
Multi-level Attentive Adversarial Learning with Temporal Dilation for
Unsupervised Video Domain Adaptation

Peipeng Chen∗, Yuan Gao∗, Andy J. Ma∗†B
∗School of Computer Science and Engineering, Sun Yat-sen University, China.

†Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China
chenpp7@mail2.sysu.edu.cn, gaoy266@mail2.sysu.edu.cn, majh8@mail.sysu.edu.cn

Abstract

Most existing works on unsupervised video domain
adaptation attempt to mitigate the distribution gap across
domains in frame and video levels. Such two-level distri-
bution alignment approach may suffer from the problems
of insufficient alignment for complex video data and mis-
alignment along the temporal dimension. To address these
issues, we develop a novel framework of Multi-level Atten-
tive Adversarial Learning with Temporal Dilation (MA2L-
TD). Given frame-level features as input, multi-level tem-
poral features are generated and multiple domain discrim-
inators are individually trained by adversarial learning for
them. For better distribution alignment, level-wise attention
weights are calculated by the degree of domain confusion in
each level. To mitigate the negative effect of misalignment,
features are aggregated with the attention mechanism deter-
mined by individual domain discriminators. Moreover, tem-
poral dilation is designed for sequential non-repeatability
to balance the computational efficiency and the possible
number of levels. Extensive experimental results show that
our proposed method outperforms the state of the art on
four benchmark datasets.1

1. Introduction
As one of the most important multimedia modalities,

video data increases rapidly in recent years. Video analysis
has become one of the most active research areas due to its
wide range of applications including video retrieval [5], un-
derstanding [32], recommendation [37], etc. Inspired by the
progress in deep convolutional neural networks designed for
image classification [9, 12, 27], many deep architectures
[6, 24, 29] have been developed for video action classifi-
cation by taking temporal cues into account. There are two
major factors for the success of recent works: (i) the data
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1Source code: https://github.com/justchenpp/MA2L-TD

fitting capacity of deep learning models with practical opti-
mization techniques, and (ii) large-scale annotated datasets
for training. Nevertheless, it is very expensive and time-
consuming to manually annotate not only the action labels
but also the start/end times of the actions for video data.
To reduce the cost of manual annotations, classifiers trained
by the available labelled data (source domain) can be em-
ployed for the testing environment (target domain). Despite
the simplicity of such an approach, the classification per-
formance probably drops due to the distribution mismatch
across domains caused by the domain gap (e.g., changes of
background, illumination, camera pose, and so on).

To address this issue, unsupervised domain adaptation
(UDA) [7, 21, 23, 34] has been proposed, in which a set
of labelled data in the source domain and a set of unla-
belled data in the target domain are available for train-
ing. Though many UDA methods have achieved convinc-
ing results for image-based recognition tasks, they have
not yet fully utilized temporal cues (which play an impor-
tant role in understanding video data) for distribution align-
ment. To make use of temporal cues for domain discrep-
ancy minimization, unsupervised video domain adaptation
techniques [3, 18, 20] have been developed.

Though existing methods have advanced the task of un-
supervised video domain adaptation, two limitations remain
unsolved, as shown Fig. 1a. First, existing methods align
distributions across domains in only frame and video lev-
els. Due to the high complexity of video data, such two-
level alignment methods may not guarantee that source and
target distributions are sufficiently close. Second, it may be
misleading to use only one domain discriminator for frame-
level distribution alignment because the difference between
temporal features in different time slots may be regarded as
the domain gap and wrongly aligned.

