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Abstract

Vision systems trained in closed-world scenarios fail
when presented with new environmental conditions, new
data distributions, and novel classes at deployment time.
How to move towards open-world learning is a long-
standing research question. The existing solutions mainly
focus on specific aspects of the problem (single domain
Open-Set, multi-domain Closed-Set), or propose complex
strategies which combine several losses and manually tuned
hyperparameters. In this work, we tackle multi-source
Open-Set domain adaptation by introducing HyMOS: a
straightforward model that exploits the power of contrastive
learning and the properties of its hyperspherical feature
space to correctly predict known labels on the target, while
rejecting samples belonging to any unknown class. Hy-
MOS includes style transfer among the instance transfor-
mations of contrastive learning to get domain invariance
while avoiding the risk of negative-transfer. A self-paced
threshold is defined on the basis of the observed data dis-
tribution and updates online during training, allowing to
handle the known-unknown separation. We validate our
method over three challenging datasets. The obtained re-
sults show that HYMOS outperforms several competitors,
defining the new state-of-the-art. Our code is available at
https://github.com/silvial 993/HyMOS.

1. Introduction

Artificial intelligent systems face many operational chal-
lenges when moving from the controlled lab environment
to the real-world. First of all the annotated data available to
train a model might be the result of asynchronous multi-
agent collection processes. For vision tasks, this means
dealing with datasets composed of labeled images that share
the same class set, but with sub-groups of instances showing
significant differences in appearance and style among each
other. Moreover, at deployment time the learned model will

“The authors equally contributed to this work.

Attract ‘E?V {—7‘ SN
— 3 ;
Jesae] e Sourée: = E Soufce:
Proj Proj Infograph |\ Painting
apple-|f [
Enc Enc
= 2 Repeal unknown
LA " D
; - o,
\ Q& [

e
G

Target: Sketch

5
| ;;;z’f:;

Figure 1: With HyMOS we exploit supervised contrastive
learning to tackle all the challenges of multi-source Open-
Set domain adaptation. We introduce style transfer in the
double path contrastive logic to obtain a domain invariant
representation. By balancing class and source domains in
each training batch we obtain class-wise domain alignment.
The learned embedding space naturally isolates target un-
known samples in low-density regions, while the known
samples lay close to the corresponding class cluster and can
be easily involved in self-training for further adaptation.

inevitably encounter new environmental conditions, with
distribution shift and novel classes not present during train-
ing. In standard Closed-Set domain adaptation [8], the main
focus is on how to reduce the gap between the training (la-
beled source) and test (unlabeled target) data when the lat-
ter covers exactly the same class set of the former. Open-
Set domain adaptation [35] aims at bridging the domain gap
while also rejecting target samples of unknown classes. In-
deed, in the case of category shift, the application of naive
adaptive solutions may lead to negative-transfer and unre-
coverable class misalignment [24]. Although dealing with
multiple sources is more the rule than an exception in real-
world conditions, only one recent work has started to peek
into the multi-source Open-Set domain adaptation task [38].
This highlights the difficulty of learning a feature space
shared among domains, while also maximizing the sepa-
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ration between known and unknown categories within the

unlabeled target.

The foundational problem that all the current open-world
adaptive learning models try to solve is the limited gener-
alization ability of the albeit powerful deep learning mod-
els. This can be at least partially explained considering two
well known CNN shortcomings: (1) deep models yield fea-
tures that describe mostly local rather than global statistics,
which causes a bias on the image style of the training data
[17]; (2) the cross-entropy loss, widely used for supervised
learning, produces overconfident predictions thus biasing
the model towards the labeled class set [18, 21]. Existing
solutions adopt multi-stage learning procedures, combine
several losses to compensate for the cross-entropy over-
reliance on source supervision, and close the domain gap
with adversarial techniques. The obtained approaches are
difficult to train with several hyperparameters and manually
set thresholds, or include complex models to generate sam-
ples of a synthetic unknown source class (see Table 1).

