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Abstract

Although recent semantic segmentation methods have
made remarkable progress, they still rely on large amounts
of annotated training data, which are often infeasible to col-
lect in the autonomous driving scenario. Previous works
usually tackle this issue with Unsupervised Domain Adap-
tation (UDA), which entails training a network on synthetic
images and applying the model to real ones while min-
imizing the discrepancy between the two domains. Yet,
these techniques do not consider additional information
that may be obtained from other tasks. Differently, we
propose to exploit self-supervised monocular depth esti-
mation to improve UDA for semantic segmentation. On
one hand, we deploy depth to realize a plug-in compo-
nent which can inject complementary geometric cues into
any existing UDA method. We further rely on depth to
generate a large and varied set of samples to Self-Train
the final model. Our whole proposal allows for achieving
state-of-the-art performance (58.8 mIoU) in the GTA5→CS
benchmark. Code is available at https://github.com/
CVLAB-Unibo/d4-dbst.

1. Introduction

Semantic segmentation is the task of classifying each
pixel of an image. Nowadays, Convolutional Neural Net-
works can achieve impressive results in this task but re-
quire huge quantities of labelled images at training time
[44, 3, 34, 41]. A popular trend to address this issue con-
cerns leveraging on computer graphics simulations [42] or
game engines [40] to obtain automatically synthetic images
endowed with per-pixel semantic labels. Yet, a network
trained on synthetic data only will perform poorly in real
environments due to the so called domain-shift problem.
In the last few years, many Unsupervised Domain Adap-
tation (UDA) techniques aimed at alleviating the domain-
shift problem have been proposed in literature. These ap-
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Figure 1. D4 can be plugged seamlessly into any existing method
to improve UDA for Semantic Segmentation. Here we show how
the introduction of D4 can ameliorate the performance of two re-
cent methods like LTIR [22] and Stuff and Things [55].

proaches try to minimize the gap between the labeled source
domain (e.g. synthetic images) and the unlabeled target do-
main (e.g. real images) by either hallucinating input images,
manipulating the learned features space or imposing statis-
tical constraints on the predictions [58, 8, 65, 18].

At a more abstract level, UDA may be thought of as the
process of transferring more effectively to the target do-
main the knowledge from a task solved in the source do-
main. This suggests that it may be possible to improve
UDA by transferring also knowledge learned from another
task to improve performance in the real domain. In fact,
the existence of tightly related representations within CNNs
trained for different tasks has been highlighted since the
early works in the field [60], and it is nowadays standard
practice to initialize CNNs deployed for a variety of di-
verse tasks, such as, e.g., object detection [46], semantic
segmentation [4] and monocular depth estimation [14], with
weights learned on Imagenet Classification [11]. The notion
of transferability of representations among CNNs trained to
solve different visual tasks has been formalized computa-
tionally by the Taskonomy proposed in [63]. Later, [38] has
shown that it is possible to train a CNN to hallucinate deep
features learned to address one task into features amenable
to another task related to the former.

Inspired by these findings, we argue that monocular
depth estimation could be an excellent task in order to
gather additional knowledge useful to address semantic seg-
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mentation in UDA settings. First of all, a monocular depth
estimation network makes predictions based on 3D cues
dealing with the appearance, shape, relative sizes and spa-
tial relationships of the stuff and things observed in the
training images. This suggests that the network has to pre-
dict geometry by implicitly learning to understand the se-
mantics of the scene. Indeed, [37, 21, 24, 15] show that a
monocular depth estimation network obtains better perfor-
mances if forced to learn jointly a semantic segmentation
task. We argue, though, the correlation between geometry
and semantics to hold bidirectionally, such that a semantic
segmentation network may obtain useful hints from depth
information. This intuition is supported by [38], which
shows that it is possible to learn a mapping in both direc-
tions between features learned to predict depth and per-pixel
semantic labels. It is also worth observing how depth pre-
diction networks tend to extract accurate information for re-
gions characterized by repeatable and simple geometries,
such as roads and buildings, which feature strong spatial
and geometric priors (e.g. the road is typically a plane in
the bottom part of the image) [13, 14, 47, 57]. Therefore,
on one hand predicting accurately the semantics of such
regions from depth information alone should be possible.
On the other, a semantic network capable of reasoning on
the geometry of the scene should be less prone to mistakes
caused by appearance variations between synthetic and real
images, the key issue in UDA for semantic segmentation.