To tackle the above-mentioned problems in existing
methods, we develop a novel framework namely Multi-
level Attentive Adversarial Learning with Temporal Di-
lation (MA2L-TD) for unsupervised video domain adap-
tation. The main idea of the proposed method is shown

1259



Low Level Middle Levels High Level
Low Level High Level

(a) Existing method (b) Ours

Distribution Alignment

Figure 1. Main ideas of (a) existing method and (b) our proposed method. (a) The existing approach aligns features in only two levels, i.e.
low level (frame) and high level (video), which may suffer from the problem of insufficient alignment due to the high complexity of video
data. Moreover, frames may be misaligned at different time slots (blue arrows) by training only one domain discriminator (orange box)
for low-level distribution alignment. (b) Our proposed method performs multi-level alignments from low level (frame), to middle levels
(segment), and high level (video). Multiple domain discriminators (orange boxes) are trained with respect to different time-slots and levels
(not shared even in the same level). Different attention weights (grey arrows) are assigned to each level for better distribution alignment.
For feature aggregation, misaligned video segments are with smaller attention weights (yellow arrows).

in Fig. 1b. We propose to train multiple domain discrim-
inators with respect to different time-slots and levels (not
shared even in the same level) instead of only a shared one.
For better distribution alignment, domain discriminators in
different levels are weighted by the attention mechanism
in adversarial training. The level-wise attention weights
are computed by the degree of domain confusion in each
level. To obtain multi-level temporal features, smaller atten-
tion weights determined by corresponding domain discrim-
inators (not shared) are assigned to misaligned video seg-
ments for feature aggregation. At the same time, features
are aggregated with temporal dilation for sequential non-
repeatability to balance the computational efficiency and the
possible number of levels.

Major contributions of this work are summerized as fol-
lows:

• We develop a novel framework of Multi-level Atten-
tive Adversarial Learning with Temporal Dilation
(MA2L-TD) for cross-domain action classification.

• We propose a multi-level attentive adversarial learn-
ing method for better distribution alignment. Atten-
tion weights in different levels are determined by the
degree of domain confusion in each level.

• A new attentive temporally-dilated feature aggregation
module is designed to generate multi-level temporal

features, which mitigates the negative effect of mis-
alignment and balances the computational efficiency
and the possible number of levels.

• Extensive experiments show that our proposed method
outperforms the state of the art on four benchmark
datasets for unsupervised video domain adaptation.

2. Related work

2.1. Video Action Classification

Video action classification is more challenging than im-
age recognition because of the higher complexity of video
data. There are two widely used approaches to learn video
representation for performance improvement by temporal
cues. The first one is to use 2D convolution neural net-
works to model temporal relation. Based on the long-range
temporal structure model, the temporal segment network
(TSN) [30] utilize 2D convolution network in the spatial and
temporal dimension respectively. Then, spatial and tempo-
ral features are combined to obtain the video-level represen-
tation. In [38], the temporal relation network (TRN) gener-
ates video-level feature vectors through temporal transfor-
mations and dependencies of frames in different time scales.
Karen et al. [24] use RGB and optical flow to model spatial
and temporal relations by 2D convolution neural network.
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The second approach is based on 3D convolution neural
networks. In the C3D [29], the 2D convolution kernel is in-
flated to 3D, such that the spatial and temporal information
can be exploited simultaneously. The other representative
method I3D [2] extends the idea of the two-stream network
by using 3D convolutional kernels on RGB and optical flow.

2.2. Image-based Domain Adaptation

Domain adaptation aims to learn the knowledge from
source domain and apply them to the target domain with-
out serious performance degradation. To reduce the dis-
tribution mismatch, existing works attempt to align data
distributions across domains for learning domain-invariant
representations [15, 8, 16, 35, 36]. In the deep adapta-
tion network (DAN) [15], transferable features are learned
by minimizing the Maximum Mean Discrepancy (MMD)
for distribution alignment. To match higher-order statistics
across domains, Zellinge et al. [35] propose to a new dis-
tance function namely central moment discrepancy (CMD)
for domain-invariant feature learning. Different from the
moments-based approach, domain-adversarial neural net-
work (DANN) [8] and conditional domain adversarial net-
works (CDANs) [16] learn a feature generator to deceive
the domain discriminator. They extract discriminative fea-
tures invariant from different domains by reversing gradi-
ents, where the gradient reversal layer (GRL) is optimized
for the generator and discriminator simultaneously.

