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Abstract

Transformer architectures have shown promise for a
wide range of computer vision tasks, including image em-
bedding. As was the case with convolutional neural net-
works and other models, explainability of the predictions
is a key concern, but visualization approaches tend to
be architecture-specific. In this paper, we introduce a
new method for producing interpretable visualizations that,
given a pair of images encoded with a Transformer, show
which regions contributed to their similarity. Addition-
ally, for the task of image retrieval, we compare the per-
formance of Transformer and ResNet models of similar
capacity and show that while they have similar perfor-
mance in aggregate, the retrieved results and the visual
explanations for those results are quite different. Code
is available at https://github.com/vidarlab/
xformer-paired-viz.

1. Introduction

The lack of explainability or interpretability is often cited
as one of the main drawbacks of deep neural networks used
in computer vision and machine learning [2, 25, 27]. The
primary approach to addressing this problem in vision do-
mains is through visualization approaches that highlight the
portion(s) of the input that most contributed to the output
prediction. For images, these heatmap visualizations tend
to depict the relative importance of particular pixel regions.

Generating these visualizations often depends on both
the (1) network architecture and (2) prediction task. Con-
volutional neural networks (CNNs) have been the domi-
nant architecture in computer vision and most visualiza-
tion approaches were specific to these models. Typically,
for CNNss, the feature maps at each layer have local sup-
port; the representation at a particular location is computed
from a small neighborhood of nearby pixel locations. Rele-
vancy maps can be generated and overlaid with the input to
produce an intuitive visualization. While most of the work
deals with classification networks [31, 30, 37, 45, 29], there
has been some recent work on embedding networks [35, 10]
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Figure 1. Our approach visualizes paired image similarity in
Transformer networks trained for image embedding. For the im-
ages along the diagonal, the off-diagonal visualizations show the
pairwise similarity maps generated by our approach, where red in-
dicates a high contribution. For example, for image B, B|A, shows
that the chair region contributes the most similarity with image
A, while B|C also includes the bed and wall contributing to the
similarity with image C.

which typically use representation learning for downstream
tasks, such as image retrieval.

Recently, there has been an increase in the use of Trans-
former networks in computer vision. This architecture, im-
ported from the field of natural language processing, is quite
different from a CNN architecture and requires new ap-
proaches to explainability due to the global attention opera-
tions at each layer and the strong degree of token mixing
throughout the model [6]. The early visualization meth-
ods for Transformers followed a similar trajectory as with
CNNs. First, there were output-agnostic methods that vi-
sualized the regions attended to by the model [1], fol-
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lowed by methods focused on networks trained for classi-
fication [8, 7].

In this paper, we develop a visualization approach for
Transformer networks used to learn image embeddings. In
this context, interpretability can be considered in a pair-
wise fashion; a visualization can help explain why pairs of
images result in high (or low) similarity scores, typically
computed as the dot product of normalized feature vectors.
Specifically, this work:

» extends paired image visualizations, originally de-
signed for convolutional neural networks, to image
Transformer networks;

» compares ResNet and ViT architectures on image re-
trieval on standard benchmark datasets; and

* qualitatively demonstrates the utility of the approach
for understanding Transformer embedding networks.

2. Related Work

Our method is a paired image similarity visualization for
Transformer networks used for image embeddings. In this
section, we review related visualization methods for CNNs
and Transformer network architectures.

2.1. CNN Visualization

Modern CNN interpretability methods can be catego-
rized into two classes: output-agnostic and output-specific.
Output-agnostic methods produce visualizations of the acti-
vation maps independent of the output feature or predictive
task. Some approaches generate a binary relevancy map by
thresholding the values of a feature map from a given layer
in the network [44, 4]. Other work [43] incorporates de-
convolutional neural networks to transform activation maps
into the original pixel space.