With our work, we propose a supervised model that
avoids the drawbacks of the cross-entropy loss, while learn-
ing a style-invariant embedding space that naturally isolates
the unknown categories. Specifically, we build over the very
recent contrastive learning trend [6, 13, 18], where the en-
coder learns the invariance between two augmented views
of one image (positive pair) while maximizing the distance
among augmented versions of different instances (negative
pair). We show how a single supervised contrastive learn-
ing objective can tackle every challenge of multi-source
Open-Set domain adaptation (see Figure 1):

* source to source class-wise alignment comes by simply
balancing data batches over classes and domains;

* source to target adaptation is obtained by first getting
domain invariant features via the introduction of style
transfer among the augmentations of contrastive learning.
Then, a progressive and auto-regulated self-training pro-
cedure further improves the alignment between the target
and the source classes clusters;

* the separation between known and unknown target data
comes from a self-paced threshold based on the observed
data distribution on the learned hyperspherical feature
embedding. Indeed, the contrastive objective leads to
compact and well separated known class clusters [54],
leaving unknown samples isolated in low-density regions.

To highlight the important role of the Hyperspherical
feature space for our Multi-source Open-Set approach, we
dub it HyMOS. We present an extensive experimental anal-
ysis on three multi-source Open-Set datasets, showing how
HyMOS outperforms current state-of-the-art methods. A
thorough ablation study provides details on the internal
functioning of the method. Further application to related
challenging scenarios (multi-source closed set and multi-
source universal) show promising results.

No. of |No. of
Method Losses | HPs Threshold
Inheritable [19] 4 2 not used - synthesize unknown target

ROS [2] 6 4 reject a fixed portion of Target

CMU [10] 2+ Cs|| 3 validated
DANCE [41] 3 3 fixed value depending on |C|
PGL [29] 3 4 reject a fixed portion of Target

MOSDANET [38]| 4+ |S|| 2 validated

HyMOS 1 1 |self-paced, updates online while training

Table 1: Comparison with existing open-set and universal
domain adaptation approaches. HPs indicate the hyperpa-
rameters, |C;| the number of source categories, |S| is the
number of source domains. Note that synthesizing new
samples is a time-consuming operation and any validation
procedure requires at least a dedicated per-dataset tuning.

2. Related works

Domain Adaptation A model trained and tested on data
sharing the same label set but drawn from two differ-
ent marginal distributions will inevitably show low perfor-
mance. Closed-Set domain adaptation addresses this prob-
lem by increasing the invariance of the learned features over
source and target domains. Several approaches focus on
minimizing statistical metrics that reflect the distribution
discrepancy [60, 26, 20]. Others rely on adversarial learn-
ing [11, 27, 47]. Recent strategies also exploit batch and
feature normalization [4, 22, 59] as well as self-supervision
[3, 58] [1, 33] to learn robust cross-domain embeddings.
A different stream of works investigates how to reduce the
domain shift directly at pixel level via generative models
which transfer the style of the source to the target and vice-
versa [39, 43, 12, 28]. When dealing with multiple sources,
the extra challenge is in aligning all the domains among
each other while producing a high discriminative feature
space [48] . Source weighting techniques exploit knowl-
edge graphs and feature transferability measures evaluated
once or multiple times over training [36, 61, 52].
Considering that the target is unlabeled, being sure that
its semantic content perfectly matches that of the source is
unrealistic. Open-Set domain adaptation tackles target do-
mains which include new unknown classes with respect to
the source. After the definition of the problem in [35], a first
group of works proposed various approaches to maximize
the separation between known and unknown target sam-
ples while exploiting adversarial-based methods to align the
known classes [42, 24, 9]. Most recently, [34] introduces a
self-ensembling based method to minimize the model mis-
match between the class assignment proposed by the source,
and the inherent target cluster distribution. ROS [2] shows
how to exploit the self-supervised rotation recognition task
to deal with both these objectives. In [19] a model is directly
trained on the source with an extra set of negative sam-
ples produced via the suppression of class-specific feature
maps activations. PGL [29] exploits a graph neural network
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with episodic training to suppress the underlying condi-
tional shift, while adversarial learning reduces the marginal
shift between the source and target distributions. The only
published method dealing with multi-source Open-Set is
MOSDANET [38] which adds a clustering objective over
a standard supervised classification model to maximize the
similarity among samples of the same class but different do-
mains. Moreover, it exploits adversarial learning for do-
main adaptation: it has a tailored margin loss to penalize
cases with a small difference in known and unknown pre-
diction output, and finally it includes the potential target
samples in the training procedure via pseudo-labeling.

The methods dealing with universal domain adaptation
cover a wide range of scenarios with private classes in
source and/or target, including the Open-Set. In DANCE
[41] a neighborhood clustering technique is integrated with
the standard cross-entropy loss to learn the structure of the
target, while an entropy-based score is used to align or re-
ject the target samples. CMU [10] exploits a multi-classifier
ensemble together with an unknown scoring function that
combines entropy, confidence, and consistency measures.

