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Abstract

Deep learning-based facial recognition systems have ex-
perienced increased media attention due to exhibiting unfair
behavior. Large enterprises, such as IBM, shut down their
facial recognition and age prediction systems as a conse-
quence. Age prediction is an especially difficult applica-
tion with the issue of fairness remaining an open research
problem (e.g., predicting age for different ethnicity equally
accurate). One of the main causes of unfair behavior in age
prediction methods lies in the distribution and diversity of the
training data. In this work, we present two novel approaches
for dataset curation and data augmentation in order to in-
crease fairness through balanced feature curation and in-
crease diversity through distribution aware augmentation.
To achieve this, we introduce out-of-distribution detection to
the facial recognition domain which is used to select the data
most relevant to the deep neural network’s (DNN) task when
balancing the data among age, ethnicity, and gender. Our
approach shows promising results. Our best-trained DNN
model outperformed all academic and industrial baselines
in terms of fairness by up to 4.92 times and also enhanced
the DNN’s ability to generalize outperforming Amazon AWS
and Microsoft Azure public cloud systems by 31.88% and
10.95%, respectively.

1. Introduction

Due to their high accuracy, deep learning-based facial
recognition systems have been widely adopted by govern-
ments and industry, with $3.8 billion in governmental spend-
ing on such systems in 2020 [43]. Despite this government
investment and their accuracy and rate of adoption, there
have been numerous cases in which deep learning (DL) sys-
tems have been shown to behave unfairly. More specifically,
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Figure 1: Comparison of actual (A) and predicted age (P).
Ilustrates existence of systematic unequal prediction among
gender and ethnicity which can be avoided.

in some cases, DL systems have demonstrated poor accuracy
for a specific ethnicity or gender, e.g., male, while demon-
strating high accuracy for other feature representations, e.g.,
female [9, 5, 20]. This inconsistent accuracy has led large
enterprises, such as IBM, to eliminate the use of facial recog-
nition systems [33]. Amazon Web Services (AWS) and
Microsoft Azure have followed this trend, limiting the use
of their facial recognition systems to governments and more
specifically, to law enforcement agencies [5, 45]. However,
the development of facial recognition systems continues and
their adoption is increasing [43]. Therefore, there is a need
to ensure the fairness of existing facial recognition systems
and those developed in the future.

Age prediction is considered one of the most challeng-
ing facial recognition system tasks. The difficulty stems
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from the high number of predictable classes representing
ages, among which there are small apparent physical differ-
ences [15]. Age prediction systems have also been widely
adopted, with applications in law enforcement [4], surveil-
lance [7, 21], marketing [7, 3], and identity acquisition [4, 7].
These systems are considered unfair when the mean of the
predicted age is different for, e.g., male and female [44].

To provide an example of unfair DL age prediction sys-
tems and their devastating impact, we present a law enforce-
ment use case. In this setting, age is a factor, as younger
people are more likely to commit a crime than older people.
Law enforcement agencies have increased their use of DL-
based age prediction systems [59]. These systems may be
inherently unfair and consistently predict that African Amer-
icans are younger than Caucasians, and as a result, African
Americans may be unfairly punished by law enforcement
agencies solely due to their ethnicity. In fact, just recently
news has reported that COMPAS, a tool used in many US ju-
risdictions to help make decisions about pretrial release and
sentencing, was twice as likely to favor arrests for the African
American ethnicity than for Caucasian ethnicity [26, 48].

Age prediction belongs to the field of computer vision
(CV) where the issue of fairness is a challenging task due
to the difficulty in creating diverse and sensitive feature
balanced datasets. Most features and camera settings are
embedded into the image as a combination of pixels, rather
than labels. One simple solution is to combine all available
data from existing benchmarks into one data pool. However,
while this large data pool may be more diverse, it can still be
imbalanced in its distribution of features and inherit the bias
of an individual dataset. This is a common challenge faced
by large cloud systems [34, 10] and by academia, reflected
by the imbalanced distribution behavior in academic age pre-
diction benchmark datasets used in prior studies [55, 16].
These benchmark datasets show fundamentally different
distribution of features and camera settings which makes
comparison of age prediction approaches using different
benchmark datasets an infeasible task.