2.3. Unsupervised Video Domain Adaptation

Despite the great progress in image-based domain adap-
tation, there are less studies about the problem of unsuper-
vised video domain adaptation. In [33, 28], this problem
is addressed by using shallow learning methods. Collec-
tive matrix factorization or principal component analysis is
utilized to learn the common latent semantic space for the
source and target domain. With the success of deep neural
networks for image applications, recent works [3, 20, 18]
are proposed based on the development of general video ac-
tion classification. The temporal attentive adversarial adap-
tation network (TA3N) [3] aligns temporal relation features
with attention computed by domain discrepancy. With the
information of the temporal order and importance of video
segments, (some of them may be irrelevant to the action,
e.g., background frames), the temporal co-attention network
(TCoN) [20] focuses on key segments shared by both do-
mains for better alignment of temporal features. Instead of
extracting domain-invariant representations, the frame-level
and video-level bipartite graphs are used to model the rela-
tion between source-domain and target-domain features for
recognizing domain-agnostic features in the adversarial bi-
partite graph (ABG) learning [18]. Nevertheless, existing
methods may still suffer from the problems of feature mis-
match between different time slots and insufficient distribu-
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Figure 2. Network overview of the proposed method.

tion alignment in only two levels, i.e., frame (or segment)
and video levels.

3. Method

In this section, we first give the problem definitions and
network overview of the proposed Multi-level Attentive
Adversarial Learning with Temporal Dilation (MA2L-
TD) (Section 3.1). The overall framework of the multi-level
attentive adversarial learning is introduced in Section 3.2.
Finally, Section 3.3 presents the attentive temporally-dilated
aggregation module to obtain multi-level temporal features.

3.1. Definitions and Network Overview

The network overview of our proposed method is shown
in Fig. 2. Suppose there are ns labelled videos in the source
domain and nt unlabelled videos in the target domain. Dur-
ing training and testing, each video is divided into k seg-
ments with the same length and one frame in each seg-
ment is randomly sampled. For the jth frame of the ith
(or i′th) video with k frames in the source (or target) do-
main, 2D convolutional backbone (e.g. ResNet) is used to
extract the general-purpose feature vector fs

ij (or f t
i′j). De-

note the source and target data as Ds = {(F s
i , y

s
i )}

ns
i=1 and

Dt = {(F t
i′)}

nt

i′=1, where ysi is the label of the source do-
main data, F s

i = {fs
ij}kj=1 and F t

i′ = {f t
i′j}kj=1 are the fea-

ture matrices in the source and target domain, respectively.
The objective of this work is to train a task-driven fea-

ture extractor by using multi-layer perceptron (MLP) for
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Figure 3. Framework of the proposed multi-level attentive adversarial learning. An individual domain discriminator Dm
j (not shared even

in the same level) is adversarially trained for each feature vector fm
j in time slot j of the mth level. The attention weight lm determined

by the degree of domain confusion is assigned to the mth level for distribution alignment. For attentive temporally-dilated aggregation, the
kernel size is set as 3 for illustration. The dark/light and blue/gray colors refer to the temporal dilation operation. For example, in the 3rd
level, the dark gray f2

1 , f
2
4 , f

2
7 are aggregated to obtain f3

1 . Details of the aggregation module (blue block) can be referred to Fig. 4.

distribution alignment of video data. For convenience but
without loss of generality, the task-driven feature vectors
are denoted by fs

ij and f t
i′j (the same as the general-purpose

feature vectors). During training, the task-driven feature
vectors are fed into both the classification and adaptation
branches for optimization. For testing, only the classifica-
tion branch is used.

In the classification branch, a classifier C is trained by
minimizing the following loss functions of cross entropy
Ls and soft entropy Lt for the source and target data re-
spectively, i.e.,

Ls = − 1

ns

ns∑
i=1

ysi log C(F s
i ). (1)

Lt = − 1

nt

nt∑
i′=1

C(F t
i′)log C(F t

i′). (2)

For the adaptation branch, the distributions of task-driven
feature vectors across domains are aligned by adversarial
learning with the gradient reversal layer. The design of

the adaptation branch includes multi-level attentive adver-
sarial learning and attentive temporally-dilated aggregation,
which will be detailed in Section 3.2 and Section 3.3, re-
spectively.