Contrastive Learning Lately, self-supervised learning
methods have shown that, by relying only on unlabeled
data, it is still possible to get classification performance sim-
ilar to those of the supervised approaches [45, 16, 6, 13].
Contrastive learning builds over instance discrimination
techniques [56] (treating every instance as a class of its
own), and aims at maximizing the agreement among multi-
ple augmentations of the same sample, while pushing dif-
ferent instances far apart. Several methods have imple-
mented this strategy by imposing the described constraints
on the learned normalized embedding space. They differ
in how positive and negative data pairs are sampled and
stored: among the most cited, SImCLR [6] adopts a large
batch size, while MoCo [13] maintains a momentum en-
coder and a limited queue of previous samples. The ef-
fectiveness of the contrastive self-supervised learned em-
beddings is generally evaluated by using the pretext feature
model as starting point for a downstream supervised task.
However, more direct ways to incorporate supervision are
currently attracting large attention [18, 55] and show how
view invariance and semantic knowledge can be combined
to tackle novelty detection [44], cross-domain generaliza-
tion [63] or few-shot classification [30]. Those approaches
extend deep learning large margin models, demonstrating
to be more robust across domains [25, 50, 32]. Current
research is investigating ways to improve negative sam-
pling in contrastive learning [7], also proposing strategies
to choose the best augmentation views [46, 37].

Learning on the Unit Hypersphere Fixed-norm represen-
tations have nice properties that support deep learning com-
putational stability and their empirical success has been
demonstrated over several tasks both within- and across-

domains [57, 51, 59]. In particular, [31] shows how setting
class prototypes a priori on the unit hypersphere allows to
free the output dimensionality from a constrained number
of classes. The uniform distribution of the data centers im-
plies large margin separation among them and leaves space
to include new categories while maintaining a highly dis-
criminative embedding. A recent work has also highlighted
how learning features uniformly distributed on the unit hy-
persphere with compact positive pairs is a crucial compo-
nent of the success of contrastive learning [54].

3. Method

To tackle multi-source Open Set domain adaptation we
focus on building a robust, highly structured feature space
with domain-aligned, compact, and well-separated class
clusters, keeping unknown target samples away from the
centers. We obtain this effect by minimizing the super-
vised contrastive loss and paying attention to how data
are fed to the model. In particular: (a) we design a do-
main and class balanced sampling strategy for mini-batch
building, which allows to obtain a perfect class-wise align-
ment among the sources; (b) we add style transfer to the
standard semantic-preserving transformations used to cre-
ate sample pairs in contrastive learning, which provides a
domain invariant feature embedding; (c) we refine source-
target alignment by progressively including the target do-
main in the learning objective through self-training; (d) we
tackle known-unknown separation in the target domain by
learning a self-paced threshold based on data distribution.
We use this threshold both at inference time and when se-
lecting known target samples for self-training. In the fol-
lowing, after an introduction on the learning framework, we
discuss all the listed points in detail. An overview of Hy-
MOS is illustrated in Figure 2 and summarized in Algorithm
1 (see the supplementary material for the eval. procedure).
Problem Framework In multi-source Open-Set domain
adaptation we are given L labeled source domains & =
{S1,8s,...,8L}, where S; = {5’ N"' ~ p;,and one

J j=
unlabeled target domain 7 = {z N tl ~ g, all drawn from

different data distributions pi:L___7JL, q. The sources share
the same label set y° € C,, and it holds C; C C;, thus the
target covers Cy\ s additional classes which are considered
unknown. Starting from this setup, the goal is to train a
model on the source data, able to identify the label of each
target sample, by either assigning it to one of the known
C, classes, or rejecting it as unknown. Given the different
relatedness levels of the target with each of the available
sources, reducing the domain shift while avoiding the risk
of negative-transfer may be difficult, especially when the

Csl ;
openness O =1 — “ c;\‘ increases.

Contrastive Learning Formulation In self-supervised
contrastive learning [6, 13], two transformed views of every
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Figure 2: Schematic illustration of HyMOS (best viewed in color). We use the same notation adopted in Algorithm 1, please

refer to it to follow the flow of the method.