To address the challenge of curating diverse and balanced
datasets, we propose a novel dataset curation approach that
increases diversity by maximizing the balance between sen-
sitive features. In addition, we introduce distribution aware-
ness [27] to the age prediction domain. Distribution aware-
ness provides a high-dimensional certainty estimate from the
neural network for each input. Therefore, we aim to improve
data augmentation which is commonly used to increase the
amount of data to ensure that the DNN model has learned
sufficient representations of sensitive features. We hypoth-
esize that not all augmentation may be beneficial to a DL
system’s learning process and may in fact perpetuate existing
bias in the data. This benefits our balancing efforts as we can
enhance the dataset with images related to features that have
insufficient samples while ensuring the added augmentation

are indeed beneficial to the age prediction system.
In summary, our contributions are as follows:

* We propose feature-aware dataset curation, an approach
that aims to increase fairness by maximizing the balance
among sensitive features.

* We introduce distribution awareness to data augmen-
tation to further increase diversity and sufficiency of
sensitive features. We find that not all augmentations
benefit performance and that these harmful augmen-
tations are in majority far from the trained data distri-
bution and can be identified and filtered out using our
lightweight out-of-distribution detection technique.

* We are the first in age prediction research to evaluate
our approaches on a large scale, using 24 DNN models,
six benchmark datasets, and one million data points.
This enables a fair comparison in which we outperform
approaches of prior research [55, 15] and those of AWS

and Azure in fairness and performance’.

2. Background & Related Work
2.1. Age Prediction

With the increase in computing capacity and the rise of
deep learning, new approaches rise to advance the age pre-
diction field [13, 61, 19, 2]. Yi et al. [64, 40] was one of the
first to utilize convolutional neural networks to extract facial
features to estimate age. The best performance on the bench-
mark dataset MORPH-2 was achieved by Zhang et al. [65]
who utilized a network called AL-RoR which combines long-
and short-term memory (LSTM) architecture [30] and resid-
ual networks [25] to achieve a 2.36 MAE. A study performed
by Rothe et al. [55] presented a method based on classifica-
tion networks, such as VGG-16 [57], which is transferable
to ResNet-50 [25] or DenseNet-121 [31], making it easily re-
producible and which obtained state-of-the-art performance
for age prediction [50] on the MORPH dataset, with an MAE
of 2.68. We use the approach from [55] as baseline.

2.2, Fairness & Mitigation

Addressing the fairness of age prediction systems is chal-
lenging. This may be due to the fact that sensitive features
are not always available as labeled data. Instead, they are
inherent in the picture and represented by pixels. A study
performed by Clapés et al. [15] aimed at fair age prediction;
the authors also analyzed the difference between the real age
of a person and their apparent age. Their proposed fairness
improvements involve shifting the apparent age towards the
actual age during training. The results of the study are some-
what questionable, as the reported performance measured in

10ur code, DNN models, and public-accessible data are available in our
public repository: https://github.com/ForBlindRev/AIBias
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Figure 2: Overview of our approaches.

terms of the MAE varied by 12 years, on average. In other
DL domains several mitigation techniques for addressing
fairness exist [16, 66, 53, 62, 24, 32, 52, 17, 49]. Given the
additional features, e.g., DL loss functions can be optimized
towards fair representations [16, 53]. However, such meth-
ods remain so far limited in the field of age prediction. This
calls for new ways to evaluate and optimize such systems
which goes beyond previous efforts focusing primarily on
performance, e.g., by NIST using the FERET dataset [51].

