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Abstract

As it is costly to densely annotate large scale datasets
for supervised semantic segmentation, extensive semi-
supervised methods have been proposed. However, the ac-
curacy, stability and flexibility of existing methods are still
far from satisfactory. In this paper, we propose an effective
and flexible framework for semi-supervised semantic seg-
mentation using a small set of fully labeled images and a
set of weakly labeled images with bounding box labels. In
our framework, position and class priors are designed to
guide the annotation network to predict accurate pseudo
masks for weakly labeled images, which are used to train
the segmentation network. We also propose a mixed-dual-
head training method to reduce the interference of label
noise while enabling the training process more stable. Ex-
periments on PASCAL VOC 2012 show that our method
achieves state-of-the-art performance and can achieve com-
petitive results even with very few fully labeled images. Fur-
thermore, the performance can be further boosted with ex-
tra weakly labeled images from COCO dataset.

1. Introduction

Deep neural networks have achieved remarkable success
in many computer vision tasks. Their performance highly
depends on the amount of labeled data and the quality of
annotation. Semantic segmentation labeling is one of the
most costly tasks, which requires manual annotation for
each pixel in an image.

Aiming to reduce the annotation cost of semantic seg-
mentation, numerous weakly supervised methods have been
proposed to leverage weak labels such as image-level la-
bels [1,10,15,16,21,24,25,43–45,47,49], bounding boxes
[6,19,23,26,32,35], scribbles [27,38,39,41,42], and points
[2]. Although these methods can largely reduce the anno-
tation cost by utilizing weak labels, especially image-level
labels, their performance fails to meet the needs of real-
world applications. In comparison, semi-supervised meth-

ods can achieve promising results with a small set of fully
labeled images and a relatively large set of unlabeled im-
ages [3, 11, 17, 20, 30, 31, 36, 51]. However, they still un-
derperform their fully supervised counterparts. Some semi-
supervised methods seek to realize better results by utilizing
both fully labeled and weakly labeled images [18, 29], but
the way to utilize multiple types of supervision remains to
be further explored.

In this paper, we train semantic segmentation models in
a semi-supervised manner using a small set of fully labeled
images and a set of weakly labeled images with bounding
box labels. The proposed framework contains two semantic
segmentation networks: an annotation network (or AnnNet
for short) and a segmentation network (or SegNet for short).
The AnnNet is used to estimate pseudo masks for weakly
labeled images, and the SegNet is the resulting model for
deployment. We first train the AnnNet using fully labeled
images with ground-truth masks and weakly labeled images
with proposal masks. The proposal masks of weakly labeled
images are generated using GrabCut [34] and MCG [33].
Then pseudo masks for weakly labeled images are predicted
by the trained AnnNet. Finally, we train the SegNet using
fully labeled images with ground-truth masks and weakly
labeled images with pseudo masks.

We focus on improving the performance of semi-
supervised semantic segmentation in two aspects: generat-
ing high quality pseudo masks and improving the training
stability. To generate accurate pseudo masks, we extract
the position and class priors from bounding boxes to guide
the training of AnnNet. The RGB image and the extracted
priors are concatenated together as the input for AnnNet.
Inspired by [29], we propose the mixed-dual-head training
method to improve the training stability, which applies par-
allel strong and weak prediction heads to both AnnNet and
SegNet during training. The strong head is trained with a
mixture of fully labeled and weakly labeled images, and
the weak head is trained with only weakly labeled images.
This can reduce the interference of label noise in proposal
masks and pseudo masks while maximizing the utilization
of weakly labeled images.
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The proposed framework is simple and flexible. There
are no hyperparameters that need to be carefully tuned, so
it is easy to implement. We can choose a large model with
high performance as AnnNet, but a small model as SegNet
for efficient deployment. Moreover, the proposed frame-
work can benefit from the large number of weakly labeled
images and iterative training. The contributions of this pa-
per are summarized as follows:

• We propose an effective and flexible framework for
semi-supervised semantic segmentation using a small
set of fully labeled images and a set of weakly labeled
images with bounding box labels.

• We extract the position and class priors from bound-
ing boxes to guide the training of AnnNet, which can
effectively improve the accuracy of generated pseudo
masks.

• We propose the mixed-dual-head training method,
which can reduce the interference of label noise in pro-
posal masks and pseudo masks while maximizing the
utilization of weakly labeled images.

• Extensive experiments on PASCAL VOC 2012 dataset
show that the proposed framework is effective and
achieves state-of-the-art performance. With additional
weakly labeled images from COCO dataset, the per-
formance can be further boosted.