Output-specific methods highlight the regions that are
most relevant for generating a given target. In the case
of classification, these visualizations depict the regions of
the input image that contributed to the prediction of a
particular class. One method computes the derivative of
the target class with respect to the input and produces a
saliency map from the pixels with the largest gradient val-
ues [31]. Another method, Layer-wise Relevance Propaga-
tion (LRP) [3], backpropagates the value of a chosen output
neuron to the input, determining the contribution of image
pixels using a set of well-defined rules tailored to network’s
architecture and activation function. Contrastive [16] and
Softmax Gradient LRP [19] extend LRP and contrast the
chosen target with all possible outputs.

Other output-specific methods include [30, 37] which
multiply the gradients with respect to the target class with
the input pixel values, rather than visualize the magnitude
of the gradients alone. These approaches tend to generate
similar visualizations for different target classes, thus negat-
ing the aspect of output specificity. Class-Activation Maps

(CAM) [45] were shown to produce discriminative visual-
izations. CAMs are generated by taking a weighted sum of
the feature maps produced by the last convolutional layer
in the network, using the weights of the global pooled fea-
ture with respect to the target class as a multiplier. Grad-
CAM [29] generalizes this framework for different network
layers and architectures, weighting the feature maps instead
by the gradients with respect to the target class.

There is less work in output-specific visualizations for
image embedding networks. For networks trained with
triplet-style loss functions [38, 18], one such method [10]
employs an approach, following the style of GradCAM, that
averages the gradients from sampled training triplets. To
produce the visualization of a test image, the gradients of
the most similar training image are used for the weighted
sum of the feature maps. Stylianou et al. [35] introduced
a method for generating heatmaps from a pair of images
which highlight the regions that contribute the most to their
pairwise similarity. This method decomposes the similarity
calculation across each spatial location in the final feature
maps of both images, producing a separate, but complemen-
tary, visualization for each input image.

2.2. Transformer Interpretability

The distinguishing feature of Transformer networks is
the use of attention in each encoding block. One contested
notion has been whether analyzing the attention weights
is suitable for explaining predictions made by the model.
The weights of attention modules used in RNNs have been
shown to have low correlation with other methods of as-
signing feature importance [20] and Transformer training
can be manipulated such that low attention weights are as-
signed to salient tokens at inference [26]. On the other
hand, it has been shown that attention weights can pro-
vide useful insights into the Transformers used for lan-
guage processing, such as correlations to grammatical re-
lationships in BERT [11]. Attention weights have also been
shown to provide model explainability for question answer-
ing, while [40] even introduced a method of probing them
in BERT to guide fine-tuning on downstream tasks.

Transformers have only recently migrated to the com-
puter vision community, so there has been less work on in-
terpretability methods for these models. Most of the work
so far focuses on using the attention weights to produce
intuitive visualizations. The nature of global attention op-
erations have been shown to facilitate high levels of token
mixing, particularly at later layers of the network [6]. Com-
pared to CNN feature maps, whose components have strong
local receptive fields, this makes it more difficult to assign
relevance with respect to the input pixel locations. One ap-
proximation, Rollout [1], involves iteratively multiplying
the attention weights across each layer to compute the atten-
tion flow. While Rollout itself is output-agnostic, it has been
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used as the foundation for output-specific visualizations for
Transformer networks used for classification [8, 7].

As Transformer networks gain popularity in computer
vision, they are being applied to more tasks. In this paper,
we consider Transformer networks used for image embed-
dings, as in [15]. These networks are typically trained using
one of the various pairwise, triplet, or proxy loss functions
used in deep metric learning (e.g., [28, 33, 41, 21]). The
output of these networks is a dense vector and, for two in-
put images, pairwise image similarity is typically computed
as the cosine similarity of the feature vectors. Our work is
applicable to Transformers whose input is non-overlapping
image patches with a varying number of encoding blocks
followed by a pooling layer to generate the output feature
(Figure 2). This encompasses a wide range of Transformer
models including Swin [23], HVT [24], and PSViT [9].

3. Method

Our method, depicted in Figure 3, adapts a paired image
visualization approach designed for CNNs [35] in combi-
nation with a Transformer attention flow approximation [1].
For a pair of images, the output is a pair of heatmaps that
highlight the spatial regions which contributed to the simi-
larity between the images.