2.3. Distribution Awareness

Distribution awareness, or also referred to as Out-Of-
Distribution (OOD) detection [27] is the ability to compare
what the DNN model has learned to what the DNN model
receives as input. The first goal is to filter out data that is
not suited for the DNN application, both during training
and later during testing and deployment. The second goal
is to select data that fits the DNN application and inherits
new information the DNN model has not learned yet, e.g.,
balance ethnicity or gender by selecting diverse yet realistic
mutations. Recently, various techniques have been proposed
as OOD scoring functions based on the DNN model’s activa-
tion, such as [54, 56, 41, 14, 37, 60, 38, 28, 58, 46, 39, 29].
These techniques provide different ways of calculating a
score on how far or close a given input is to the trained data
distribution. Hendrycks et al. [27, 29] used the maximum
softmax probability of the DNN model output. Liang et
al. [41] added an additional input perturbation to retrieve the
OQD score. Others [60, 54, 56] utilized separately trained
DNN models or changed the DNN model architecture to
calculate the OOD score.

3. Methodology
3.1. Overview

Figure 2 presents the overview of our approaches. We
present a novel dataset curation approach and a novel data
augmentation approach (both indicated in green). Overall,

the methodology consists of five steps. In step @, we analyze
the most recent age prediction benchmark datasets which
tend to be unbalanced and poorly distributed; to do this, we
cross-validate four benchmark datasets along with two DNN
training approaches of prior research. The four benchmark
datasets have varying diversity and varying quantities of sen-
sitive features which will help in identifying the root cause
of unfair behavior. In order to curate a diverse and balanced
dataset, we present step @, where we employ our novel
dataset curation approach using the four benchmark datasets
as a combined data pool; this simulates a data scenario com-
monly faced by large enterprises. Once the dataset is curated
in ®, we further enhance the DL system in step @ where we
apply our novel distribution-aware augmentation approach.
Here, we aim to assess how fairness and performance can
be enhanced by filtering augmentations with very high (too
different from the trained distribution) and very low (too
similar to the trained distribution) OOD scores. Therefore,
we re-train the DNN model in step ® with the respective aug-
mentation sets to identify optimal data distributional setting
for maximizing fairness and performance. To validate the
effectiveness, we evaluate our final age prediction system to
those following approaches of the previous state of the art in
academia and to the leading facial recognition systems from
Amazon AWS and Microsoft Azure, using two individual
benchmark datasets for assessing generalization.

3.2. Feature Aware Dataset Curation

We aim to curate a dataset which is both diverse and well-
balanced among sensitive features. To accomplish this, we
propose a dataset curation approach. Given a set containing
all the data sources {dy, ..., d,}, we denote the union of all
data sources by D, the set of sensitive features .S, and L the
set of labels, we select the samples where z; is the subset
of samples containing the feature s with value ¢ , and xf s
are the samples labeled as a, a subscript d; denotes that the
samples originated from data source d;:
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Thereby, we aim to balance data among sensitive features
for each age while extracting data from as many data sources
to maximise diversity. In case insufficient data exists for a
given age we define a global maximum (to prevent overfit-
ting) and minimum (to prevent bias) for selecting samples
for a given age. The pseudocode of the data curation can be
found in the appendix A.5.

3.3. Distribution Aware Augmentation

Effective dataset curation relies on data availability; the
ability to address data insufficiency and increase the amount
of available data and help improve the balance between sen-
sitive features. This improves fairness, and/or improve the
uniformity of available data per age, thereby improving per-
formance. Therefore, data augmentation is commonly used
to address data insufficiency when creating a DL system.
However, one drawback of augmentation is that even with
careful consideration of the augmentation parameters, there
is no guarantee that all augmentations will be considered
realistic or feasible for the trained distribution or applica-
tion task of the DNN model [11, 63]. Furthermore, some
augmentations may not modify the original image enough,
producing too many similar images which may result in over-
fitting. Different ways to create augmentations have been
studied. We illustrate and compare the most prominent ap-
proaches in the appendix A.4. and continue with the best
performing approach which employs both affine and color
augmentations [11, 63, 23].

