the translated comics image, the result using the
CDE [20] model directly on the translated comics image,
and Our model applied to the translated comics image, re-
spectively.

Method AbsRel↓ SqRel↓ RMSE↓ RMSE log↓
CycleGAN [50] 0.282 0.346 0.995 0.329
DRIT [26] 0.269 0.333 0.983 0.317
DUNIT [5] 0.251 0.318 0.971 0.305

Table 3: Ablation Study on the effect of I2I model. We
compare the effect of the different I2I translation model on
our method. We report the four standard performance met-
rics (lower the better). Our method with the DUNIT model
gives the best result. The best results are in bold and the
second-best are underlined.

We then turn to exploring the effect of the feature GAN,
Laplacian and text detection module on our method. To
this end, we add each of these components one-by-one to
the baseline approach comprising the DUNIT model and
the CDE model, shown as I2I+depth in Table 4. Note
that this baseline approach is trained in an end-to-end man-

ner. We report the standard four performance metrics on
the DCM [33] images from our benchmark in Table 4. We
show that the end-to-end baseline approach outperforms the
CDE [20] method when applied directly to the translated
comics images, as shown in Table 1. This solidifies the
benefits of an end-to-end training approach. Moreover, the
addition of each component of our method consistently im-
proves the performance across all metrics. All the images
were kept constant for the study of all the network compo-
nents. We show qualitative results from this ablation study
in our supplementary material.

Method AbsRel↓ SqRel↓ RMSE↓ RMSE log↓
I2I + Depth 0.301 0.369 1.022 0.362
Feature GAN 0.270 0.339 0.994 0.322
Laplacian 0.257 0.322 0.976 0.313
Text Module 0.251 0.318 0.971 0.305

Table 4: Ablation Study on the effect of the different net-
work components. We compare the effect of the different
network components, namely, the feature GAN, Laplacian
and text module on our method. We report the four standard
performance metrics (lower the better). The above network
components are added one-by-one and we observe that our
model with feature GAN, Laplacian and text module out-
performs on all performance metrics. The best results are in
bold and the second-best are underlined.

5. Conclusion
We have introduced an approach to estimate image depth

in the comics domain using unsupervised I2I translation to
adapt the comics images to the real domain. To this end,
we have leveraged a modified context-based depth model
trained on real-world images with Laplacian. We also, have
added a feature GAN approach to the depth estimators to
enforce the semantic similarity between the translated and
real images. We have further added a text-detection module
to remove text-based artefacts in the depth predictions. To
validate our experiments, we introduce a benchmark with
manually annotated depth for images from the validation
set of DCM and eBDtheque datasets, as there is no exist-
ing benchmark with depth annotations. In our experiments,
our I2I translation-based modified depth estimators with
Laplacian, feature GAN and text-detections, outperform the
state-of-the-art methods. This is the first automated method
to predict depth for comics images. Therefore, this work
can be used for applications like comics image retarget-
ing, scene reconstruction, comics animations or repurpos-
ing comics to augmented reality.
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