3.1. Paired Image Visualization

We focus on Transformer architectures whose final oper-
ation is a global pooling operation on the output tokens of
the last encoding block!. Let o € REXEXC represent the
output tensor of K x K C-dimensional tokens. The output
feature, 3 € R” is generated by a pooling operation. Here,
we consider mean pooling:

1
B=1zD %y (1)
T,y

For two image features 3" and 37, their cosine similarity is
given by:
o g3

s(B0) = —mr (2)
5]
We can decompose the similarity across the output tokens of
image ¢ with respect to image j by substituting Equation 1
into Equation 2.
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connected layer, often added for dimensionality reduction. For the sake of
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Figure 2. Our visualization approach is applicable to Transform-
ers whose input is non-overlapping image patches with varying
numbers of encoding blocks followed by a pooling layer (and per-
haps a fully-connected layer) to generate the output feature, such
as Swin [23], HVT [24], and PSViT [9].

For the output token indexed by (z, y), let 'y;ljy represent

the contribution of that token to the pairwise similarity.
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The corresponding value for the paired image, '%Vy, can be
computed in a symmetric fashion. In the case of CNN ar-
chitectures, such a representation could be directly used for
the relevancy map at the spatial location (z, y) because the
convolution and pooling kernels have local receptive fields
to that point. However, due to the successive mixing oper-
ations at each layer of the Transformer network, the output
modules do not maintain the same level of spatial consis-
tency as with CNNs. In the next section, we describe how
we apply methods for attention flow approximation to ac-
count for this issue and generate an intuitive visualization.

3.2. Attention Flow Approximation

The self-attention modules in each Transformer block
(see Figure 2) facilitate global token mixing. As such, the
receptive field of late-stage tokens is not limited to neigh-
boring regions in the input. Reversing the attention process
and recovering the exact contribution of each input pixel lo-
cation is not possible due to successive non-invertible func-
tions in the forward computation graph. Recent work has
focused on approximations to the attention flow. Our visual-
ization approach is agnostic to the particular approximation
approach. For the experiments in this paper, we use Rollout,
a straightforward and efficient attention flow approximation
method, which has been previously used for single-image
Transformer visualizations [14].

Rollout relies on the assumption that attention flows can
be combined linearly between Transformer blocks. Let
R € RE*¥K” represent the pairwise attention flow from
each of the K? input tokens to each of the K? output to-
kens. That is, each row in R corresponds to the normalized
distribution of attention flow from each input image patch.
Rollout estimates R iteratively. Let A; represent the atten-
tion weights, averaged over multiple heads, at layer [. Let
R; be the cumulative attention flow up to block [ and R be
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Figure 3. The top row shows the typical forward pass for an Transformer trained for image embedding. We highlight the tokens generated

B1

in the last block, «, and the post-pooled feature vector, 5. The similarity between two feature vectors, typically computed as I %,
can be spatially decomposed using the approach described in Section 3, resulting in a pair of heatmaps that highlight the input regions in

each image that most contributed to the similarity with the other image.

the identity matrix, I. For each block, [ > 0:
R = Riy||[A+1| 5)

The resulting attention flow approximation, R = Ry, for
L Transformer blocks, can be used to redistribute the simi-
larity contribution, ~y spatially.

3.3. Method Summary

Our approach combines paired image visualizations with
the attention flow approximation, Rollout. For a given pair
of input images, ¢ and j, we compute the pre-pooled output
token representations, o' and o, and post-pooled feature

vectors, 3% and 37. Following Equation 4, compute .7,
and v, for each output token (z,y) in both images. Us-
ing the Rollout matrix, R, compute ' to redistribute the

similarity values to input image space:
Y =R~y (6)

~' is then reshaped and upsampled to the original image
resolution to generate the heatmap visualization.

4. Evaluation

To evaluate our approach to paired image visualization
for Transformers, we employ the following image retrieval
datasets: Hotels-50k [36], Clean Google LandmarksV2
(GLM) [39, 42], and Stanford Online Products (SOP) [34].
Table 1 summarizes the dataset properties. For Hotels-50k
and GLM, our models are trained using ArcFace loss [13],
while for SOP we use Proxy Anchor loss [21].