One of our key novelties is the utilisation of OOD
scores when selecting augmentations. Here, we opted for
the base methodology of the fast-out-of-distribution detec-
tion method (FOOD) [6], which is computationally effi-
cient, does not need to train separate approaches unlike
other approaches [29, 56, 14, 37] nor requires additional
data [29, 56, 38]. The main idea behind FOOD is replacing
the last-fully connected layer with a Gaussian likelihood
layer to represent the training data of the model as a mul-
tivariate Gaussian with a center vector and a co-variance
matrix as parameters. As a result, a likelihood ratio (LLR)
can be extracted for each data point which serves as OOD
score. We optimize this approach, such that the center
and the co-variance Y. can be directly calculated without
requiring additional training of the Gaussian layer. Thereby,
increasing overall applicability of the technique and enabling
faster integration into ML workflows (the mathematical foun-
dations can be found in the appendix A.1).

Algorithm 1: Enhancing a dataset by distribution-
aware augmentation.

Result: Curated dataset enhanced by
distribution-aware augmentation
median_num < median samples in dataset;
mean_num <— average samples in dataset;
max_num <— maximum samples in dataset;
maz_ratio < ceil(max_num/mean_num);
forall c € C do
forall s € Sdo
num < number of samples in dataset. s;
aug-ratio s < ceil(median_num/num);
aug-ratioe s <
min(aug_ratioc, s, max_ratio);
10 augmenting data according to aug-ratio s;
11 end
12 end
13 calculating OO D _scores from
OOD_analysis(augmented_data);
14 filter augmented_data by OOD _scores;
15 forall c € C do

RIS - Y 2 S

16 get(select_size);

17 forall s € S do

18 ‘ sample(augmented_data. s, select_size);
19 end

20 end

We integrate the augmentation and OOD scoring capa-
bilities in Algorithm 1. First, median_num, mean_num,
and max_num are defined by the median, average, and max-
imum number of samples among classes and states (lines
1-3). Then, max_ratio is calculated, which serves to limit
the number of augmentations with respect to the overall
dataset size and the individual age sample size (line 4). Next,
for each class ¢ and sensitive feature s, aug_ratio. s is cal-
culated specifically to identify and generate the required
number of augmentations to enhance the balance among s
without overfitting to a specific representation (lines 5-12).
Finally, the OOD scores are calculated by which all aug-
mentation are sorted and filtered (line 13-14). This enables
filtering augmentations with a large OOD score, far from
the trained distribution, and filtering augmentations with a
low OOD score, close to the trained distribution. Thereby,
we aim to evaluate under which settings, too different or
too similar augmentations can be identified and how they
impact fairness and performance. Then, the augmentations
are sampled following the same approach as in Section 3.2
(lines 15-20).
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Figure 3: Pre-processing procedure.

4. Evaluation

The evaluation follows Figure 2, in which we first cross-
analyze commonly used benchmark datasets; this is followed
by the dataset curation and augmentation evaluation. Finally,
the overall outcome of our approaches is evaluated with
regard to fairness and performance, and compared with the
state of the art in research and in industry.

4.1. Experimental Setup

Data. We utilize the IMDB-WIKI dataset to pretrain our
DNN models as done in related work [55]. Four bench-
mark datasets are utilized for cross-evaluation, namely
APPA-REAL, MORPH-2, UTKFace and Mega Asian. To
compare model fairness and performance to prior work in
academia and industry, we employ two independent bench-
mark datasets (AFAD[47], CACDJ[12]). Details of the
datasets can be found in the appendix A.2.

Pre-processing. For a fair comparison and to prevent dataset
bias, all data follows the pre-processing procedure presented
in Figure 3, which builds on the preprocessing procedure of
[35]. With the help of the DNN facial recognition model,
we filtered out over 10,000 of the total 758,613 images,
most of which stemmed from the more noisy IMDB-WIKI
benchmark dataset. Then, two common facial recognition
procedures, namely crop and align, are employed on the
resulting clean dataset.