3.2. Multi-level Attentive Adversarial Learning

The proposed adaptation branch of multi-level attentive
adversarial learning is illustrated in Fig. 3. The input to
this branch is the set of the task-driven feature vectors of a
video in the source (or target) domain, i.e., fs

ij (or f t
i′j), j =

1, · · · , k. They can be considered as the 1st-level features
along the temporal dimension and denoted as f1

1 , · · · , f1
k .

To obtain higher-level temporal features, we propose an at-
tentive feature aggregation module with details elaborated
in Section 3.3. Let the feature vector of the mth level in
certain time slot j be fm

j . For larger m (higher level), fm
j is

corresponding to a longer video segment, while smaller m
(lower level) means shorter segments.

For better distributions alignment across domains, a do-
main discriminator Dm

j is adversarially trained for each
time slot j and each level m. The loss function defined for
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the mth level is given as follows,

Lm =
∑
j

Lb(D
m
j (fm

j ), d). (3)

where d is the domain label for the input video clip and Lb

is the binary entropy loss. By combining loss functions of
multiple levels, the overall loss is defined as follows,

Ladv =
∑
m

Lm. (4)

For some videos, features can be better aligned in lower
levels (short segments), while it is easier to align higher-
level features (longer segments) for others. Therefore, we
assign different weights to features in different levels and
determine their importance by the attention mechanism (as
shown in the rightmost column of Fig. 3). For this purpose,
average pooling is used to attain the video presentation Fm

in the mth level, i.e.,

Fm = average pooling(fm
1 , fm

2 , ..., fm
km

). (5)

where km is the number of feature vectors in the mth level,
such that k = k1 ≥ k2 ≥ · · · ≥ kM = 1. To compute the
attention weight lm of the mth level, a domain discriminator
Dm is learned by calculating the degree of domain confu-
sion based on Fm (without back propagation for adversarial
training). Then, the attention weight lm is measured by the
binary entropy loss of classifying Fm to the corresponding
domain d, i.e.,

lm = Lb(Dm(Fm), d). (6)

By eq. (6), the attention weight lm is larger if Fm is more
difficult be classified correctly by the domain discriminator
Dm. This means the domain gap is smaller in the mth level
so that larger weight is assigned.

Before integrating the attention mechanism into the
multi-level loss function, the weights are normalized, i.e.,

ωm =
lm∑

m
lm

. (7)

With the normalized attention weights, the multi-level
loss (4) becomes,

Ladv =
∑
m

ωmLm. (8)

By combining eqs. (1) (2) (8), the optimization problem of
our proposed method is given as follows,

min
θd

Ladv,

min
θc,θa,θmlp

Ls + Lt − Ladv.
(9)

where θc, θd, θa, and θmlp respectively denote the learnable
parameters of the action classifier C, domain discriminators
Dm

j , feature aggregation modules Am
j (with details in Sec-

tion 3.3) and task-driven feature extractor based on MLP.

+
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Figure 4. Attentive temporally-dilated aggregation: For illustra-
tion, the kernel size of the dilated convolution is set as 3 with the
dilation rate dm in the mth level.

3.3. Attentive Temporally-Dilated Aggregation

The proposed attentive temporally-dilated aggregation
module is illustrated in Fig. 4. Different from dense feature
aggregation which is computationally intensive, the tempo-
ral dilation operation can greatly reduce the computational
complexity. Denote the dilation rate in the mth level as dm
and the size of the convolutional kernel as q. The input to
the aggregation module Am

j is the set of feature vectors in
the mth level, i.e., Sm

j = {fm
j , fm

j+dm
, · · · , fm

j+(q−1)dm
}.