Algorithm 1 HyMOS training procedure

Input: {z*,y°} € S, z' € T, ay,, AdaIN model
Qutput: Encand Proj
procedure TRANSFORM(x)
styleAugment = random(True, False)
' = randomCrop(x)
if style Augment then
return styleTransf(x')
else
return grayScale(jitter((x')))

procedure CREATEBATCH(D) > D: set of domains
batch =[] > balance domains and categories
for each y° in {1, ..., |C,|} do
for each D; with i in {1,...,|D|} do
ﬂ(y-*,Di) = trans form(x(ys p,))
batch.append(x -+ p,), :L'Ey.g’Di))

> len(batch) = |Cs| x |D| x 2

> target style

return batch

procgdure MAIN()
T =]
for it in range(0, end) do
if it in break-points then
=]
a+—Eqd;a.=an, a
for z; in T do
zt = Proj(Enc(z?))
hys <~ closest prototype to z
if dy,.(2") < a. then > self-training
jt = y* ; T.append(x', jj')
B = createBatch(S.concat(T))
z = Proj(Enc(B))
loss = SupClr(z) (Eq. 1)
Update Enc, Proj < Vloss

t

input image are propagated through a CNN network. The
views are obtained via standard augmentation strategies as
grayscale, random crop, and color jittering. For each sam-
ple {x},y;} in the double batch B = {k = 1,...,2K}
the features obtained via the encoder Enc(x}) enter the
final contrastive head that further projects them to a nor-
malized embedding, producing z§ = Proj(Enc(z})). On
the obtained hyperspherical space the samples are compared
among each other: the similarity between two augmented
views of the same instance is maximized, while the similar-
ity of two different instances is minimized.

When the image labels are available the sample compar-
ison can be performed both instance-wise, as in the self-
supervised case, and class-wise [18]: every samples of the
same class y; are considered as positives, while the neg-
ative pairs are composed by samples of different classes.
We indicate with v(k) = B\ {k} the double batch with-
out the anchor sample of index k, and the positive pairs are
(k) = {k' € v(k) : yi, = y;}. Thus, the supervised
contrastive loss is [18]:

2K
-1
u r = TN 1
Lsupci ; ()] Z | 0g

k'en(k

exp(o(2}, 23,)/7)

> exp(o(z},25)/7)
nev(k)
)]

where 7 € R is the temperature, and o(-, -) is the cosine
similarity.

(a) HyMOS Source-Source Class-Wise Domain Align-
ment The supervised contrastive loss aims at learning com-
pact class clusters with large margins. This ability can
be exploited to perform source-source class-wise domain
alignment by composing each training mini-batch with
samples coming from different visual domains. We evenly
divide each batch to cover all the |C;| classes, and for each
class, we select an equal number of samples from all the L
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source domains. The loss in Eq. (1) does the rest, providing
an embedding space where samples of the same class are
concentrated in the same region regardless of the domain,
while different classes are far apart from each other.

(b) HyMOS Source-Target Style Invariance The image
transformations used in contrastive learning are meant to let
the model focus on core semantic information while making
it invariant to the irrelevant cues that they introduce. When
dealing with data from different domains we desire a repre-
sentation able to neglect major differences in visual appear-
ance that go beyond mild grayscale or color jittering. This
calls for dedicated semantic-preserving image transforma-
tions. We propose an augmentation based on style transfer
as it is perfectly suitable for this goal: it does not affect the
image content while changing significantly the global im-
age texture. In particular, we use the AdaIN [15] model
trained jointly on source and target data in order to trans-
fer the style from target images into source ones. As this
augmentation is applied randomly, the loss function will
explicitly compare original source images with target-like
ones and learn to ignore the style difference.

We highlight that our approach to obtain style invariance
is safe from negative-transfer. This is one of the main issues
in Open-Set domain adaptation due to the risk of aligning
unknown target categories to the known ones of the source.
All existing methods [2, 10, 41, 62, 24] try to mitigate this
problem by avoiding the inclusion of unknown samples or
down-weighting them in the adaptation process. Thus, they
are forced to identify the unknown samples before learning
the domain invariant model by designing complex strate-
gies. With style transfer, instead, we learn a domain agnos-
tic representation since the beginning of the training pro-
cess: it disregards the semantic content of the target so we
can draw the style also from samples belonging to unknown
categories without incurring in negative-transfer.