DNN Models. In this work, a total of 24 DNN models are
trained. We employ the state of the art in age prediction
and computer vision for DNN model architectures. Pre-
vious research on age prediction has used the DEX-VGG
(VGG-16 based architecture) [57, 55] and the AlexNet ar-
chitecture [36]. Drawing from the general computer vision
domain, we also employ the ResNet-50 [25] and DenseNet-
121 [31] DL architectures. In doing so, we aim to cover both
domain-specific and general architectures to showcase the
potential generalization of our approach.

Evaluation metrics. Fairness and performance are at the
core of DL systems exposed to human-centric applications
like age prediction. For performance, we opt for the com-
monly used mean absolute error (MAE) [42, 22], which
calculates the mean of how many years the actual age has
been mispredicted in absolute terms. For fairness, we build

on commonly used mean distance [55, 66] which takes the
mean distance between ages per sensitive features. For age
prediction in particular, this distance has to be calculated for
each age. Hence, we introduce a Fairness score for further
evaluation, which takes the mean distance between sensitive
features and checks if the distance is lower than a pre-defined
threshold ¢ = 3, which stems from age discrimination based
on the human rights act [1]. Given 100 ages for evaluation,
we calculate the fairness score by the per cent of ages, where
the mean distance between sensitive features is below the
defined threshold (a mathematical definition can be found in
the appendix A.3).

4.2. Preliminary Cross-Analysis

DL-based age prediction has relied on four commonly
used benchmark datasets which differ regarding their camera
setting and distribution of sensitive features. Figure 4 shows
the individual distributions by age segmented by ethnicity
for each of the datasets. After preprocessing, MORPH-2
is the largest dataset, with predominantly faces of African
American ethnicity (80%) and a minority of Caucasian faces
(18%); the smallest group is that of Asian faces (2%). The
APPA-REAL and Mega Asian benchmark datasets are simi-
larly imbalanced in terms of ethnicity. UTKFace is the only
dataset that is somewhat balanced. We train two DNN model
architectures for each benchmark dataset following two ap-
proaches used in prior research, namely DEX-VGG [55]
and AlexNet [36]. Each DNN model is cross-evaluated with
all four benchmark datasets. Table 1 presents the average
MAE of the DNN models evaluated on the training and test-
ing data from the same benchmark dataset as well as the
average of the three other benchmark datasets. We can see
that the performance varies significantly depending on the
benchmark dataset. For example, for MORPH-2, the average
MAE across both approaches is 2.69. However, the average
MAE on the other datasets is 10.10, which is the worst of the
four datasets. This hints at the similar camera setting used
for MORPH-2 dataset’s images and the large proportion of
one ethnicity in the dataset, which results in the best perfor-
mance when evaluated by its equivalent testing portion but
poor results when evaluated on other datasets. In contrast,
when evaluating the DNN models trained on the more di-
verse UTKFace dataset individually, a slightly lower MAE
of 5.23 is obtained. However, the average performance on
the other datasets improves, decreasing the average MAE by
20.09%. Detailed results are shown in appendix A.6.

Prior research did not compare the proposed approaches
on multiple datasets. We are the first to do this and based on
our comparison we observe that a fair comparison between
approaches using only one but different benchmark dataset
is not possible and requires diverse and balanced data.
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Figure 4: Sample-size per age stratified by ethnicity of the four benchmark datasets (a-d) and the curation dataset (e)

Table 1: Cross-evaluation of prior research.

Training Data Testing Data

APPA-REAL 7.27

MAE]

APPA-REAL Others (average) 8.74
. Mega Asian 5.03

Mega Asian Others (average) 9.77
MORPH-2 2.69

MORPH-2 Others (average)  10.10
UTKFace UTKFace 5.23

Others (average) 8.07

4.3. Feature Aware Dataset Curation

We present a balanced and feature-aware dataset curation
approach. To create our data pool, we combine the four
previously mentioned benchmark datasets, whose individual
data distribution by age is presented in Figure 4 (a-d). Three
dataset curation baselines are used for comparison. The first
baseline is no curation, called None, for which the average
results are obtained when the DNN models from Section
4.2 are evaluated individually. In the second baseline of
random curation the total dataset size of the proposed algo-
rithm’s outcome is used to select data randomly from the
pool, named Random. The third baseline is balanced with
regard to its age distribution but selects samples without
focusing on balancing sensitive features, named Age only.
Our approach, named Ours, balances both age and sensitive
features. The final data distribution by age is illustrated in
Figure 4 (e).