The output to Am
j is fm+1

j in the (m+1)th level. As shown
in Fig. 4, the aggregation module Am

j is composed of an at-
tention pool layer (left-hand side) and one-dimension resid-
ual convolution operation Hm

j (right-hand side), i.e.,

fm+1
j = Am

j (Sm
j ) = AttPool(Sm

j ) +Hm
j (Sm

j ). (10)

The dilation rate dm is an important parameter to control
the size of temporal features in multiple levels. For a fixed
number of temporal features in the 1st level k1, if dm is too
small, the model complexity will become intractable with
a large number of levels and feature vectors in each layer.
On the other hand, if dm is too large, the number of levels
will become small so that features across domains cannot be
aligned sufficiently. As shown in Fig. 3, we set d1 = 1 to
aggregate successive temporal features in the 1st level to ob-
tain temporal features in the 2nd level. For m ≥ 2, dm is set
as the smallest number to ensure that feature vectors in the
(m − 1)th level are not repeatedly used in sequential order
to obtain fm+1

j . According to eq. (10), fm+1
j is computed

by fm
j+sdm

∈ Sm
j , s = 0, · · · , q − 1. The mth-level fea-

ture vector fm
j+sdm

is generated by fm−1
j+sdm

, fm−1
j+sdm+dm−1

,
· · · , fm−1

j+sdm+(q−1)dm−1
in the (m − 1)th level. Therefore,
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Table 1. Statistics of the four benchmark datasets

Dataset U −O U −Hsmall U −Hfull K −G

Video Length < 39 s < 21 s < 33 s < 10 s
Class Number 6 5 12 30
Total Number 1145 1171 3209 49998

Training Number U(601) O(250) U(482) H(350) U(1438) H(840) K(43378) G(2625)
Testing Number U(240) O(54) U(189) H(150) U(571) H(360) K(3246) G(749)

we set dm = (q − 1)dm−1 + 1 as the smallest number for
sequential non-repeatability.

On the other hand, some fm
j+sdm

∈ Sm
j (correspond-

ing to a video segment in a certain time slot) is probably
misaligned along the temporal dimension between different
videos. To mitigate the negative influence caused by the
misalignment, attention weights are assigned to fm

j+sdm
to

determine their importance for aggregation. For this pur-
pose, the domain discriminator Dm

j+sdm
is used to calculate

the binary entropy loss of classifying fm
j+sdm

to the corre-
spond domain as the attention weight ℓmj+sdm

, i.e.,

ℓmj+sdm
= Lb(D

m
j+sdm

(fm
j+sdm

), d). (11)

Similar to eq. (6), eq. (11) means that the domain gap is
smaller if the attention weight ℓmj+sdm

is larger. By nor-
malizing the attention weights and substituting them into
eq. (10), the proposed attentive temporally-dilated aggrega-
tion becomes,

fm+1
j = Hm

j (Sm
j ) +

q−1∑
s=0

wm
j+sdm

fm
j+sdm

,

wm
j+sdm

= ℓmj+sdm

/q−1∑
s=0

ℓmj+sdm
.

(12)

4. Experiment
4.1. Datasets

We compare our proposed method with the state of the
art on four benchmarks. 1) UCF − Olympic: There
are 6 common classes from both the UCF101 [25] and
Olympic Sports dataset [19]. With totally 1,145 videos,
601 and 240 videos are used for training and testing re-
spectively in the UCF101, while there are 250 and 54
videos in Olympic Sport for training and testing respec-
tively. 2) UCF101−HMDB51small [31]: The intersec-
tion subset of UCF101 [25] and HMDB51 dataset [13] has
5 classes and 1171 videos. There are 482 training videos
and 189 testing videos in the UCF. In HMDB, 350 and
150 videos are used for training and testing respectively.
3) UCF101−HMDB51full [3]: The intersection subset
of UCF101 [25] and HMDB51 dataset [13] has 12 classes
and 3,209 videos. There are 1,438 training videos and

571 testing videos in the UCF. In HMDB, 850 and 350
videos are used for training and testing respectively. 4)
Kinetics−Gameplay [1, 3, 11]: It has 30 classes and
49,998 videos. There are 43,378 training videos and 3,246
testing videos in the Kinetics. In Gameplay, 2,625 and 749
videos are used for training and testing respectively. The
statistics information of the four benchmark datasets are
shown in Table 1.