2. Related work
2.1. Weakly-supervised semantic segmentation

To alleviate the burden of manual annotation, numer-
ous methods have been proposed to address the semantic
segmentation task based on weak labels, including image-
level labels [1,10,15,16,21,24,25,43–45,47,49], bounding
boxes [6,19,23,26,32,35], scribbles [27,38,39,41,42], and
points [2]. Among them, image-level labels and bounding
boxes are most commonly used. Since the image-level la-
bel requires the least annotation effort, it is the most inves-
tigated weak label. In comparison, bounding boxes provide
more information about objects, so higher performance can
be achieved. Weakly supervised methods based on bound-
ing boxes are more related to this paper. BoxSup [6] gen-
erates a set of candidate segmentation masks using MCG,
and then iterates between selecting one candidate mask for
each bounding box and training the segmentation network.
Similarly, SDI [19] generates segment proposals by com-
bining GrabCut and MCG, and enhances the recursive train-
ing with a denoising procedure. BCM [35] uses dense-CRF
[22] to generate segment proposals from bounding boxes
and calculates the mean filling rates of each class to guide
the model training. In Box2Seg [23], bounding boxes are
considered as noisy labels for foreground objects. They pre-
dict a per-class attention map to guide the loss to focus on

foreground pixels and learn pixel embeddings to encourage
high intra-class feature affinity.

Some weakly supervised methods also present results
under semi-supervised settings by combining the generated
pseudo masks with a few ground-truth masks [6,19,32,35].
However, they just use the pseudo masks to improve the
semi-supervised performance without further exploring the
proper utilization of multiple types of supervision.

2.2. Semi-supervised semantic segmentation

Semi-supervised methods can reduce the annotation cost
by using a small set of fully labeled images while keep-
ing competitive performance. Existing semi-supervised
methods for semantic segmentation mainly resort to self-
training [3, 18, 51], consistency regularization [11, 20, 31],
and adversarial learning [17, 30, 36]. Self-training meth-
ods usually first train a model using fully labeled images
to predict pseudo masks for unlabeled or weakly labeled
images, and then train another model using both ground-
truth and pseudo masks. Consistency regularization meth-
ods improve the generalization performance of the model by
adding a consistency loss term. They usually achieve per-
turbations with data augmentation methods such as Cutout
[8] and CutMix [48], and resort to consistency training
paradigms such as Mean Teacher [40]. Adversarial learning
methods usually make the generated pseudo masks close to
the real ones with the help of GAN [12]. A comprehensive
literature survey about these methods is beyond the scope of
this work, and thus we focus on comparing our framework
with the most related ones.

Besides fully labeled images, most of semi-supervised
methods utilize unlabeled images and a few methods utilize
weakly labeled images [18, 29]. Ibrahim et al. [18] propose
a framework containing a primary segmentation model, an
auxiliary segmentation model and a self-correction mod-
ule to perform semantic segmentation using fully labeled
images and images with bounding boxes. However, the
auxiliary segmentation model and self-correction module
in their framework are only trained with fully labeled im-
ages and thus cannot benefit from the large number of
weakly labeled images. In addition, the training procedure
of their framework is quite complicated. Luo et al. [29]
propose to impose separate treatments of strong and weak
annotations via a strong-weak dual-branch network. The
strong and weak branches share the backbone network and
are trained with fully labeled images and weakly labeled
images (with image-level labels), respectively. However,
the strong branch is trained using only fully labeled im-
ages. Hence, the weakly labeled images cannot be fully uti-
lized. In comparison, our proposed mixed-dual-head train-
ing method can maximize the utilization of weakly labeled
images while reducing the interference of label noise, which
can improve the training stability.
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Figure 1. The training procedure of proposed semi-supervised se-
mantic segmentation framework. We first train the AnnNet us-
ing fully labeled images and weakly labeled images with proposal
masks generated by GrabCut and MCG. Then we predict pseudo
masks for weakly labeled images using the trained AnnNet. Fi-
nally, we train the SegNet using fully labeled images and weakly
labeled images with pseudo masks.

3. Method
The training procedure of our proposed semi-supervised

semantic segmentation framework is shown in Figure 1.
There are two semantic segmentation networks in our
framework: an annotation network (AnnNet) and a segmen-
tation network (SegNet). The training procedure consists of
three stages: (1) AnnNet training, (2) pseudo masks genera-
tion, and (3) SegNet training. In stage (1), we first generate
proposal masks for weakly labeled images using GrabCut
and MCG. Then the AnnNet is trained using fully labeled
images with ground-truth masks and weakly labeled images
with proposal masks. The role of AnnNet is to generate
pseudo masks, so in stage (2), we obtain pseudo masks of
weakly labeled images based on the predictions of AnnNet.
In the final stage, we train the SegNet, the resulting model
for deployment, using fully labeled images with ground-
truth masks and weakly labeled images with pseudo masks.