The results presented in Table 2 show that the dataset
curated using our approach performs best in all categories
(row 4, Ours setting). This shows the effectiveness when
balancing age and sensitive features from all dataset sources,
diversity is maximally increased; this benefits MAE to be
well maintained across different camera setups. More im-
portantly, the highest levels of fairness are achieved, with
a fairness score of 67.50 for ethnicity and 81.00 for gender.
Compared to the baseline setting None, this represents a
188.71% improvement in fairness for ethnicity and a 32.24%
improvement in fairness for gender.

4.4. Distribution Aware Augmentation

Following the dataset curation we are able to increase
performance above presented baselines, however, Figure 4

Table 2: Evaluation of dataset curation setting (Ethnicity,
Gender in Fairness-Score).

Curation Setting MAE]  Ethnicity! Gendert

None 5.05 23.38 61.25
Random 4.03 50.25 76.50
Age only 4.06 63.50 78.50

Ours 4.00 67.50 81.00

(e) shows various insufficiencies of available data per age.
Hence, to address the remaining data points, we augment
the data (using fine-grained affine and color mutations based
on [11, 63, 23]) and add it to the dataset, which is a com-
mon practice in DL system development. We hypothesize
that augmentations with a high OOD score may harm the
overall DNN model’s performance. A high OOD score may
indicate an augmented image far from trained distribution
and may be considered unrealistic in real-world scenarios.
Figure 5 demonstrates this phenomenon, where similar and
very different augmentations can be identified based on their
OOD score. Those augmentations with a likelihood-ratio
(LLR, FOOD’s OOD score metric) below the 0.05 quantile
(indicating a high OOD score) differ greatly from the orig-
inal samples. On the other hand, those with a large LLR
above 0.95 quantile (a low OOD score) have great similarity
to the original samples. This is also reflected by the overlap
of the training data (Train) and augmentation data (Aug)
distributions. Thus, the results are in line with qualitative
human-based perspective.

To quantify the impact of distribution aware augmenta-
tion, we employ two independent datasets (CACD [12] and
AFAD [47]). In this way, we aim to conduct a fair com-
parison. Furthermore, utilising the two datasets is close to
simulating a real-world scenario in which unknown scenes
with all kinds of camera settings and sensitive features are en-
countered, which helps assessing the DNN model’s ability to
generalize. The goal is to assess for which distribution aware
filter setting, the best fairness and performance is achieved.
Table 3 presents the results for five filter settings. For all
settings in which mutations are used, we generate 100,000
mutations and select 20,000 of them based on the strategy of
the setting. Then, we add them to the 107,404 image large
curated dataset. Afterward, the corresponding DNN models
are retrained. The first setting, 1, serves as comparison when
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no augmentations are utilised. Here, the DNN models are
trained using data from the previous data curation evaluation
with the 107,404 images only (first baseline). In the sec-
ond setting, 2, the mutations are randomly sampled without
awareness of the data distribution, meaning data of LLR
quantiles 0.00 - 1.00 are excepted (second baseline). Set-
tings 3-5 are used to assess our approach when integrating
distribution-awareness into the data augmentation process.
Here, we filter all augmentations based on their OOD score
first, before selecting 20,000 of them for retraining. Set-
ting 3, filters augmentations far from the trained distribution,
which tend to look different, meaning data of LLR quantiles
0.00 - 0.05 are filtered out. Setting 4, filters augmentations
far and close to trained distribution, meaning images which
tend to look different (LLR quantiles 0.00 - 0.05) and very
similar (LLR quantiles 0.95 - 1.00). Finally, setting S serves
as contrast to setting 4, filtering all augmentations except
those which are far and close to the trained distribution (LLR
quantiles 0.05 - 0.95). Thereby, the goal is to analyze their
potentially harmful impact. In the table, column 2 contains
the quantile range of the LLR used for augmentation se-
lection. Columns 3-4 contain the MAE for the CACD and
AFAD datasets respectively, and columns 5-6 contain the
fairness score for ethnicity and gender respectively.