(c) HyMOS Adaptation Refinement via Self-Training In
order to get a perfect source-target alignment, it would be
enough to include the target data as an additional source do-
main while training the supervised contrastive model with
the strategies described above. Of course this is not possible
as class labels are not available for target samples. How-
ever, once the model trained on source data and including
target style invariance is robust enough, one could use it to
produce pseudo-labels for target data by simply exploiting
its predictions. We choose exactly this approach: after an
initial source-only learning episode, we start progressively
integrating the target samples in our learning objective, by
passing through evaluation steps that we call self-training
break-points, which allow us to select confident known tar-
get samples. Through this iterative technique, we propagate
label knowledge from source to target data, improving the
compactness of our class clusters while progressively leav-
ing unknown target data in low-density regions of the hy-

\ (@)

dhys (zk;) hys

Figure 3: Illustration of the distances used to set the class
prediction and the self-training procedure.

perspherical feature space.

(d) HyYMOS Known-Unknown Separation and Classifi-
cation on the Hypersphere The obtained embedding, with
well clustered known categories separated by large margins
and unknown samples in isolated areas, provides the ideal
condition to perform distance-based classification. Differ-
ently from previous literature [18, 44] where the contrastive
models were used only as pretext tasks and the projection
head was later dropped in favor of a standard cross-entropy
loss, we propose to stay on the hypersphere while deliver-
ing the final predictions. We define the prototype of each
source class y° by computing the corresponding feature av-
erage hys = ﬁ Zkeys z}, , re-projected on the unit hy-
persphere. For any target sample 2! we measure the cosine
similarity to each source class prototype and we rescale it in
[0, 1] to define the distance dj, . (2*) = {1 =091 (2", hys)}
for y* € {1,...,|Cs|}, which is used as confidence mea-
sure for label assignment.

To decide whether a sample belongs to a known category
we need a threshold on the distance from the known class
prototypes. How to define such a threshold is a widely dis-
cussed problem in the Open Set literature, with many meth-
ods choosing values a priori and keeping them fixed while
training [10, 41]. Instead, we propose to directly extract it
from the observed data distribution, obtaining a value that
changes online during the learning process. Specifically we
introduce two metrics to evaluate it: the class sparsity:

1
0= & > dn, (hye), )
Slysec,
where h, is the closest prototype to each hys, and the class
compactness:

1 1 .
TIPS DLIC) B

yseC, Y° keys

In words, the former collects the prototype-to-prototype
minimal distances and provides a measure of inter-class
separation, while the latter evaluates whether the samples
of each class are tight around the corresponding prototype
(see Figure 3). A dataset with a large number of categories,
each with small intra-class variability, results in a feature
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scenario with high compactness but low sparsity, for which
a low threshold is needed. On the other extreme, a dataset
with a limited number of categories showing large intra-
class variability corresponds to low compactness and high
sparsity condition for which we can allow a higher thresh-
old. We compute our threshold by:

0
a=¢- llog<2¢>+1

where 0/2¢ estimates the average ratio between the dis-
tance of two adjacent prototypes and the radii of the respec-
tive clusters. The use of the threshold at inference time is
straightforward:

., Jargming. (dp,. (2")) if min . (dp,.(2")) < @
V= if min s (dp,. (2")) > .

&)
We exploit this threshold also for the self-training break-
points described before. Only in this phase we are particu-
larly cautious , thus we include a multiplier o, that allows
us to keep a more conservative threshold: a. = a,, - a.
This multiplier can be kept fixed to 0.5 and it is the only
hyperparameter of HyMOS.

; “4)

unknown

4. Experiments

We implemented HyMOS with a ResNet-50 [14] back-
bone and two fully connected layers which define the con-
trastive head. All the implementation details as well as the
Pytorch code are provided in the supplementary material.
Datasets We evaluate our approach on three image clas-
sification benchmarks, following the same setting used in
[38], with one domain considered in turn as target. Of-
fice31 [40] comprises three domains: Webcam (W), Dslr
(D) and Amazon (A) each containing 31 object categories.
We set as known the first 20 classes in alphabetic order,
while the remaining 11 are unknown. Office-Home [49] is
made by four domains: Art (Ar), Clipart (Cl), Product (Pr),
RealWorld (Rw) with 65 classes. The first 45 categories
in alphabetic order are known, and the remaining 20 are
unknown. DomainNet [36] is a more challenging testbed
than the previous ones. It contains six domains and 345
classes. As in [38], we consider Infograph (I), Painting (P),
Sketch (S) and Clipart (C), selecting randomly 50 samples
per class or using all the images in case of lower cardinality.
The first 100 classes in alphabetic order are known, while
the remaining 245 are unknown.