Despite the above observations, injection of geometric
cues into UDA frameworks for semantic segmentation has
been largely unexplored in literature, with the exception of
a few proposals, which either assume availability of depth
labels in the real domain [56], a very restrictive assumption,
or can leverage on depth information only in the synthetic
domain due to availability of cheap labels [53, 27, 6]. In
this respect, we set forth an additional consideration: nowa-
days effective self-supervised procedures allow for training
a monocular depth estimation network without the need of
ground-truth labels [14, 12, 70].

Based on the above intuitions and considerations, in this
paper we propose the first approach that, thanks to self-
supervision, allows for deploying depth information from
both synthetic and unlabelled real images in order to inject
geometric cues in UDA for semantic segmentation. Pur-
posely, we adapt the knowledge learned to pursue depth
estimation into a representation amenable to semantic seg-
mentation by the feature transfer architecture proposed in
[38]. As the geometric cues learned from monocular images
yield semantic predictions that are often complementary to
those attainable by current UDA methods, we realize our
proposal as a depth-based add-on, dubbed D4 (Depth For),
which can be plugged seamlessly into any UDA method to
boost its performances, as illustrated in Fig. 1.

A recent trend in UDA for semantic segmentation is

Self-Training (ST), which consists in further fine-tuning
the trained network by its own predictions [72, 73, 68, 29,
33, 30]. We propose a novel Depth-Based Self-Training
(DBST) approach which deploys once more the availabil-
ity of depth information for real images in order to build a
large and varied dataset of plausible samples to be deployed
in the Self-Training (ST) procedure1.

Our framework can improve many state-of-the-art meth-
ods by a large margin in two UDA for semantic segmen-
tation benchmarks, where networks are trained either on
GTA5 [40] or SYNTHIA VIDEO SEQUENCES [42] and
tested on Cityscapes [10]. Moreover, we show that our
DBST procedure enables to distill the whole framework into
a single ResNet101 [16] and achieve state-of-the-art perfor-
mance. Our contributions can be summarized as follows:

• We are the first to show how to exploit self-supervised
monocular depth estimation on real images to pursue
semantic segmentation in a domain adaptation settings.

• We propose a depth-based module (D4) which can
be plugged into any UDA for semantic segmentation
method to boost performance.

• We introduce a new protocol (DBST) that exploits
depth predictions to synthesize augmented training
samples for the final self-training step deployed often-
times in UDA for semantic segmentation pipelines.

• We show that leveraging on both D4 and DBST allows
for achieving 58.8 mIoU in the popular GTA5→CS
UDA benchmark, i.e., to the best of our knowledge,
the new state-of-the-art.

2. Related Work
Domain Adaptation. Domain Adaptation is a promis-

ing way of solving semantic segmentation without annota-
tions. Pioneering works [17, 58, 2, 9, 31, 66, 62, 28, 22]
rely on CycleGANs [71] to convert source data into the
style of target data, reducing the low-level visual appear-
ance discrepancy among domains. Other works exploit ad-
versarial training to enforce domain alignment [49, 50, 54,
67, 59, 36, 1, 52]. [55] extended this idea by aligning dif-
ferently objects with low and high variability in terms of
appearance. Few works tried to exploit depth information
to boost UDA for semantic segmentation. [53], for exam-
ple, proposes a unified depth-aware UDA framework that
leverages the knowledge of depth maps in the source do-
main to perform feature space alignment. [43] extends this
idea by modelling explicitly the relation between different
visual semantic classes and depth ranges. [7], instead, con-
siders depth as a way to obtain adaptation at both the input
and output level. [56] is the first work to consider depth

1See also [19] for concurrent work that proposes a similar idea.
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Figure 2. From left to right: ground truth, semantics from depth,
semantics by LTIR [22]. The semantic labels predicted from
depth are more accurate than those yielded by UDA methods in
regularly-shaped objects (such as the wall in the top image and the
sidewalk in the bottom one), whilst UDA approaches tend to per-
form better on small objects (see the traffic signs in both images).

in the target domain, although assuming supervision to be
available. Conversely, we show how to deploy depth in the
target domain without availability of ground-truth depths.

Self-Training. More recently, a new line of research
focuses on self-training [26], where a semantic classi-
fier is fine-tuned directly on the target domain, using its
own predictions as pseudo-labels. [72, 73, 30] cleverly
set class-confidence thresholds to mask wrong predictions.
[69, 33, 68] propose to use pseudo-labels with different reg-
ularization techniques to minimize both the inter-domain
and intra-domain gap. [64] instead, estimates the likelihood
of pseudo-labels to perform online correction and denoising
during training. Differentely, [48] synthesizes new samples
for the target domain by cropping objects from source im-
ages using ground truth labels and pasting them onto target
images. Inspired by this work, we propose a novel algo-
rithm for generating new samples to perform self-training
on the target domain. In contrast to [48], our strategy is ap-
plied to target images only and relies on the availability of
depth maps obtained through self-supervision.