The results show that the best setting is 3, when aug-
mented data far from the trained distribution is filtered. Com-
pared to the first and second baseline, for the CACD, the
MAE improved by decreasing from 4.77 for setting 1 (no
augmentation) and 4.65 for setting 2 (no filter) to 4.53 (set-
ting 3, filtering very different data). Similar behavior is
observed for the AFAD benchmark dataset. One further ob-
servation when comparing setting 3 to setting 1 is that the
fairness score for ethnicity increases from 70.50 to 73.50
and is nearly retained for gender (81.00 vs. 80.00). Filtering
out very different and similar data (setting 4) tends to under

Table 3: Evaluation of distribution aware augmentation ap-
proach under different OOD-score filter settings defined by
LLR ranges (CACD, AFAD in MAE, Ethnicity, Gender in
Fairness-Score).

Setting  Trained LLR Range ~CACDJ AFAD]| Ethnicityt Gender?

1 No Augmentation 4.77 7.11 70.50 81.00
2 [0.00 - 1.00] 4.65 7.08 69.00 75.00
3 [0.05 - 1.00] 4.53 7.01 73.50 80.00
4 [0.05 - 0.95] 4.64 7.05 69.50 78.00
5 [0.00-0.05;0.95-1.00] 4.62 7.03 67.00 80.00

perform in comparison to filtering very different data only.
While there is a risk of overfitting with similar data, the DNN
model seems to benefit from the increase in data availability
more at this point. Finally, setting 5 validates our results,
showing that integrating very different and similar augmen-
tations only harms DNN model fairness and underperforms
in comparison to all other filter settings.

4.5. Comparison to Related Work

The curation and the augmentation approach of this work
are both evaluated on four different DNN model architec-
tures. Having assessed the overall results, we take the best
performing DNN model, namely DenseNet-121, and com-
pare it with the state-of-the-art in academia, DEX-VGG and
in industrial sector, AWS and Microsoft Azure. To retrieve
the results for industrial sector, we created accounts for Mi-
crosoft Azure and Amazon AWS gave the test data as input
to their age prediction system, which gave the predicted age
as output. Microsoft Azure provides a discrete age estimate,
while Amazon AWS provides an age interval for which we
take the median age. Table 4 presents the results and shows
that our age prediction DL system is superior, especially
in terms of fairness, increasing ethnicity- and gender-based
fairness respectively by 4.92 and 1.88 times when compared
to AWS. Also in terms of performance, our DL system
performed the best, obtaining the highest MAE with the
DenseNet-121 DNN model (an MAE of 4.13 on CACD and
an MAE of 6.75 on AFAD). The academic baseline DEX-
VGG performed worst, which however, showed slightly bet-
ter fairness scores when compared to industrial sector. For
the evaluated industrial systems, Microsoft Azure’s system
was better in both, fairness and performance when compared
to Amazon AWS’ system. It achieved an MAE of 4.17,
which is very similar to the MAE obtained by our DL system
on CACD. However, it underperformed when compared to
our DL system on AFAD.

Our results demonstrate the effectiveness of balanced
dataset curation and distribution aware data augmentation,
and demonstrate the importance of feature diverse datasets.

4.6. Threat to Validity

Dataset bias may be encountered when curating a new
dataset out of four benchmark datasets. To address this,
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Table 4: Evaluation of our best DL system, DEX-VGG, and
Microsoft Azure and Amazon AWS (CACD, AFAD in MAE,
Ethnicity, Gender in Fairness-Score).