Results We compare HyMOS with several state-of-the-art
baselines proposed for single-source Open-Set (Inheritable
[19], ROS [2], PGL [29]), multi-source Open-Set (MOS-
DANET [38]) and universal domain adaptation (CMU [10],
DANCE [41]). We use the code provided by the authors!,

IFor all the baseline methods the implementations are publicly avail-

and for all the methods that do not specify how to man-
age multiple sources, we apply the Source Combine strategy
[36] that considers the union of all the source data in a single
domain. We adopt the HOS metric, defined in [2, 10] for
a fair evaluation of Open-Set methods: it is the harmonic
mean between the average class accuracy over the known
classes OS* an the accuracy over the unknown class UNK:
HOS = 25X,

Table 2 collects the obtained results showing how Hy-
MOS outperforms all the baselines. The gain of HyMOS
with respect to the best competitor ROS, varies from 1.9%
points on OfficeHome, up to 10.8% on DomainNet. Be-
sides being simpler than the reference approaches, HyMOS
shows to be robust to the significantly different scenarios
covered by the three datasets in terms of number of shared
and private classes, as well as nature and extent of the do-
main gaps. These peculiarities make HyMOS the most suit-
able approach in a variety of real-world applications.

We also benchmark HyMOS with the best competitor
ROS in terms of the AUROC (Area under the Receiver
Operating Characteristic curve) metric, which has the ad-
vantage of being threshold-independent. In our case, the
normality score used to evaluate whether a sample is known
or unknown is its distance from the nearest source class pro-
totype, while ROS exploits a combination of entropy and
probability output of an auxiliary rotation recognition clas-
sifier. Even in this case, HyMOS outperforms ROS, reflect-
ing what is already observed in terms of HOS. This also
confirms how well known and unknown samples are sepa-
rated in the learned hyperspherical embedding space.
Analysis on the Threshold For HyMOS we designed a
self-paced procedure that learns the dynamic threshold «
from the data distribution. Figure 4 (left) provides an
overview of « at different training iterations : for Office31
and Office-Home the threshold decreases over time while
for DomainNet it increases. These variations evidence how
the data clusters move: as the training proceeds they be-
come more compact and the reciprocal distance increases
towards a more uniform class distribution on the hyper-
sphere. For DomainNet the second event occurs faster than
the first: this trend is correlated with the class cardinality
which is higher with respect to that of other datasets. In all
the cases, the threshold converges to a stable value.

The «,, multiplier used at training time to compute a
conservative threshold is the only hyperparameter of Hy-
MOS: by modifying it one could decide to favor recogni-
tion of known classes at the expense of a lower unknown
recognition during training. The results in Table 3 show
that «,,,=0.5 is a safe choice regardless of the dataset. More-
over, by tuning this multiplier, the HOS performance of Hy-
MOS remains always competitive with ROS, and can even

able, with the only exception of MOSDANET [38] for which we obtained
the code via private communications with the authors.
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Method DomainNet | Office31 | Office-Home
am, =03 55.1 79.2 65.8
oy =0.5 59.3 80.3 67.2
HYMOS 207 6038 78.2 66.8
oy, =1.0 61.4 74.1 65.8
ROS [2] 48.5 75.7 65.3

Table 3: Average performance (HOS) when changing the
train-time multiplier o, to the self-paced threshold «.

increase as in the case of DomainNet for «,,,=1.

Increasing the Openness Level In real-world conditions,
it is difficult to have direct control over the number of un-
known classes in the unlabeled target, and it is natural to ex-
pect more unknown categories than known ones. To study
how HyMOS reacts at different openness levels, we con-
sider the DomainNet dataset and exploit its large class car-
dinality. The plot in Figure 4 (right) shows the HOS accu-
racy of HyMOS and how it outperforms its best competitor
ROS at different openness values O € {0.5,1}.

5. Ablation Analysis

We designed HyMOS to be straightforward while keep-
ing in mind all the challenges of multi-source Open-Set do-
main adaptation. In the following we focus on each of them,
providing a detailed ablation that sheds light on the inner
functioning of our method. The results are in Table 4.
Source-Source Alignment Reducing the domain shift
among the available sources improves model generaliza-

Method DomainNet Office31 Office-Home

-S| —>C|Avg || > W | >D| ->A |Avg || > Rw | - Cl | - Ar | — Pr | Avg.