In the following parts of this section, we first introduce
the generation of proposal masks for weakly labeled images
in Section 3.1. Next, we introduce the position and class
priors used to form the 5-channel input for AnnNet in Sec-
tion 3.2. Then, we introduce the mixed-dual-head training
method applied to both AnnNet and SegNet in Section 3.3.

Figure 2. Generation of proposal masks. We generate the pro-
posal masks using GrabCut [34] and MCG [33]. We first generate
the GrabCut proposal and MCG proposal for each object. Then
we fuse the GrabCut and MCG proposals to obtain the proposal
masks. Only pixels with consistent GrabCut and MCG segmenta-
tion results are retained and others are ignored.

Finally, we present the training procedure of our framework
in detail in Section 3.4.

3.1. Proposal mask generation

To train the AnnNet using weakly labeled images, it is
necessary to obtain pixel-level labels from bounding box la-
bels. There are several successful methods for this purpose,
of which dense CRF, GrabCut and MCG are the mostly used
ones. Similar to previous works [19, 26], we use GrabCut
and MCG to obtain the segmentation results of images with
bounding box labels, which we called proposal masks.

The proposal masks are generated in the way shown in
Figure 2. GrabCut can estimate an object proposal from its
bounding box. So GrabCut proposals can be obtained by
performing GrabCut on each object in an image. Different
from GrabCut, MCG is a region proposal method that can
yield lots of proposals for an image. Be aware that the final
stage of MCG uses a random forest model trained on PAS-
CAL VOC 2012 dataset with ground-truth masks to rank all
the proposals. To avoid introducing extra pixel-level super-
vision, we do not use this ranking stage, but select one pro-
posal for each object that has the highest Intersection over
Union (IoU) with its bounding box.

The resulting proposal mask for an image is obtained by
fusing GrabCut and MCG proposals in two steps. First, we
fuse the GrabCut proposal and MCG proposal of each ob-
ject. Only pixels with consistent GrabCut and MCG seg-
mentation results are retained, and the rest are ignored. Af-
ter getting the fused proposal of each object, we put them
back to the correct position in the original image according
to the foreground area in descending order (a small object
has a higher priority to cover the pixels of large ones). Note
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(a) (b)

Figure 3. Visualization of the distance map. (a) Image. (b) Dis-
tance map.

that the pixels marked as ignored have the lowest priority,
which can be covered by foreground pixels from any other
objects.

The proposal masks obtained in this way contain fewer
mislabeled pixels, which we believe is extremely crucial for
the training of AnnNet. When applying the proposal masks
as supervision for AnnNet, the pixels marked as ignored are
not involved in the loss calculation.

3.2. Position and class priors

The proposal masks obtained by GrabCut and MCG
based on bounding boxes are much coarser than ground-
truth masks. Moreover, we ignore some of the pixels that
may be mislabeled when generating proposal masks, which
also discards some useful information. It is not possible to
train a high-performance AnnNet using such coarse and in-
complete proposal masks. To compensate for these limita-
tions of proposal masks, we hope to extract useful position
and class priors from bounding boxes to guide the training
of AnnNet. The extracted position and class priors are in
the form of 2-D maps with the same size as the input im-
age. We concatenate the RGB image with the position pri-
ors map and class priors map to form the 5-channel input
for AnnNet. In the following, we detail the construction of
the position and class priors maps.
Position priors. The bounding box can only provide the ap-
proximate position of the object. We assume that the closer
to the center of the bounding box the more likely the object
exists. Based on this assumption, we use the distance from
each pixel to the bounding box to construct the position pri-
ors map [46]. Given a bounding box of an object, pi is the
coordinate of the i-th pixel in an image. Se, Si, and So are
the sets of pixel coordinates located on, inside, and outside
the bounding box, respectively. The distance map D of an
object can be calculated as follows:

D (pi) =


128− min

pj∈Se

‖pi − pj‖ if pi ∈ Si

128 if pi ∈ Se

128 + min
pj∈Se

‖pi − pj‖ if pi ∈ So

(1)

where ‖·‖ denotes the Euclidean distance, D (pi) denotes
the distance value at coordinate pi. The distance map D

(a) (b) (c)

Figure 4. Visualization of the position priors map and class priors
map. (a) Image. (b) Position priors map. (c) Class priors map.

has the same size as the input image.
For the convenience of storage and computation, we

truncate the distance values in the range of [0, 255]. To
ensure the distance value at the center of the bounding box
is always zero, we then rescale the distance values for the
pixels inside the bounding box:

D (pi) =

{
128× D(pi)−Dmin

128−Dmin
if pi ∈ Si

D (pi) otherwise
(2)

where Dmin denotes the minimum value in D. A visual-
ization result of the distance map is shown in Figure 3.