DL System CACD| AFAD| Ethnicity? Gender?
Ours 4.13 6.75 77.00 88.00
DEX-VGG [55] 6.24 9.70 24.00 57.00
Microsoft Azure 4.17 7.58 34.00 56.80
Amazon AWS 5.57 9.91 13.00 30.50

we individually assessed in their distribution to ensure di-
versity of sensitive features, camera settings, and age and
trained a seperate classifier which was unable to destinct
between the datasets. For evaluation purposes, we further
introduced to two independent age prediction benchmark
datasets, namely the CACD and AFAD, to mitigate potential
sources for dataset bias.

Using only one DNN model may also present a threat
to validity. To ensure confident measures, we trained four
different DNN models for each experiment, and the average
across these models is presented in Tables 1 - 4.

The ground-truth for determining what data is in fact
in-distribution and what data is out-of-distribution is un-
obtainable. When evaluation the augmentations and OOD
techniques we presented a statistical evaluation and empiri-
cally assessed the visualisation of the OOD score distribution
including 100,000+ augmentations respective to their distri-
bution in Figure 5.

Finally, the non-public training sets used by public cloud
age prediction systems may inherit samples used in our eval-
uation which would dramatically increase their fairness and
performance. However, we found that despite this possibility,
the performance and fairness of the systems evaluated were
low compared to our approach.

5. Discussion and Future Directions

Proposing age prediction techniques. As our first step,
we assessed prior research and observed that single dataset
are used to evaluate prior research. In our assessment, we
found that there is an imbalance of age and sensitive features
in these datasets. Given this, existing approaches for age
prediction are difficult to compare using a single benchmark.
Future direction: When developing new approaches, multi-
ple benchmark datasets should be used for comparisons. In
addition, different DNN architectures should be trained for
robust estimation.

Balanced benchmarks. We note that the great diversity of
camera settings and sensitive features found in the real world
has not been well addressed by existing benchmarks.
Future direction: Our dataset curation approach has been
shown effective and could serve as a valuable resource to
industry and academia, both of which often have access to
large sets of samples. To support ongoing development of
age prediction methods, we encourage the development of

large-scale and diverse benchmark datasets. Such bench-
marks can be found in other domains (e.g., ImageNet [18] is
used in the computer vision domain for classification tasks).
Integrating distribution awareness. One of the main con-
tributions of this work is to introduce distribution awareness
to data augmentation and thereby improve fairness, with
regard to sensitive features.

Future direction: To further facilitate distribution-aware DL
system development and contribute to future research and
improvements in the field, we have made our code publicly
available [8]. In particular, there is room for improvement
in the data augmentation generation step where distribution
awareness could be directly integrated in guiding the muta-
tion criteria.

6. Conclusion

In this paper we presented feature aware dataset curation
and introduce distribution awareness to data augmentation.
Our approaches aim to increase diversity and maximize bal-
ance among sensitive features, such as ethnicity and gender.
We compared our novel dataset curation approach, to three
baselines which our approach all outperformed. For data
augmentation, we analyzed three different augmentation
techniques and assessed the different and similar augmenta-
tions individually. We found that our modified lightweight
OOD-technique is indeed helpful to identify augmentations
which are harmful to DNN model fairness and performance,
namely those augmentations which are far from the trained
distribution. The largest contribution could be made for fair-
ness. Here, our final DL age prediction system outperformed
the state of the art system from Amazon AWS or Microsoft
Azure by predicting age among individual ethnicity up to
4.92 times more accurate. In addition, our DL age predic-
tion system yielded an MAE of 4.13 on CACD benchmark
dataset and 6.75 on AFAD benchmark dataset, thereby out-
performing prior research and outperforming DL age predic-
tion systems of Amazon AWS and Microsoft Azure. Overall,
our work stressed the importance of curating datasets that
consider the sensitive features and data diversity criteria. We
gave research guidance along with future directions and pro-
vide the technique and code needed to assess both criteria to
encourage further work in this important field.
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