Inheritable [19] 348 | 440 | 394 76.6 | 79.5 | 70.0 | 75.4 63.2 52.6 48.7 60.7 | 56.3

ROS [2] 445 | 524 | 48.5 81.8 | 80.1 | 64.7 | 755 73.0 57.3 61.6 69.1 | 65.3

vy | Source Combine CMU [10] 38.1 | 355 | 36.8 614 | 640 | 564 | 60.6 70.8 50.0 | 58.1 69.3 | 62.1

% DANCE [41] 30.0 | 37.6 | 33.8 38.5 | 59.7 | 58.0 | 52.0 124 16.1 18.6 229 | 175

PGL [29] 185 | 194 | 19.0 433 | 37.7 | 35.6 | 38.9 40.0 31.5 31.8 422 | 36.4

Multi-Source MOSDANET [38] | 40.0 | 39.3 | 39.6 60.5 | 71.5 | 73.9 | 68.6 65.0 51.1 54.3 65.9 | 59.1

HyMOS 57.5 | 61.0 | 59.3 90.2 | 899 | 60.8 | 80.3 71.0 64.6 62.2 71.1 | 67.2

§ Source Combine ROS [2] 63.9 | 68.0 | 66.0 939 | 952 | 73.5 | 87.5 80.8 69.6 73.7 794 | 75.9

2 Multi-Source HyMOS 71.9 | 75.8 | 73.9 96.9 | 96.1 | 71.0 | 88.0 81.1 76.4 75.3 79.6 | 78.1

Table 2: Results averaged over three runs for each method on the DomainNet, Office31, and Office-Home datasets.
— OfficeHome — DomainNet — Office31 — HyMOS — ROS Method Office-Home
0.10 700 —Rw | - Cl | - Ar | — Pr | Avg.
008 64.0 HyMOS 710 | 646 | 622 | 71.1 | 67.2
007 L @ 580 w/o Source Balance 69.2 | 584 | 60.6 | 702 | 64.6
a zzz 2 52.0 /\ Style Tr. Target Known (Oracle) 70.7 63.7 62.5 71.2 | 67.0
0:02 —_— 6.0 w/o Style Transfer 69.5 56.4 60.0 68.3 | 63.6
000 w00 w/o Self-Training 722 | 55.0 | 586 | 71.5 | 64.3
N _ T o078 ofe 08 0% [ Improved Cross-Entropy | 615 | 612 | 58.1 | 57.1 | 59.5 ]

Training lterations 0 ROS 2] 730 | 573 | 616 | 69.1 | 653
Figure 4: Left: analysis on the dynamic threshold « at dif- ++Ss°:;rlZeT?;iz?§f ZEZ 45122 g;:g 28:? 22(2)
ferent training iterations. Right: performance of HyMOS + Self-Training 69.6 | 59.1 | 61.5 | 60.5 | 62.7
and ROS [2] at different openness (@) levels. + S. Balance, Style Tr., Self-Train. | 62.0 40.4 | 522 | 624 | 543

Table 4: Ablation Study, HOS results.

tion. This aspect is largely discussed in multi-source
Closed-Set domain adaptation literature [61, 52]. A dedi-
cated source alignment component is also included in the
only existing multi-source Open-Set method MOSDANET.

HyMOS obtains cross-source adaptation by combining
the supervised contrastive learning loss with an accurately
designed batch sampling strategy: each training mini-batch
contains one sample for each class and for each domain.
The supervised contrastive loss provides a strong class-wise
alignment by pulling together samples of the same class and
pushing away samples of different classes regardless of the
domain. HyMOS shows a gain in performance of 2.6% over
its version without this balancing (row w/o Source Balance).

Source-Target Adaptation In HyMOS, both the style
transfer augmentation and the auto-regulated self-training
procedure contribute to aligning source and target without
incurring the risk of negative-transfer. By adding target
style transfer as one of the source augmentations we push
the model to focus on domain agnostic visual character-
istics without involving semantic content from the target.
To evaluate the effect of this addition we present two abla-
tion cases. We compare our method with an Oracle version
where the target style is extracted only from known cate-
gories (line Style Tr. Target Known (Oracle)), and we con-
clude that HyMOS is not harmed when using the whole tar-
get for this adaptation step. Moreover, we deactivate style
transfer (row w/o Style Transfer) causing a performance
drop of 3.6%, which shows its important role in HyMOS.
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Multi-Source Closed-Set Multi-Source Universal
Method —clp | —»inf | - pnt | - qdr | —rel | — skt | Avg. Method -S| - C | Avg.
Source Only [23] | 52.1 234 47.7 13.0 60.7 46.5 | 40.6 CMU [10] 389 | 31.2 | 35.1
LtC-MSDA [53] 63.1 28.7 56.1 16.3 66.1 53.8 | 474 || DANCE [41] | 445 | 499 | 472
DRT [23] 71.0 31.6 61.0 12.3 71.4 60.7 | 51.3 ROS [2] 39.7 | 46.0 | 42.9
HyMOS 71.5 41.8 60.8 34.5 74.2 66.6 | 58.2 HyMOS 54.6 | 57.1 | 559

Table 5: Multi-Source Closed-Set (Accuracy) and Universal Domain Adaptation (HOS) performance on DomainNet.