The position priors map G is obtained by fusing the dis-
tance maps of all objects in an image. We refer to pix-
els within at least one bounding box as foreground pixels,
otherwise as background pixels. Assume there are M ob-
jects in an image, their corresponding distance maps are
D= {Di}Mi=1. For a foreground pixel p, if it is inside only
one bounding box whose distance map is Di, G (p) directly
takes the corresponding distance value in Di, i.e., G (p) =
Di (p); if it is inside more than one bounding boxes whose
distance map are D′ = {Di}mi=1, 1 < m ≤ M , G (p)
is obtained by averaging the corresponding distance values
in D′, i.e., G (p) = [D1 (p) + · · ·+Dm (p)]/m . For a
background pixel p, G (p) is obtained by averaging the cor-
responding distance values of all distance maps in D.

The visualization result of the position priors map is
shown in Figure 4(b). The position priors map can be re-
garded as a heatmap, where smaller values (darker in Fig-
ure 4(b)) indicate a higher potential for the existence of an
object.
Class priors. The pixels enclosed by the bounding box
form a superset of the object pixels. Therefore, pixels in-
side the bounding box may belong to the bounding box
class, and pixels outside all bounding boxes must belong
to the background class. Based on this property, we use the
bounding box class to construct the class priors map. We re-
fer to pixels within at least one bounding box as foreground
pixels, otherwise as background pixels. For a foreground
pixel, if it is inside only one bounding box, its value in class
priors map is the index of the bounding box class; if it is
inside more than one bounding box, its value in class priors
map depends on the bounding box with smaller area. For a
background pixel, its value in class priors map is the index
of the background class.
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The visualization result of the class priors map is shown
in Figure 4(c). The class priors map encodes the possible
classes of foreground pixels, which can guide the AnnNet
to distinguish between different classes of objects.

3.3. Mixed-dual-head

If we want to train the semantic segmentation network
using weakly labeled images in a supervised manner, we
need to estimate pixel-level labels based on weak labels
somehow. Despite the fact that we already apply appro-
priate methods to filter out the potential mislabeled pixels
when generating proposal masks and pseudo masks, there
are still mislabeled pixels. Compared with strong super-
vision (ground-truth masks), the estimated proposal masks
and pseudo masks can be considered as weak supervision
that contains label noise. Aiming to reduce the interference
of label noise while ensuring the training stability, we seek
to a proper way to utilize both strong and weak supervision.

We can split the semantic segmentation network into the
feature extractor and the prediction head. The feature ex-
tractor is responsible for extracting feature representation
from the image. The prediction head predicts the class of
pixels using the extract features. As shown in Figure 5,
there are three ways to utilize both strong and weak super-
vision.

Figure 5(a) shows the commonly used structure with one
single head. Fully labeled images and weakly labeled im-
ages go through the same prediction head to calculate the
loss. In this case, strong and weak supervision are treated
equally.

Figure 5(b) shows the dual-head training method. Fully
labeled images and weakly labeled images go through the
same feature extractor but different prediction heads to cal-
culate the loss separately. After training, the weak head is
discarded. We believe that the prediction head is more vul-
nerable to the interference from label noise than the fea-
ture extractor. The design of such separate strong and weak
prediction heads can reduce the interference of label noise
from weak supervision on the strong head. However, since
the strong head is supervised with only strong supervision,
a major drawback of this method is that the strong head can-
not be well trained when there are few fully labeled images.

Figure 5(c) shows the proposed mixed-dual-head train-
ing method. The network structure of mixed-dual-head
is the same as that of dual-head, and only strong head is
used for inference as well. In order to address the above-
mentioned drawback of dual-head, we train the strong head
with a mixture of fully labeled and weakly labeled images.
In this way, the strong head can benefit from the large num-
ber of weakly labeled images while reducing the interfer-
ence of label noise. We use the hyperparameter r (7:1 by de-
fault) to control the mixing ratio between fully labeled and
weakly labeled images in strong head. We apply the mixed-

(a)

(b)

(c)

Figure 5. Three ways to utilize both strong and weak supervision.
(a) Single-head simply supervises the prediction head with a mix-
ture of strong and weak supervision. (b) Dual-head supervises
the strong and weak head using strong and weak supervision sep-
arately. (c) Mixed-dual-head supervises the strong head with a
mixture of strong and weak supervision, which can improve the
training robustness while reducing the interference of label noise.

dual-head training method to both AnnNet and SegNet. We
will show the effectiveness of the mixed-dual-head training
method and its superiority over single-head and dual-head
in Section 4.4.