Task Adaptation. All existing approaches tackle inde-
pendently task adaptation or domain adaptation. [51] was
the first paper to propose a cross-tasks and cross-domains
adaptation approach, considering two image classification
problems as different tasks. UM-Adapt [25] employs a
cross-task distillation module to force inter-task coherency.
Differently, [38], directly exploits the relationship among
tasks to reduce the need for labelled data. This is done
by learning a mapping function in feature space between
two networks trained independently for two separate tasks,
a pretext and target one. We leverage on this intuition but,
unlike [38], our approach does not require supervision to
solve the pretext task in the target domain.

3. Method

In Unsupervised Domain Adaptation (UDA) for seman-
tic segmentation one wishes to solve semantic segmentation
in a target domain, DT , though labels are available only in

another domain, referred to as source domain DS . In the
following we describe the two ingredients of our proposal
to better tackle this problem. In Sec. 3.1 we show how to
transfer information from self-supervised monocular depth
to semantic segmentation and merge this knowledge with
any UDA method (D4-UDA, Depth For UDA). Then, in
Sec. 3.2 we introduce a Depth-Based Self-Training strat-
egy (DBST) to further improve semantic predictions while
distilling the whole framework into a single CNN.

3.1. D4 (Depth For UDA)

Semantics from Depth. The main intuition behind our
work is that semantic segmentation masks obtained exploit-
ing depth information have peculiar properties that make
them suitable to improve segmentation masks obtained with
standard UDA methods. However, predicting semantics
from depth is an arduous task. Indeed, we experiment sev-
eral alternatives (see Sec. 4.4 Alternative strategies to ex-
ploit depth) and find out that the most effective way is a
procedure similar to the one proposed in [38], which we
adapt to the UDA scenario. The pipeline works as follows:
train one CNN to solve a first task on DS and DT , train
another CNN to solve a second task on DS only (i.e. the
only domain where ground truth labels for the second task
are available) and, finally, train a transfer function to map
deep features extracted by the first CNN into deep features
amenable to the second one. As the second CNN has been
trained only on DS , also the transfer function can be trained
only on DS but, interestingly, it can generalize to DT . As
a consequence, at inference time one can solve the second
task in DT based on the features transferred from the first
task. We refer to [38] for further details.

Hence, if we assume the first and second task to con-
sist in depth estimation and semantic segmentation, respec-
tively, the idea of transferring features might be deployed in
a UDA scenario since it gives the possibility to solve the
second task on DT without the need of ground truth la-
bels. However, the learning framework delineated in [38]
assumes availability of ground-truth labels for the first task
(depth estimation in our setting) also in DT (real images).
As pointed out in Sec. 1, this assumption does not comply
with the standard UDA for semantic segmentation problem
formulation, which requires availability of semantic labels
for source images (DS ) alongside with unlabelled target im-
ages only (DT ). To address this issue we propose to rely
on depth proxy-labels attainable from images belonging to
both DS and DT without the need of any ground-truth in-
formation. In particular, we propose to deploy one of the
recently proposed deep neural networks, such as [14], that
can be trained to perform monocular depth estimation based
on a self-supervised loss that requires availability of raw im-
age sequences only, i.e. without ground-truth depth labels.
Thus, in our method we introduce the following protocol.
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Figure 3. Overview of our proposal. RGB images are first processed by two different segmentation engines to produce complementary
predictions that are then combined by a weighted sum which accounts for the relative strengths of the two engines (Eq. 3). During the next
step (DBST), predictions from D4-UDAi are used to synthesize augmented samples by mixing portions of different images according to
depth and semantics. The augmented samples are used to train a final model, so as to distill the whole pipeline into a single network.

First, we train a self-supervised monocular depth estimation
network on both DS and DT . Then, we use this network
to generate depth proxy-labels for both domains. We point
out that we use such network as an off-the-shelf algorithm
without the aim of improving depth estimation. Finally, ac-
cording to [38], we train a first CNN to predict depth from
images on both domains by the previously computed depth
proxy-labels, a second CNN to predict semantic labels on
DS and a transfer network which allows for predicting se-
mantic labels from depth features in DT . In the following,
we will refer to such predictions as “semantics from depth”
because they concern semantic information extracted from
features amenable to perform monocular depth estimation.