Finally, a strong feature-level class-wise source-target
alignment is obtained thanks to the self-training procedure,
which selects confident target known samples (closest to the
source class prototypes) and includes them in the learning
objective. The gain of HyMOS with respect to its version
without this strategy is 2.9% (row w/o Self-Training).
Comparison with an Improved Cross-Entropy Baseline
Source balance, style transfer, and self-training appear as
simple strategies that can be combined with any supervised
learning model to improve its effectiveness in the multi-
source Open-Set scenario. Still, we state that leveraging on
supervised contrastive learning and its related hyperspher-
ical embedding is crucial for the task at hand. To support
our claim we substitute the contrastive loss of HyMOS with
the standard cross-entropy loss. The row Improved cross-
entropy reports the obtained results, showing that this base-
line approach is significantly worse than HyMOS.
Comparison with an improved version of ROS [2] We
also enriched our best competitor ROS with source balanc-
ing, style transfer, and self-training.

In the bottom part of Table 4, the + Source Balance
row indicates that organizing the training data batches so
that they contain a balanced set of categories and source
domains does not provide an improvement with respect to
the standard version of ROS. The source-to-source align-
ment visible for HyMOS does not appear here: indeed the
cross-entropy loss does not induce the same inherent clus-
tering and adaptation effect that can be obtained via con-
trastive learning. The row + Style Transfer shows a low
performance for ROS when using this augmentation. By
checking the predictions we observe a slight advantage in
the recognition accuracy of the known classes, but a signifi-
cant drop in the unknown accuracy which causes a decrease
in the overall result. We also followed [38] to extend ROS
with self-training. The corresponding row + Self-Training
shows again a drop in performance: this procedure tends
to propagate the recognition errors due to the cross-entropy
overconfidence. Indeed self-training may induce a danger-
ous model drift, but recent literature has shown that its ef-
fectiveness and safe nature hold when the sample selection
is performed with a self-pacing strategy based on the distri-
bution of the unlabeled samples [5], exactly as in HyMOS.

Finally, when applying all the strategies at once, the re-
sults are similar to those obtained with style transfer alone.
This last technique clearly steered the whole method to-

wards a low performance.

6. Extension to Closed-Set and Universal

HyMOS can be easily extended to the simpler multi-
source Closed-Set domain adaptation setting (perfect over-
lap between sources and target classes) and to the more
challenging multi-source Universal domain adaptation case
(both sources and target have their own private categories).
We consider the DomainNet dataset and run an evaluation
on those two scenarios, following [23] for Closed-Set and
[10] for Universal. In the latter, sources and target share
the first 150 classes in alphabetic order, the next 50 cat-
egories are sources private classes and the rest are target
private classes. For Closed-Set we use as reference LtC-
MSDA [53] and DRT [23] which leverage respectively on
a graph connecting domain prototypes, and on a dynamic
transfer that updates the model parameters on a per-sample
basis. Table 5 collects the results and show how HyMOS
gets promising performance with respect to several state-
of-the-art methods in the two scenarios.

7. Conclusions

In this paper we introduced HyMOS, a straightforward

approach for multi-source Open-Set domain adaptation. It
exploits contrastive learning and the inherent properties of
its hyperspherical feature space to avoid the limitations of
the existing competing methods. HyMOS includes a tai-
lored data balancing to enforce cross-source alignment and
introduces style transfer among the instance transforma-
tions for source-target adaptation, keeping away from the
risk of negative transfer. Finally, a self-training strategy re-
fines the model without the need for manually set thresh-
olds. Through extensive experiments, we demonstrated
state-of-the-art results on three benchmarks and we delved
into the details of the methods with several quantitative
evaluations which shed light on its internal functioning. The
application to the multi-source closed-set and universal sce-
nario confirm the effectiveness of HyMOS, identifying it a
good starting approach towards life-long learning for real-
world applications.
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