3.4. Training

As mentioned before, our framework contains three
training stages: (1) AnnNet training, (2) pseudo mask gen-
eration, and (3) SegNet training. We call performing stage
(1), stage (2), and stage (3) once as a training round. Details
about one training round of our framework can be found in
Section A of the supplemental material.

The training set consists of two parts: the fully labeled
dataset F = {(xi, yi, bi)}Fi=1 containing F fully labeled
images and the weakly labeled dataset W = {(xi, bi)}Wi=1

containingW weakly labeled images, where xi denotes i-th
image, yi and bi denote its ground-truth mask and bounding
box label.

We train AnnNet and SegNet with the proposed mixed-
dual-head method in stage (1) and (3), respectively. The
differences are: 1) the proposal masks of weakly labeled
images for AnnNet are generated by GrabCut and MCG,
whereas the pseudo masks for SegNet are generated by
AnnNet (the visualization of some proposal and pseudo
masks are shown in Section E of the supplementary ma-
terial); 2) only AnnNet is trained with position and class
priors.

In stage (2), we use a threshold τ to obtain pseudo masks
from the prediction results of AnnNet. For each pixel p, its
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pseudo label is generated as follows:

ỹc (p) =

{
1 if c = argmax

j
ŷj (p) and ŷc (p) > τ

0 otherwise
(3)

where ŷ (p) denotes the predicted probability of pixel p and
ŷj (p) is the prediced probability of class j. Similarly, ỹ (p)
denotes the pseudo label of pixel pwhich is a one-hot vector
and ỹc (p) is the c-th element. Note that ỹ (p) can be a zero
vector, meaning the pseudo label of this pixel is ignored
when used to train the SegNet.

4. Experiment
4.1. Datasets and evaluation metrics

We evaluate our framework on PASCAL VOC 2012
dataset [9], which contains 21 classes including back-
ground. In addition, we utilize the extra annotated images
from SBD [13] dataset. In total, there are 10582 images
for training, 1449 images for validation. We use the stan-
dard mean Intersection over Union (mIoU) as the evaluation
metric for all experiments.

4.2. Implementation Details

We adopt HRNetV2-W48 [37] as AnnNet (additional
experiments about the selection of AnnNet can be found
in Section C of the supplemental material). Since Seg-
Net is used for deployment, we use the commonly used
DeepLabv3+ [4] as SegNet for fair comparison. We use
ResNet-101 [14] and ResNeSt-101 [50] as the backbone
network of SegNet to compare with other methods, and
mainly use ResNet-50 [14] in ablation experiments. Fol-
lowing the common practice, we use the weights pretrained
on ImageNet [7] for all backbone networks. The threshold
τ required for generating the pseudo masks is set to 0.9. The
mixing ratio r between fully labeled and weakly labeled im-
ages in strong head is set to 7:1 by default.

We train both AnnNet and SegNet for 60 epochs. We
adopt SGD as the optimizer with a momentum of 0.9 and
a batch size of 32. The initial learning rates of AnnNet
and SegNet are set to 0.0008 and 0.004, respectively. We
employ a poly learning rate policy with power of 0.9. We
apply common data augmentation, including random hori-
zontal flipping, random scaling in the range of [0.5, 2.0] and
random cropping with a size of 512×512. Without special
statements, we use single-scale input during inference.

We modify the first convolutional layer of HRNetV2-
W48, which is used as our AnnNet, to allow it to accept
5-channel data as input. We also remove the last convolu-
tional layer of HRNetV2-W48 and DeepLabv3+ used for
prediction and then add two parallel prediction heads to im-
plement the dual-head or mixed-dual-head training method.
The two added heads have the same structure, including a

1×1 convolutional layer followed by a batch normalization
layer and ReLU activation, and a 1×1 convolutional layer
for prediction.

(a) (b) (c) (d)

Figure 6. Qualitative results on PASCAL VOC 2012 val set. Our
framework can achieve better segmentation results with fewer
ground-truth masks than the fully supervised baseline. (a) Image.
(b) Ground Truth. (c) Fully Supervised. (d) Ours.

4.3. Quantitative and qualitative results

We train the DeepLabv3+ model using 10582 images
with ground-truth masks as our fully supervised baseline.
Following the common practice, we train our framework
using 1464 images with ground-truth masks from PAS-
CAL VOC 2012 training set and extra 9118 images with
only bounding box labels from SBD. We use the same
DeepLabv3+ framework as our SegNet, except that an ad-
ditional prediction head is added during training phase. But
the network structure of SegNet is exactly the same as the
baseline model at inference time.