Our image Transformer is a Base ViT model with 16 x 16
patch size and 12 encoder blocks. For 256 x 256 input im-
ages, there are 16 x 16 output tokens, which are aggregated
with mean pooling. A fully-connected projection layer re-
duces the dimensionality of the resulting features to 512-D.

Dataset # Train # Test Loss
Hotels-50k | 1,085,862 16,121 ArcFace
GLM 1,580,470 | 761,757 ArcFace
SOP 59,551 60,502 Proxy Anchor

Table 1. Datasets and settings used in the experiments.

The model consists of 86M learnable parameters. For opti-
mization, we use stochastic gradient descent with a 1-cycle
learning rate schedule [32].

4.1. Visualizing Pairwise Similarity

Figure 4 shows paired image similarity maps for exam-
ples from the Hotels-50k, GLM, and SOP datasets. Over-
all, the similarity maps tend to highlight large contiguous
activated regions, often tightly segmenting entire objects in
the scene when present in both images. In the first Hotels-
50k example, the most activated regions in each image are
the brown bed cover and grey-patterned runner, indicating
that these were the most important features in the similar-
ity calculation. Likewise, the most significant regions in the
second example are the tiled walls and floor of the show-
ers. The similarity maps form a clear boundary surrounding
these areas with the adjacent objects, such as the towel on
the glass door in the first image.

When only parts of an object are visible in both images,
our method is also able to distinguish which components
are shared. In the first GLM example, only the brick fa-
cade contributes the most similarity, since it is the part of
the building that is seen in both images. Likewise, in the
first SOP example, the backs of the chairs in the first im-
age contribute the most to the similarity, while the seats and
legs do not. This is due to the close-up shot of the back of a
matching chair in the complementing image.
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Figure 5. Class similarity maps from selected images. All images in a given row belong to the same class.

4.2. Class Similarity Maps

Like [35], we can adapt our visualization approach to
generate class similarity maps. For a given query image,
we can compute the pairwise similarity with respect to each
gallery image from the same class, and then sum the re-
sulting heatmaps. Figure 5 shows example class similarity
maps computed from selected images on each dataset. Class
similarity maps such as these help determine which image
regions are strongly associated with each class. For the
Hotels-50k images, we notice that one of the most salient
objects are unique bed covers. They frequently contribute
the most similarity, like in both examples from this dataset.
Most of the images in SOP are of one central object, taken
at different angles. It is common for the entire object to
contribute to the similarity in all of the images that share

the same label, as seen in their similarity maps. In the
visualizations from the GLM dataset, whose images come
from a greater variety of scenes, we observe that often only
the most unique features have the greatest similarity values.
These include the distinctive rock formations in the first ex-
ample and the ceiling artwork in the second.

4.3. Effect of Training

Figure 6 shows the paired image visualizations for a
query image and its three most similar images at different
iterations during the training process. We observe that the
regions that contribute to the similarity often change as the
network converges, with the most significant shifts occur-
ring within the first 25,000 iterations. In the given exam-
ple, the building does not contribute strongly in the initial
similarity maps of the three retrieved images. As training
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Figure 6. A query image and its top 3 matches, along with their
accompanying similarity maps at different stages of training. A
green border indicates a correct retrieval.

progresses, gradually more of the building becomes high-
lighted, before settling on the most salient parts, such as the
facade in the first, correct match, and the spire in the second
and third matches. By 50,000 iterations, the maps provide a
visual indication that training has converged.

4.4. Effect of Patch Size

The paired visualization can be used to examine the ef-
fect of varying the patch size in Transformer networks. We
trained the same model with a patch size of 32 x 32 (ViT-
B/32) on Hotels-50k and SOP (decreasing the number of
tokens to 64 and the output feature map to 8 x 8).