Combine with UDA. Fig. 2 compares semantic pre-
dictions obtained from depth by the protocol described in
the previous sub-section and from a recent UDA method.
The reader may observe a clear pattern: predictions from
depth tend to be smoother and more accurate on objects
with large and regular shapes, like road, sidewalk, wall
and building. However, they turn out often imprecise in
regions where depth predictions are less informative, like
thin things partially overlapped with other objects or fine-
grained structures in the background. As UDA methods
tend to perform better on such classes (see Fig. 2), our
D4 approach is designed to combine the semantic knowl-
edge extracted from depth with that provided by any chosen
UDA method in order to achieve more accurate semantic
predictions. Depth information helps on large objects with
regular shapes, which usually account for the majority of
pixels in an image. On the contrary, UDA methods perform
well in predicting semantic labels for categories that typ-
ically concern much smaller fractions of the total number
of pixel in an image, like e.g. the traffic signs in Fig. 2.
This orthogonality suggests that a simple yet effective way
to combine the semantic knowledge drawn from depth with
that provided by UDA methods consists in a weighted sum

of predictions, with weights computed according to the fre-
quency of classes in DS (the domain where semantic labels
are available). As weights given to UDA predictions (wuda)
should be larger for rarer classes, they can be computed as:

wuda = [w1
uda, . . . , w

C
uda] where wi

uda =
1

ln(δ + f i)
(1)

where C denotes the number of classes and f i = ni

ntot de-
notes their frequencies at the pixel level, i.e. the ratio be-
tween the number ni of pixels labelled with class i in DS
and the total number ntot of labelled pixels in DS . Eq. 1
is the standard formulation introduced in [34] to compute
bounded weights inversely proportional to the frequency of
classes. We set δ in Eq. 1 to 1.02, akin to [34].

Accordingly, weights applied to semantic predictions
drawn from depth (wdep) are given by:

wdep = [w1
dep, ..., w

C
dep] where wi

dep = 1− wi
uda. (2)

Thus, at each pixel of a given image we propose to com-
bine semantics from depth and predictions yielded by any
chosen UDA method as follows:

ŷf = wdep · ϕT (ỹdep) + wuda · ϕT (ỹuda), (3)

where ŷf is the final prediction, ỹdep and ỹuda are the logits
associated with semantics from depth and the selected UDA
method, respectively, ϕT denotes the softmax function with
a temperature term T that we set to 6 in our experiments.

As illustrated in Fig. 3, the formulation presented in Eq.
3 and symbolized as

⊕
can be used seamlessly to plug

semantics obtained from self-supervised monocular depth
into any existing UDA method. We will refer to the combi-
nation of a given UDA method with our D4 with the expres-
sion D4-UDA. Experimental results (Sec. 4.3) show that all
recent s.o.t.a. UDA methods do benefit significantly from
the complementary geometric cues brought in by D4.
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Figure 4. The rightmost column is synthesized by copying pixels
from the left column into the central one. Pixels are chosen ac-
cording to their semantic class (second row) and stacked accord-
ing to their depths (third row). The white pixels in the depth maps
represent areas too far from the camera that cannot be selected.

3.2. DBST (Depth-Based Self-Training)

We describe here our proposal to further improve seman-
tic predictions and distill the knowledge of the entire system
into a single network easily deployable at inference time.
First, we predict semantic labels for every image in DT by
our whole framework (i.e. D4 alongside a selected UDA
method, referred to as D4-UDA); then, we use these labels
to train a new model on DT . This procedure, also known
as self-training [26], has become popular in recent UDA
for semantic segmentation literature [72, 73, 68, 29, 33, 30]
and consists in training a model by its own predictions, re-
ferred to as pseudo-labels, sometimes through multiple it-
erations. On the other hand, we only perform one iteration,
and the novelty of our approach concerns the peculiar abil-
ity to leverage on the depth information available for the
images in DT to generate plausible new samples.

Running D4-UDA on DT yields semantic pseudo-labels
for every image in DT . Yet, as described in Sec. 3.1 (Se-
mantics from Depth), each image in DT is also endowed
with a depth prediction, provided by a self-supervised
monocular depth estimation network. We can take advan-
tage of this information to formulate a novel depth-aware
data augmentation strategy whereby portion of images and
corresponding pseudo-labels are copied onto others so as
to synthesize samples for the self-training procedure. The
crucial difference between similar approaches presented in
[32, 48] and ours consists in the deployment of depth in-
formation to steer the data augmentation procedure towards
more plausible samples. Indeed, a first intuition behind our
method deals with semantic predictions being less accurate
for objects distant from the camera: as such predictions play
the role of labels in self-training, we prefer to pick closer
rather than distant objects in order to generate training sam-
ples. Moreover, we reckon certain kinds of objects, like per-
sons, vehicles and traffic signs, to be more plausibly trans-
ferable across different images as they tend to be small and
less bound to specific spatial locations. On the contrary,
it is quite unlikely to merge seamlessly a piece of road or

building from a given image into a different one.
Given N randomly selected images xn from DT , with

n ∈ {1, . . . , N}, paired with semantic pseudo-labels sn and
depth predictions dn, we augment x1, by copying on it pix-
els from the set X src = {x2, · · · , xN}. For each pixel of
the augmented image we have N possible candidates, one
from x1 itself and N − 1 from the images in X src. We fil-
ter such candidates according to two criteria: the predicted
depth should be lower than a threshold t and the semantic
prediction should belong to a predefined set of classes, C∗.
Hence, we define the set of depths of the filtered candidates
at each spatial location p as:

Dp = {dnp | dnp < t ∧ snp ∈ C∗} n ∈ {1, . . . , N}. (4)

In our experiments, for each image the depth threshold t is
set to the 80th percentile of the depth distribution, so as to
avoid selecting pixels from the farthest objects in the scene.
C∗ contains all things classes (e.g. person, car, traffic light,
etc.), which include foreground elements that can be copied
onto other images without altering the plausibility of the
scene, while excluding all the stuff classes, which include
background elements that cannot be easily moved across
scenes. This categorization is similar to the one proposed
in [55] and we consider it easy to replicate in other datasets.

Then, we synthesize a new image xz and corresponding
pseudo-labels sz , by assigning at each spatial location p the
candidate with the lowest depth, so that objects from differ-
ent images will overlap plausibly into the synthesized one:

xz
p = xk

p szp = skp (5)

k =

{
1, Dp = ∅
n s.t. dnp = minDp, Dp ̸= ∅

(6)

In Fig. 4 we depict our depth-based procedure to synthesize
new training samples, considering, for the sake of simplic-
ity, the case where N is 2.

Hence, with the procedure detailed above, we synthesize
an augmented version of DT , used to distill the whole D4-
UDA framework into a single model by a self-training pro-
cess. This dataset is much larger and exhibits more variabil-
ity than the original DT . Due to its reliance on depth infor-
mation, we dub our novel technique as DBST (Depth-Based
Self-Training). The results reported in Sec. 4.3 prove its
remarkable effectiveness, both when used as the final stage
following D4 as well as when deployed as a standalone self-
training procedure applied to any other UDA method.

4. Experiments
4.1. Implementation Details

Network Architectures. We use Monodepth2 [14] to
generate depth proxy-labels for the procedure described in
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mIoU Acc
AdaptSegNet [49] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.6 32.5 35.4 3.9 30.1 28.1 42.4 85.6
D4-AdaptSegNet + DBST 93.1 53.0 85.1 42.8 27.3 35.8 43.9 18.5 85.9 39.0 89.9 63.0 31.6 86.6 39.8 36.7 0 42.4 35.0 50.0 90.3
MaxSquare [5] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.5 44.3 86.9
D4-MaxSquare + DBST 92.9 51.2 84.7 43.5 22.2 35.7 42.5 20.0 86.2 42.0 90.0 63.7 33.0 86.9 45.5 50.9 0 42.2 41.4 51.3 90.3
BDL [28] 88.2 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5 89.2
D4-BDL + DBST 93.2 52.6 86.4 44.1 31.2 36.5 42.4 36.1 86.3 41.0 89.8 63.3 37.4 86.3 42.8 57.8 0 40.3 37.9 52.9 90.7
MRNET [69] 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 82.5 63.1 34.4 85.8 32.9 38.2 2.0 27.1 41.8 48.3 88.3
D4-MRNET + DBST 93.2 51.6 86.1 45.9 24.5 37.9 47.4 40.4 85.3 37.5 89.6 64.7 39.8 85.8 41.1 53.2 8.9 17.1 33.4 51.7 90.0
Stuff and things* [55] 90.2 43.5 84.6 37.0 32.0 34.0 39.3 37.2 84.0 43.1 86.1 61.1 29.9 81.6 32.3 38.3 3.2 30.2 31.9 48.3 88.8
D4-Stuff and things + DBST 93.3 54.0 86.5 46.4 32.3 37.7 45.2 39.5 85.5 39.4 90.0 63.7 32.8 85.5 32.0 39.5 0 37.7 35.5 51.4 90.5
FADA [54] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2 88.9
D4-FADA + DBST 93.9 58.2 86.4 45.9 29.6 36.9 44.6 27.0 86.3 39.4 90.0 64.9 41.0 85.8 34.6 51.2 9.9 24.2 37.3 52.0 90.7
LTIR [22] 92.9 55.0 85.3 34.2 31.1 34.4 40.8 34.0 85.2 40.1 87.1 61.1 31.1 82.5 32.3 42.9 3 36.4 46.1 50.2 90.0
D4-LTIR + DBST 94.2 59.6 86.9 43.9 35.3 36.9 45.7 36.1 86.2 40.6 90.0 65.9 38.2 84.4 33.3 52.4 13.7 46.2 51.7 54.1 91.0
ProDA [64] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5 89.1
D4-ProDA + DBST 94.3 60.0 87.9 50.5 43.0 42.6 50.8 51.3 88.0 45.9 89.7 68.9 41.8 88.0 45.8 63.8 0 50.0 55.8 58.8 92.1