The results on PASCAL VOC 2012 validation set are
shown in Table 1. “Fully Supervised” is our implementa-
tion of baseline DeepLabv3+. Our reproduction has a mIoU
score of 80.69% with ResNet-101, which is slightly bet-
ter than 80.22% reported in [4]. Therefore, our reproduced
fully supervised baseline is convincing. It can be seen that
our framework outperforms the fully supervised baseline by
a large margin with even fewer ground-truth masks. We at-
tribute this result to two aspects. First, we observe that the
extra ground-truth masks from SBD are not as fine-grained
as those from PASCAL VOC 2012. Possibly the label noise
from SBD affects the performance of the baseline model.
More importantly, our framework extract position and class
priors from bounding boxes to ensure the quality of pseudo
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Method Backbone F W MS mIoU
Fully Supervised ResNet-50 10582 - 78.55

Ours ResNet-50 1464 9118 81.31
Fully Supervised ResNet-50 10582 - X 79.39

Ours ResNet-50 1464 9118 X 82.26
Fully Supervised ResNet-101 10582 - X 80.69

Ours ResNet-101 1464 9118 X 83.78
Fully Supervised ResNeSt-101 10582 - X 82.69

Ours ResNeSt-101 1464 9118 X 85.05

Table 1. Results on PASCAL VOC 2012 val set. F and W are
the numbers of fully labeled images and weakly labeled images,
respectively. “MS” denotes using multi-scale and left-right flipped
inputs at inference time.

Backbone F W mIoU
w/o priors ResNet-50 1464 9118 79.30
w/ priors ResNet-50 1464 9118 81.31

Table 2. Ablation study of our framework on PASCAL VOC 2012
val set with or without priors information.

masks and use mixed-dual-head training method to reduce
the negative effect of label noise. Some qualitative results
are presented in Figure 6.

4.4. Ablation studies

The effectiveness of priors. To verify the effect of priors
added to the input of AnnNet, we evaluate the performance
of our framework with or without priors. Without priors,
the input of AnnNet is the 3-channel RGB image. The ex-
periment results are shown in Table 2. With priors added to
the input of AnnNet, the performance of SegNet is signif-
icantly improved by 2.01%, implying that priors can make
AnnNet produce better pseudo masks which bring gains to
SegNet. Additional experiments about adding priors or not
are shown in supplemental material Section B.
Choice of mixing ratio r. We use r to control the mix-
ing ratio between fully labeled and weakly labeled images
in strong head. While keeping more fully labeled images
than weakly labeled ones in strong head, we vary the mix-
ing ratio r and show the results in Table 3. A relatively
high performance is obtained when r = 7 : 1, which is
the default value for subsequent experiments. In addition,
performance of our framework still outperforms the fully
supervised baseline (78.55%) when r = 5 : 3 or 6 : 2.

r Backbone F W mIoU
5:3 ResNet-50 1464 9118 80.22
6:2 ResNet-50 1464 9118 80.64
7:1 ResNet-50 1464 9118 81.31

Table 3. Ablation study of our framework on PASCAL VOC 2012
val set for different mixing ratio r.

The effectiveness of mixed-dual-head. To verify the ef-

fectiveness of proposed mixed-dual-head training method,
we conduct experiments with three kinds of training meth-
ods shown in Figure 5. The results are shown in Table 4. It
can be observed that both dual-head and mixed-dual-head
are significantly superior to single-head. This indicates that
the separate strong and weak prediction heads can improve
the performance by reducing the interference of label noise.
In addition, the performance of mixed-dual-head is slightly
higher than that of dual-head.

Backbone F W mIoU
single-head ResNet-50 1464 9118 78.96
dual-head ResNet-50 1464 9118 81.03

mixed-dual-head ResNet-50 1464 9118 81.31

Table 4. Ablation study of our framework on PASCAL VOC 2012
val set for different prediction head.

Backbone F W mIoU
dual-head ResNet-50 374 10235 78.95

mixed-dual-head ResNet-50 374 10235 77.99
dual-head ResNet-50 166 10416 73.32

mixed-dual-head ResNet-50 166 10416 76.88
dual-head ResNet-50 83 10499 67.07

mixed-dual-head ResNet-50 83 10499 76.62

Table 5. Ablation study of our framework on PASCAL VOC 2012
val set for varying numbers of fully labeled images.

Figure 7. The performance of dual-head and mixed-dual-head on
PASCAL VOC 2012 val set during training when F=83.