Comparisons are shown in Figure 7. One difference is
that the segmentations around objects are tighter in the ViT-
B/16 similarity maps due to the larger number of patches.
In the first example in Figure 7, the ViT-B/16 visualization
has a tighter boundary surrounding the legs and wheels of
the chair. In the ViT-B/32 version, the same components
contribute to the similarity, but are not as tightly delineated.
In the ViT-B/32 similarity maps, smaller objects tend to
match the similarity values of the larger, surrounding re-
gions. This is present in the third example; the hand towels
do not strongly contribute to the similarity in the ViT-B/16
visualization, while the surrounding wall does. However, in
the ViT-B/32 counterpart, the towels and the wall areas have
high similarity contributions.

Higher resolution feature maps also show more instances

ViT-B/16

ViT-B/32

Figure 7. Similarity maps of the images in the center and right
columns computed with respect to the image on the left. Smaller
patch-size causes noisy fluctuations in similarity of the back-
ground regions. Larger patch-size causes the similarity of smaller
objects to be influenced by that of larger, surrounding regions.

of seemingly arbitrary variations in similarity compared to
surrounding pixels. This is especially noticeable in the sec-
ond example in Figure 7, where the ViT-B/16 visualization
shows background patches that have higher similarity com-
pared to their immediately neighboring regions. One ex-
planation is that, for some networks, the linearity assump-
tion in Rollout is too strong, resulting in a poor approxima-
tion of attention flow, an issue raised by Chefer et al. [8].
With fewer tokens, we observe fewer instances of this phe-
nomenon, leading to visually smoother maps like those gen-
erated by the ViT-B/32 model.

4.5. Comparison to Output-Agnostic Visualizations

Previous work has used Rollout to produce output-
agnostic visualizations of the attention weights [14, 8]. For
a given image, we can see that there are substantial differ-
ences between its output-agnostic relevancy map and the
paired image similarity maps, as shown in Figure 8. In gen-
eral, the tokens with the greatest relevancy scores are scat-
tered across the image and overlap with areas containing
prominent edges. For the pairwise similarity maps, only the
features that are shared between images (and therefore con-
tribute to similarity) are highlighted. For instance, in the
third example, the Rollout map of the first image shows that
patches from each of the four different colored cushions are
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Figure 8. For a pair of images, output-agnostic Rollout maps and
their corresponding similarity maps generated with respect to each
other. In the Rollout maps, red regions have higher relevancy; in
the similarity maps, red regions contribute more to the similarity.

strongly attended to by the model. However, in the similar-
ity visualization, only the brown cushion is highly activated
as it is the only match to the paired image. Likewise, in the
fourth example, the Rollout map highlights the artwork on
the cups, but these features do not strongly contribute when
the image is compared to one belonging to the same class
but from a very different point of view.

5. Comparison with CNN

For comparison, we also trained a representative CNN
model, Big Transfer (BiT) ResNet-101-v2 [22, 17], on the
same data for the same tasks. The network is pretrained
on the same dataset as the ViT, ImageNet-21k [12]. The
ResNet consists of 43M learnable parameters. Similar to
the Transformer optimization, we use stochastic gradient
descent with a 1-cycle learning rate schedule [32]. We use
our approach for the Transformer with [35] for the ResNet.

For each dataset, we follow the most common train-
ing and evaluation regimes described in the literature.” In
each case, the results can be summarized using common
retrieval metrics: Recall@1 and mean average precision at
R (mAP@R), where R is equal to the number of gallery
images that share the same label as the query. Table 2 sum-
marizes the results. In general, we observed similar perfor-

2For GLM, we query the images in the test-gallery against each other
due to the labels in the more commonly used query-test set being unavail-
able at the time.

Hotels-50k GLM SOP

Model R@I | mAP@R | R@l | mAP@R | R@I | mAP@R
VITB/16 223 047 469 120 824 585
ResNet-101 | 247 060 466 123 820 578

Table 2. Image retrieval comparison between Transformer and
ResNet models. For both metrics, higher is better. Both models
achieve similar performance on each dataset.

mance and, frequently, one method would fare better with
one metric and the opposite for the other, as seen in these
results on the GLM dataset. In most cases, the differences
in performance were modest. In this section, we employ
our paired visualization method to highlight the differences
between the Transformer and ResNet models.