4.2. Implementation Details

Our proposed method is implemented in the PyTorch
framework and the source code is released here. For fair
comparison with other methods, the backbone convolu-
tional network is the Resnet101 [9] pretrained on Ima-
geNet [4]. The sampling strategy is to divide each video
into k segments and then randomly sample one frame
from each segment. The kernel size in the attentive
temporally-dilated aggregation is set as 3 in all experi-
ments unless otherwise stated. In the UCF −Olympic and
UCF101−HMDB51small dataset, the batch size is 32
and 23 frames are sampled from each video with the num-
ber of levels equal to 4. In the UCF101−HMDB51full
dataset, the batch size is 32 and 53 frames are sampled
from each video with the number of levels equal 5. In the
Kinetics−Gameplay dataset, the batch size is 64 and 23
frames are sampled from each video with the number of lev-
els equal to 4. In all the experiments, we use Adam as the
optimizer and the learning rate is initiated as 3 x 10−4 and
decays when the epoch increases.

4.3. Comparison with Other Methods

In this section, we first compare our proposed method
of multi-level attentive adversarial learning with temporal
dilation (MA2L-TD) with existing works. The comparison
results on the small datasets UCF101−HMDB51small

and UCF − Olympic are shown in Table 2. Source only
means that the backbone network is trained only in the
source domain and tested in target domain. From these
results, we can see that our proposed method outperforms
state-of-the-art methods on the two benchmark datasets. On
the task of UCF → Olympic, our method achieves 100%
accuracy and is better then other methods by a margin of
1.85% (from 98.15% to 100%). On the two larger bench-
mark datasets UCF101−HMDB51full and Kinetics−
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Table 2. Classification accuracy (%) on benchmark datasets: UCF −Olympic and UCF101−HMDB51small

Method Backbone U → O O → U U → H H → U

Source only TSN 80.00 76.67 - 82.10
Source only C3D 82.13 83.16 - -

W.Sultani et al. [26] - 33.33 47.91 68.70 68.67
Many-to-one [33] action bank 87.00 75.00 82.00 82.00
AMLS(SA) [10] C3D 84.65 86.44 89.53 95.36

AMLS(GFK) [10] C3D 83.92 86.07 90.25 94.40
DAAA [10] TSN 88.37 86.25 - 88.36
DAAA [10] C3D 91.60 89.96 - -
TcoN [20] TSN 93.91 91.65 - 93.01
TA3N [3] ResNet-101 98.15 92.92 99.33 99.47
ABG [18] ResNet-101 98.15 92.50 99.33 98.41

Ours ResNet-101 100 94.72 99.33 99.47

Table 3. Classification accuracy (%) on benchmark dataset: UCF101−HMDB51full and Kinetics−Gameplay

Method UCF101 → HMDB51 HMDB51 → UCF101 Gameplay → Kinetics

DANN [8] 75.28 76.36 20.56
JAN [17] 74.72 79.69 18.16

AdaBN [14] 72.22 77.41 20.29
MCD [22] 73.89 79.34 19.76
TA3N [3] 78.33 81.79 27.50
ABG [18] 79.19 85.11 27.89

Source only 76.39 78.11 17.56
Ours 85.00 86.59 31.45

Figure 5. The confusion matrix (%) of our proposed method on
benchmark dataset: UCF101 → HMDB51full.

Gameplay, results reported in Table 3 compare our pro-
posed method with the state of the art by using the same
backbone of ResNet101. From these results, we can see that
our proposed method achieves a large margin (5.81%) of
improvement on the task of UCF101 → HMDB51full.

To evaluate the per-class recognition performance, the con-
fusion matrix on UCF101 → HMDB51full dataset is
shown in Fig. 5.