To further verify the superiority of mixed-dual-head, we
conduct experiments with fewer fully labeled images. As
shown in Table 5, when the number of fully labeled im-
ages decreases, the performance of dual-head degrades dra-
matically (78.95% → 73.32% → 67.07%). In comparison,
the performance drop of mixed-dual-head is much smaller
(77.99% → 76.88% → 76.62%). We also observe that the
performance of dual-head becomes unstable during training
when F = 83, as shown in Figure 7. It shows that the pro-
posed mixed-dual-head training method can improve train-
ing stability, especially when there are few fully labeled im-
ages. A better training stability means a better robustness of
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our framework, which can avoid the dramatic performance
degradation due to a decreasing number of fully labeled im-
ages.
Iterative training. Our framework can benefit from iter-
ative training. To verify this, we perform multiple rounds
of iterative training for AnnNet. At the end of each train-
ing round, the AnnNet predicts pseudo masks for weakly
labeled images, and the pseudo masks are then used as
supervision for AnnNet in the next training round. We
record the performance of SegNet in each round, and the re-
sults are shown in Table 6. The experiments are conducted
when F = 83. It can be observed that the performance
of our framework is further improved by iterative training.
Surprisingly, the performance of our framework after four
rounds of iterative training with only 83 fully labeled im-
ages even exceeds the fully supervised baseline (78.55%).
The visualization of some pseudo masks can be found in
supplemental material Section D.

Round Backbone F W mIoU
1 ResNet-50 83 10499 76.62
2 ResNet-50 83 10499 78.53
3 ResNet-50 83 10499 77.88
4 ResNet-50 83 10499 79.49

Table 6. Ablation study of our framework on PASCAL VOC 2012
val set for iterative training.

Backbone F W MS mIoU
ResNet-50 1464 9118 X 82.26
ResNet-50 1464 9118+94k X 83.94

ResNet-101 1464 9118 X 83.78
ResNet-101 1464 9118+94k X 85.16

ResNeSt-101 1464 9118 X 85.05
ResNeSt-101 1464 9118+94k X 86.10

Table 7. Ablation study of our framework on PASCAL VOC 2012
val set for fine-tuning on COCO dataset. “+94k” denotes using
extra images from COCO 2017. “MS” denotes using multi-scale
and left-right flipped inputs at inference time.

Fine-tuning with COCO dataset. To investigate the per-
formance gain of our framework when more weakly labeled
images are available, we perform fine-tuning experiments
with COCO [28] dataset. Specifically, we first follow the
same procedure as before to train the AnnNet and SegNet
for 60 epochs using 1464 fully labeled images and 9118
weakly labeled images from PASCAL VOC 2012 dataset.
We then use the trained AnnNet to predict pseudo masks
for around 94k images in COCO 2017 training set that con-
tain objects belonging to the 20 classes in PASCAL VOC
2012 dataset. The bounding box labels of these 94k images
are used to form the 5-channel input for AnnNet. The vi-
sualization of some pseudo masks of COCO dataset can be
found in Section F of the supplemental material. We can

see from the visualization results that the quality of pseudo
masks is quite impressive even in some complex scenarios,
which implies the effectiveness of position and class pri-
ors introduced in AnnNet. Finally, we fine-tune the trained
SegNet with 9118+94k images for 30 epochs. When fine-
tuning, the learning rate of SegNet is set to 0.001. As shown
in Table 7, the performance of our framework is further im-
proved with more weakly labeled images.

Method Backbone F W MS mIoU FS%
Self-correcting [18] Xception-65 1464 9118 X 82.33 101.38

Ours ResNet-50 1464 9118 X 82.26 103.62
Ours ResNet-101 1464 9118 X 83.78 103.83
Ours ResNeSt-101 1464 9118 X 85.05 102.80

BCM [34] ResNet-101 1464 9118 71.60 96.11
BoxSup [6] VGG-16 1464 9118 63.50 99.53

SDI [19] VGG-16 1464 9118 65.80 95.22
WSSL [31] VGG-16 1464 9118 65.10 96.30

Table 8. Comparison with other methods on PASCAL VOC 2012
val set. “MS” denotes using multi-scale and left-right flipped in-
puts at inference time.

4.5. Comparison with state-of-the-art

We compare our framework with state-of-the-art meth-
ods on PASCAL VOC 2012 dataset, as shown in Table 8.
We mainly compare our framework with Self-correcting
[18], which also uses fully labeled images and weakly la-
beled images with bounding box labels to perform semi-
supervised semantic segmentation. They use the same
DeepLabv3+ model as we do, but with Xception [5] as
backbone. Note that the performance of DeepLabv3+ with
Xception (81.21%) is better than that with ResNet-101
(80.22%), as reported in [4]. In the lower half of Table 8, we
record the performance of semi-supervised semantic seg-
mentation from some weakly supervised methods which
also use bounding boxes as weak labels. FS% denotes the
performance relative to the fully supervised counterpart. It
can be seen that the performance of both Self-correcting
and our framework exceeds the respective fully supervised
counterparts. Moreover, our framework achieves a new
state-of-the-art performance.