Table 1. Results on GTA5→CS. When available, checkpoints provided by authors are used. * denotes method retrained by us.
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AdaptSegNet* [49] 75.6 78.0 89.7 28.5 3.4 76.0 28.5 85.1 27.2 55.3 46.6 0 49.5 86.9
D4-AdaptSegNet + DBST 87.7 80.1 94.0 61.8 66.0 81.1 32.2 85.4 31.3 59.0 52.3 0 55.9 90.2
MaxSquare* [5] 72.4 79.2 89.2 36.0 4.6 75.7 31.5 84.9 30.7 55.8 45.8 8.6 51.2 87.3
D4-MaxSquare + DBST 87.5 80.0 93.7 61.8 7.3 80.8 33.2 84.6 35.1 58.1 48.1 8.2 56.5 90.1
MRNET* [69] 84.6 79.7 93.9 56.3 0 80.5 35.4 88.9 27.2 59.4 56.3 0 54.5 90.0
D4-MRNET + DBST 88.3 79.9 93.9 63.0 6.3 81.3 35.5 84.3 31.3 59.5 47.9 0 55.9 90.2

Table 2. Results on SYNSEQ→CS. * denotes method retrained by us.

Sec. 3.1. We adapt the general framework presented in
[38] to our setting by deploying the popular Deeplab-v2 [3]
for depth estimation and semantic segmentation networks.
Both networks consist of a backbone and an ASPP mod-
ule [3], which substitute, respectively, the encoder and de-
coder used in [38]. The backbone is implemented as a di-
lated ResNet50 [61]. We also remove the downsampling
and upsampling operations used in [38] when learning the
transfer function between depth and semantics. More pre-
cisely, in our architecture the transfer function is realized as
a simple 6-layers CNN with kernel size 3 × 3 and Batch
Norm [20]. Following the recent trend in UDA for se-
mantic segmentation [49, 5, 28, 69, 55, 54, 22], during
DBST we train a single Deeplab-v2 [3] model, with a di-
lated ResNet101 pre-trained on Imagenet [11] as backbone.

Training Details. Our pipeline is implemented using
PyTorch [35] and trained on one NVIDIA Tesla V100 GPU
with 16GB of memory. In every training and test phase
we resize input images to 1024×512, with the exception of
DBST, when we first perform random scaling and then ran-
dom crop with size 1024×512. During DBST we use also
color jitter to avoid overfitting on the pseudo-labels. In our
version of [38], the depth and the transfer network are opti-
mized by Adam [23] with batch size 2 for 70 and 40 epochs,
respectively, while the semantic segmentation network is
trained by SGD with batch size 2 for 70 epochs.The final

model obtained by DBST is trained again with SGD, batch
size 3 and for 30 epochs. We adopt the One Cycle learn-
ing rate policy [45] in every training, setting the maximum
learning rate to 10−4 but in DBST, where we use 10−3.

4.2. Datasets

We briefly describe the datasets adopted in our exper-
iments, pointing to the Suppl. Mat. for additional details.
We follow common practice [49, 22, 28] and test our frame-
work in the synthetic-to-real case using GTA5 [39, 40] or
SYNTHIA [42] as synthetic datasets. The former consists
in synthetic images captured with the game Grand Theft
Auto V, while the latter is composed of images generated
by rendering a virtual city. Since our method requires video
sequences to train Monodepth2 [14], we use the split SYN-
THIA VIDEO SEQUENCES (SYNTHIA-SEQ) in the ex-
periments involving the SYNTHIA dataset. As for real
images, we leverage the popular Cityscapes dataset [10],
which consists in a large collection of video sequences of
driving scenes from 50 different cities in Germany.

4.3. Results

We report here experimental results obtained in two do-
main adaptation benchmarks, which show how the combi-
nation with our D4 method allows to boost performance of
recent UDA for semantic segmentation approaches.
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Figure 5. From left to right: RGB image, prediction from UDA method, prediction from D4-UDA + DBST, GT. The top two rows deal
with GTA5→CS, the other two with SYNSEQ→CS. Selected methods are, from top to bottom: LTIR [22], BDL [28], MaxSquare [5] and
MRNET [69]. In all these examples our proposal can ameliorate dramatically the output of the given stand-alone method, especially on
classes featuring large and regular shapes, like road in rows 1-3, sidewalk in rows 2-4 and wall in row 2.