4.4. Ablation Experiment

To investigate the effectiveness of the components in
our proposed method, ablation experiments are performed
on the HMDB51− UCF101full dataset. The classifi-
cation accuracy is shown in the Tabel 4. The proposed
MA2L-TD w/o individual domain discriminators in each
level means that only one shared discriminator is trained
for each level. Without distribution alignment in different
time slots, the classification accuracy decreases by 3.43%
and 4.35% on the tasks of the UCF101 → HMDB51
and HMDB51 → UCF101, respectively. This convinces
that distributions can be better aligned by training individual
domain discriminators with respect to different time slots.
MA2L-TD w/o multi-level alignment means that only the
frame- and video-level features are aligned. For this exper-
iment, the classification accuracy decreases by 2.59% and
3.81% in the two tasks. These results show that alignments
of middle-level features can help for performance improve-
ment. MA2L-TD w/o level-wise attention means that ev-
ery level has the same weight. Without level-wise atten-
tion, the classification accuracy decreases by 0.89% and
0.95% respectively, which verifies the usefulness of the at-
tention mechanism in each level. MA2L-TD w/o attentive
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Table 4. Classification accuracy (%) of the ablation study on benchmark dataset: UCF101−HMDB51full

Method UCF101 → HMDB51 HMDB51 → UCF101

MA2L-TD w/o individual domain discriminators in each level 81.57 82.24
MA2L-TD w/o multi-level alignment 82.41 82.78
MA2L-TD w/o level-wise attention 84.11 85.64

MA2L-TD w/o attentive temporally-dilated aggregation 81.67 82.39
MA2L-TD 85.00 86.59

TA3NDANN ABG Ours

Figure 6. The t-SNE visualization of source and target domain features on the task: UCF101 → HMDB51full.

Table 5. Classification accuracy (%) with different number of level
and kernel size on the task: UCF101 → HMDB51full

kernel
level

3 4 5

2 80.83 82.50 82.78
3 81.67 84.13 85.00
4 83.61 84.44 -

temporally-dilated aggregation means that average pooling
is used instead for feature aggregation. With simple average
pooling, the classification accuracy decreases by 3.33% and
4.20% in the two tasks. These results validate the effective-
ness of the attentive temporally-dilated aggregation module.
These ablation experiments show that all the components of
our proposed method can help to improve the performance
for cross-domain action recognition.

4.5. Parameter Sensitivity

To study the hyperparameters of kernel size and level
number, experiments in the UCF101 → HMDB51full
task are conducted. Results with varying number of kernel
size and levels are shown in Table 5. The accuracy is 82.50
when the kernel size is 2 and the number level is 4 with
7 sampled frames. For both kernel size and level number
equal to 3 with 9 sampled frames, the accuracy is 81.67.
These results show that larger number of levels can help to
achieve higher accuracy. Besides, all the results in Table 5
still outperform TA3N [3] and ABG [18]. This indicates
that our method can robustly improve the performance with
respect to different numbers of kernel size and level.

4.6. t-SNE Visualization

For visualization comparison, the t-SNE results of
DANN, TA3N, ABG and our method are shown in Fig. 6.
In this figure, features in the last layer are used to generate
the low-dimensional embeddings. Different colors stand for
different classes, circle and cross represent the source and
target domain respectively. From these results, we can see
that features of the same class can be better clustered to-
gether while features of different classes are farther away
by using our method.

5. Conclusion

In this work, we develop a novel framework namely
Multi-level Attentive Adversarial Learning with Temporal
Dilation (MA2L-TD) for unsupervised video domain adap-
tation. In our method, multiple domain discriminators are
trained for multi-level temporal features with the level-wise
attention for better distribution alignment. To mitigate the
negative effect of misalignment along the temporal dimen-
sion, features are aggregated by the attentive temporally-
dilated aggregation module, which can balance the compu-
tational efficiency and the possible number of levels. Ex-
tensive experiments on the four benchmark datasets show
that our proposed method outperforms the state of the art
for cross-domain action recognition.
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