5.1. Image Retrieval Comparison

While both models achieve similar performance in ag-
gregate, the top returned images for a given query are of-
ten quite different. The paired image similarity visualiza-
tions provide insight into these differences, as shown in
Figure 9, which depicts image queries and their top four
most similar matches, along with their corresponding sim-
ilarity visualizations. In the first example, the ViT visual-
ization highlight an assortment of different objects, such as
the chair, mini-fridge, and dresser. The similarity maps for
the ResNet results instead show high activation solely on
the carpet, resulting in a completely different set of images.
In the second example, both models return the same cor-
rect image for the first result. They both match partially on
the artwork, while the ViT also matches on the couch and
the ResNet matches on the floor. The remaining returned
images in each set also match for these different reasons.

Overall, the similarity maps for the ViT are spread
across broader regions, with more objects contributing to
the match in comparison to the ResNets, which are primar-
ily focused on localized textures. Consider again the first
example in Figure 9. The similarity maps for the ViT show
more regions with moderate levels of similarity (yellow in
the color scale) compared to the ResNet maps, which are
more bimodal — high activation in a localized region with
little similarity distributed to the remainder of the image.
This observation is consistent with previous research; Bho-
janapalli et al. [5] found that ViT models key on large-scale
structural features, while ResNets key more on texture.

5.2. Semantic Similarity

For the Hotels-50k dataset, we observed a higher degree
of overlap in the objects (e.g., beds, lamps and curtains) be-
tween the query and top retrieved matches when compared
to the ResNet. For instance, in the last example in Figure 9,
the query and top 4 images retrieved by the ViT all show a a
TV situated on top of a dresser captured from similar view-
points. In contrast, the images returned using the ResNet
model show a more diverse set of perspectives.

3170



® ViT @ ResNet
0.850

0.825

0.800

Pose Similarity

0.775

kth Nearest Neighbor

Figure 10. On average, the top matching images from a Trans-
former model have higher similarity of objects and camera pose
to the query than for the ResNet, which suggests the presence of
common objects contributes more strongly to similarity for Trans-
formers than ResNets.

To quantify this phenomenon, we compute the pose sim-
ilarity between the query and its top matching results. For
each image, we compute a dense semantic segmentation and
vector of the pixel semantic class distribution. The pose
similarity is the dot product of these vectors computed for
a pair of images. The pose similarity is a rough measure
of whether two images contain the same set of objects in
similar poses. For this experiment, we use the a ResNet-
50 + PPM DeepSup network [47] trained on the ADE-20k
dataset [46, 48]. The model is trained to predict 150 se-
mantic classes. We retain the 44 classes that appear in at
least 5% of the Hotels-50k images, and consolidate the re-
mainder into an “other” category. For each query, we com-
pute the pose similarity to the top 10 retrieved images, and

[ L, B 9
g \‘ _cel

Figure 9. Image retrieval queries on Hotels-50k dataset (top row) and their the top-4 retrieved results for the ViT and the ResNet, along
with their similarity maps computed with respect to the query. A green border indicates a correct retrieval.

the averages are shown for the Transformer and ResNet in
Figure 10. Matching images from a Transformer generally
share higher pose similarity with the query than those from
a ResNet. This finding reinforces the notion that the im-
age similarity learned differs between the two architectures
and that larger, sometimes global, similar patterns between
images play a larger role for Transformers.

6. Conclusions

Visualization methods have filled an important gap in the
understanding of neural networks in computer vision. We
presented a paired-image visualization approach for Trans-
formers trained for image embedding. We demonstrated the
utility of this approach to better understand image retrieval
with Transformers and the differences between the learned
representations compared to convolutional networks. While
the two approaches may achieve similar performance us-
ing aggregate metrics, similarity can be encoded very dif-
ferently. Transformers tend to encode larger regions and
the entirety of objects, while convolutional embedding net-
works appear to encode smaller textured regions. Moreover,
camera pose appears to be more of a factor in encodings
generated by Transformers. Such insight may be useful in
determining which model to choose for various image do-
mains and tasks beyond image embedding.
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