5. Conclution

We believe that improving the quality of pseudo masks
and reducing the interference of label noise are critical for
semi-supervised semantic segmentation. Based on this, we
design the position and class priors and propose mixed-
dual-head training method. Despite it is simple, experiment
results show that our proposed framework is effective and
stable. Exploration about how to further weaken the effect
of label noise while maximizing the utilization of weakly
labeled images, and extending our framework to instance
segmentation will be studied in our future work.
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Giró-i Nieto. Budget-aware Semi-Supervised Semantic and
Instance Segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Work-
shops 2019, Long Beach, CA, USA, June 16-20, 2019, pages
93–102. Computer Vision Foundation / IEEE, 2019.

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-Decoder with Atrous
Separable Convolution for Semantic Image Segmentation. In
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part VII, volume 11211 of Lecture Notes
in Computer Science, pages 833–851. Springer, 2018.

[5] François Chollet. Xception: Deep Learning with Depthwise
Separable Convolutions. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pages 1800–1807. IEEE
Computer Society, 2017.

[6] Jifeng Dai, Kaiming He, and Jian Sun. BoxSup: Exploiting
Bounding Boxes to Supervise Convolutional Networks for
Semantic Segmentation. In 2015 IEEE International Con-
ference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 1635–1643. IEEE Computer
Society, 2015.

[7] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, June 2009. ISSN: 1063-6919.

[8] Terrance DeVries and Graham W. Taylor. Improved Reg-
ularization of Convolutional Neural Networks with Cutout.
arXiv:1708.04552 [cs], Nov. 2017. arXiv: 1708.04552.

[9] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John Winn, and Andrew Zisserman. The Pascal
Visual Object Classes (VOC) Challenge. International Jour-
nal of Computer Vision, 88(2):303–338, 2010.

[10] Junsong Fan, Zhaoxiang Zhang, Tieniu Tan, Chunfeng Song,
and Jun Xiao. CIAN: Cross-Image Affinity Net for Weakly
Supervised Semantic Segmentation. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium

on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages
10762–10769. AAAI Press, 2020.

[11] Geoffrey French, Samuli Laine, Timo Aila, Michal Mack-
iewicz, and Graham D. Finlayson. Semi-supervised seman-
tic segmentation needs strong, varied perturbations. In 31st
British Machine Vision Conference 2020, BMVC 2020, Vir-
tual Event, UK, September 7-10, 2020. BMVA Press, 2020.

[12] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative Adversarial Nets. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.
Lawrence, and Kilian Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages 2672–
2680, 2014.

[13] Bharath Hariharan, Pablo Arbelaez, Lubomir D. Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours
from inverse detectors. In Dimitris N. Metaxas, Long Quan,
Alberto Sanfeliu, and Luc Van Gool, editors, IEEE In-
ternational Conference on Computer Vision, ICCV 2011,
Barcelona, Spain, November 6-13, 2011, pages 991–998.
IEEE Computer Society, 2011.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778. IEEE Computer Society, 2016.

[15] Qibin Hou, Peng-Tao Jiang, Yunchao Wei, and Ming-Ming
Cheng. Self-Erasing Network for Integral Object Atten-
tion. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
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Montréal, Canada, pages 547–557, 2018.

[16] Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu, and
Jingdong Wang. Weakly-Supervised Semantic Segmenta-
tion Network With Deep Seeded Region Growing. In 2018
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 7014–7023. IEEE Computer Society, 2018.

[17] Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu Lin,
and Ming-Hsuan Yang. Adversarial Learning for Semi-
supervised Semantic Segmentation. In British Machine Vi-
sion Conference 2018, BMVC 2018, Newcastle, UK, Septem-
ber 3-6, 2018, page 65. BMVA Press, 2018.

[18] Mostafa S. Ibrahim, Arash Vahdat, Mani Ranjbar, and
William G. Macready. Semi-Supervised Semantic Image
Segmentation With Self-Correcting Networks. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 12712–12722. IEEE, 2020.

[19] Anna Khoreva, Rodrigo Benenson, Jan Hendrik Hosang,
Matthias Hein, and Bernt Schiele. Simple Does It: Weakly
Supervised Instance and Semantic Segmentation. In 2017

1106



IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 1665–1674. IEEE Computer Society, 2017.

[20] Jongmok Kim, Jooyoung Jang, and Hyunwoo Park. Struc-
tured Consistency Loss for semi-supervised semantic seg-
mentation. arXiv:2001.04647 [cs], Jan. 2020. arXiv:
2001.04647.

[21] Alexander Kolesnikov and Christoph H. Lampert. Seed, Ex-
pand and Constrain: Three Principles for Weakly-Supervised
Image Segmentation. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part IV, volume
9908 of Lecture Notes in Computer Science, pages 695–711.
Springer, 2016.
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