GTA5→CS. Tab. 1 reports results on the most pop-
ular UDA benchmark for semantic segmentation, i.e.
GTA5→CS, where methods are trained on GTA5 and tested
on Cityscapes. We selected the most relevant UDA ap-
proaches proposed in the last years [49, 5, 28, 69, 55, 54,
22, 64], using checkpoints provided by authors when avail-
able. We report per-class and overall results in terms of
mean intersection over union (mIoU) and pixel accuracy
(Acc), when each method is either used stand-alone or de-
ployed within our proposal (i.e. D4 + DBST). The reader
may notice how every UDA method does improve consid-
erably if combined with our proposal, despite the variabil-
ity of their stand-alone performances. Indeed, AdaptSeg-
Net [49], which yields about 42 in terms of mIoU, reaches
50 when embedded into our framework. Likewise, ProDA,
currently considered the s.o.t.a. UDA method, improves
in mIoU from 57.5 to 58.8. Moreover, we can observe in
Tab. 1 that our method produces a general improvement for
all classes, although we experience a certain performance
variability for some of them (such as train, motorbike and
bicycle), probably due to noisy pseudo-labels used during
DBST. Conversely, our method yields consistently a sig-
nificant gain on classes characterized by large and regular
shapes, namely road, sidewalk, building, wall and sky. This
validates the effectiveness of a) the geometric cues deriv-
able from depth to predict the semantics of these kind of
objects and b) the methodology we propose to leverage on
these additional cues in UDA settings. This behavior is also
clearly observable from qualitatives in Fig. 5. We point out
that, to the best of our knowledge, the performance obtained
by D4-ProDA + DBST, i.e. 58.8 mIoU (last row of Tab. 1)
establishes the new state-of-the-art for GTA5→CS.

SYNSEQ→CS. Akin to common practice in literature

we present results also on the popular SYNTHIA dataset.
As our pipeline requires video sequences to train the self-
supervised monocular depth estimation network, we select
the SYNTHIA VIDEO SEQUENCES split for training and
the Cityscapes dataset for testing. We will call this setting
SYNSEQ→CS. To address it, we re-trained the UDA meth-
ods for which the code is available and the training proce-
dure is more affordable in terms of memory and run-time re-
quirements, namely AdaptSegNet [49], MaxSquare [5] and
MRNET [69]. The results in Tab. 2 show that all the se-
lected UDA approaches exhibit a substantial performance
gain when coupled with our proposal, with a general im-
provement in all classes. In particular, similarly to the re-
sults obtained in GTA5→CS, we observe a consistent im-
provement for classes related to objects with large and reg-
ular shapes (as depicted also in Fig. 5), with the only excep-
tion of a slight performance drop for the class building when
using MRNET [69] (last row of Tab. 2). We argue that our
approach is relatively less effective with MRNET [69] as,
unlike AdaptSegNet [49] and MaxSquare [5], it yields al-
ready satisfactory results in those classes which are usually
improved by the geometric clues injected by D4.

In the Suppl. Mat. we show that it is also possible to
exploit the depth ground-truths provided by the SYNTHIA
dataset as an additional source of supervision during the
training of Monodepth2 [14], obtaining a small improve-
ment in the performances of the overall framework.

4.4. Analysis

We report here the most relevant analysis concerning our
work. Additional ones can be found in the Suppl. Mat..

Ablation studies. In Tab. 3, we analyze the impact on
the performance of our two main contributions, i.e. injec-
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tion of geometric cues into UDA methods by D4 and DBST.
Purposely, we select the GTA5→CS benchmark and, for
the top performing UDA methods, we report the mIoU fig-
ures obtained by using the stand-alone UDA method (col-
umn UDA), combining it with D4 (column D4-UDA), ap-
plying DBST directly on the stand-alone method (column
UDA + DBST) and embedding the method into our full
pipeline (column D4-UDA + DBST). We can observe that
each of our novel contributions improves the performance
of the most recent UDA methods by a large margin, which
is even more remarkable considering that the selected meth-
ods already include one or more step of self-training. More-
over, D4 and DBST further enhance the performances of
any selected method when deployed jointly, as shown in the
column D4-UDA + DBST, suggesting that they are com-
plementary. In order to further assess the effectiveness of
DBST, in the column D4-UDA + ST we report results ob-
tained by D4-UDA in combination with a baseline self-
training procedure, which consists in simply fine-tuning the
model by its own predictions on the images of the target
domain. As the only difference between this procedure and
our DBST is the dataset employed for fine-tuning, the re-
sults prove the effectiveness of DBST in generating a varied
set of plausible samples more amenable to self-training than
the original images belonging to the target domain.

Alternative strategies to exploit depth. As explained in
Sec. 3.1 Semantics from Depth, we rely on the mechanism
of transferring features across tasks and domains from [38]
to inject depth cues into semantic segmentation. To validate
our choice, we explore two possible alternatives, namely
DeepLabV2-RGBD and DeepLabV2-Depth. Both consist
in the popular DeepLabV2 [3] network, with RGBD images
in input in the first case and depth maps (no RGB) in the
second (more details in the Suppl. Mat.). Tab. 4 compares
the performance of these alternatives with our method, ei-
ther when used standalone (rows 2, 3, and 4) or when com-
bined with LTIR [22] according to the strategy presented in
Sec. 3.1 Combine with UDA. Results allow us to make some
important considerations. First, our intuition on the possi-
bility of exploiting depth to improve semantics is correct
since also simple approaches improve over the baseline (re-
ported in the first row of the table). Nonetheless, these naive
methods produce a significantly smaller improvement com-
pared to our approach, showing that our decision to adapt
[38] to the UDA scenario is not obvious. Moreover, [38]
requires only RGB images at test time. Finally, when com-
bined with LTIR [22], a stronger depth-to-semantic model
provides better results, validating our choice once again.

Impact of video sequences. As described in Sec. 3.1,
we obtain depth proxy-labels with a self-supervised depth
estimation network [14], that we train using the raw video
sequences (just RGB images) provided by the datasets in-
volved in our experiments. In order to validate that using

Method UDA D4-UDA UDA +
DBST

D4-UDA +
DBST

D4-UDA +
ST

BDL [28] 48.5 49.6 51.7 52.9 50.1
MRNET [69] 48.3 49.6 50.0 51.7 50.3

Stuff and Things* [55] 48.3 49.1 50.4 51.4 49.4
FADA [54] 49.3 49.9 51.4 52.0 50.0
LTIR [22] 50.2 51.1 53.1 54.1 51.5
ProDa [64] 57.5 57.6 58.0 58.8 56.8

Table 3. Impact on performance of the two components of our pro-
posal (D4, DBST) when applied separately or jointly to selected
UDA methods on GTA5→CS. * indicates that the method was re-
trained by us. Results are reported in terms of mIoU.

Method mIoU
DeepLabV2-RGB 34.5
DeepLabV2-RGBD 35.5
DeepLabV2-Depth 36.5
Semantics from depth (Sec. 3.1) 43.1
DeepLabV2-RGBD

⊕
LTIR [22] 47.7

DeepLabV2-Depth
⊕

LTIR [22] 49.3
D4-LTIR 51.1

Table 4. Comparison between alternative methods to infer se-
mantics from depth. DeepLabV2-RGB, DeepLabV2-RGBD and
DeepLabV2-Depth stand for DeepLabV2 [3] trained on DS , using
respectively RGB images, RGBD images or depth proxy-labels as
input, while “Semantics from depth” is the approach described in
Sec. 3.1 Semantics from Depth. The symbol

⊕
represents the

merge operation described in Sec. 3.1 Combine with UDA. Re-
sults are reported in terms of mIoU on the Cityscapes dataset.

video sequences from the target domain doesn’t provide any
advantage to our framework, we train AdaptSegNet [49]
on GTA5→CS using the whole training split available for
Cityscapes (i.e. 83300 images with temporal consistency).
We choose AdaptSegNet [49] since it can be considered the
building block of many UDA methods. We observe a drop
in performances from 42.4 to 41.9 mIoU, showing that us-
ing video sequences does not boost semantic segmentation
in a UDA setting, probably because of the similarity be-
tween consecutive frames, and that the improvement pro-
duced by our framework is provided by the effective strat-
egy that we adopt to exploit depth.

5. Conclusion

We have shown how to exploit self-supervised monoc-
ular depth estimation in UDA problems to obtain accurate
semantic predictions for objects with strong geometric pri-
ors (like road and buildings). As all recent UDA approaches
lack such geometric knowledge, we build our D4 method as
a depth-based add-on, pluggable into any UDA method to
boost performances. Finally, we employed self-supervised
depth estimation to realize an effective data augmentation
strategy for self-training. Our work highlights the possibil-
ity of exploiting auxiliary tasks learned by self-supervision
to better tackle UDA for semantic segmentation, paving the
way for novel research directions.
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