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Abstract

Practical object pose estimation demands robustness
against occlusions to the target object. State-of-the-art
(SOTA) object pose estimators take a two-stage approach,
where the first stage predicts 2D landmarks using a deep
network and the second stage solves for 6DOF pose from
2D-3D correspondences. Albeit widely adopted, such
two-stage approaches could suffer from novel occlusions
when generalising and weak landmark coherence due to
disrupted features. To address these issues, we develop
a novel occlude-and-blackout batch augmentation tech-
nique to learn occlusion-robust deep features, and a multi-
precision supervision architecture to encourage holistic
pose representation learning for accurate and coherent
landmark predictions. We perform careful ablation tests
to verify the impact of our innovations and compare our
method to SOTA pose estimators. Without the need of any
post-processing or refinement, our method exhibits superior
performance on the LINEMOD dataset. On the YCB-Video
dataset our method outperforms all non-refinement meth-
ods in terms of the ADD(-S) metric. We also demonstrate
the high data-efficiency of our method. Our code is avail-
able at http://github.com/BoChenYS/ROPE

1. Introduction
Object pose estimation is the task of inferring the relative

orientation and position between the target object and the
observer. Such inference is crucial in many vision applica-
tions such as robotic manipulation [67, 66, 11], augmented
reality [39, 12], autonomous driving [10, 61, 63] and space-
craft navigation [6, 49]. The problem can be simplified if
depth information is available [40, 58, 17, 9]. However,
depth sensors are not always practical. Pose estimation
from images is thus an important research problem.

In this paper we consider the problem of object pose esti-
mation from a single RGB image. Our focus lies in the base
estimator, i.e., from input image to the output pose, before
any refinement step. For the base estimator, a number of
works [27, 62, 45, 13] adopt direct regression approaches

Figure 1. Qualitative results of our robust object pose estimation
on the Occluded-LINEMOD (top and middle) and the YCB-Video
(bottom) datasets. Left: prediction of bounding boxes and land-
marks of the target object in a test image (zoomed view). Right:
prediction of 6DOF poses without post-processing or refinement.

which map the input image that contains the target object
to its 6 DOF pose. However, such approaches tend to be
sensitive to occlusions and are observed to be similar to per-
forming image retrieval [48].

Rather than directly regressing the pose, two-stage ap-
proaches [23, 25, 35, 41, 42, 44, 46, 64, 51, 43, 57] first pre-
dict landmarks on the object to establish 2D-3D correspon-
dences, then use a Perspective-n-Point (PnP) like algorithm
to solve for the pose. Previous results suggest that two-
stage methods are generally more accurate [41, 22]. Their
strengths derive from training the model with richer super-
vision signals (i.e., groundtruth landmarks) rather than just
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the pose, and injecting tolerance towards inaccurate land-
mark predictions by robust PnP.

However, two-stage approaches are not intrinsically im-
mune to occlusion. Current works to improve robustness of-
ten take the pixel-wise or patch-wise approach [44, 41, 23,
25, 35, 42], i.e., generating an ensemble of predictions from
each image pixel or patch, and aggregate them to obtain a
more robust final prediction. Although ensembling can mit-
igate some occlusion-induced inaccuracies, landmark co-
herence are easily disrupted by large and novel occlusions,
because the network predicts landmarks independently and
consistency is only imposed by the PnP algorithm, which is
not part of the network [22].

In this paper, we aim to address the shortcomings of cur-
rent two-stage approaches. Firstly, we enforce occlusion-
robust feature learning to enable models to deal with novel
and severe occlusions. Secondly, a good pose representa-
tion should produce landmarks that are consistent to the ob-
ject shape, rather than predicting individual landmarks inde-
pendently. To this end, during model training we encourage
a holistic pose representation learning in order to strengthen
the connections between landmark predictions and enhance
their coherence.

Our contributions We propose the Robust Object Pose
Estimation (ROPE) framework which achieves excellent ro-
bustness against occlusions without the need of pose refine-
ment. As shown in Figure 1, our model predicts landmarks
and pose robustly without any post-processing.

To enforce occlusion-robust feature learning, we com-
bine hide-and-seek [50], random erasing [65] and batch
augmentation [21] and propose a occlude-and-blackout
batch augmentation technique for model training. To en-
courage the model to learn holistic pose representations, we
propose a multi-precision supervision architecture, which
boosts the model’s ability to extrapolate occluded object
parts, leading to spatially more accurate and structurally
more coherent landmark predictions. To alleviate the need
for pose refinement we further utilise the multi-precision
supervision architecture to filter landmark predictions with
a simple verification step.

We conduct extensive experiments to verify the effi-
cacy of the proposed techniques, and compare our method
to SOTA object pose estimators. In terms of the ADD(-
S) metirc, our method outperforms all contestants on
LINEMOD [19] and all non-refinement methods on YCB-
Video [62]. Without any refinement, it is also competitive to
SOTA methods that includes a refinement step. Compared
to methods that relies on large amount of synthetic training
images, we show that ROPE is highly data-efficient.

2. Related works

Traditional object pose estimation methods [15, 18, 24,
19, 31, 37] rely on hand-crafted features or template match-
ing techniques, which are susceptible to occlusions or other
appearance change. Recent advancements of deep learning
has nurtured a lot of learning-based methods. We briefly
survey a few prominent works from one-stage, two-stage
and other methods.

PoseNet [28] was a pioneer work on using a deep model
to directly regress the 6DOF from an image. Although
it was proposed for camera localisation rather than object
pose estimation, its principle applies to both tasks. SSD-
6D [27] combines an SSD detector [36] and a pose regressor
in a single network. RenderForCNN [53] uses an image ren-
derer to synthesize training images as well as groundtruth
pose for training a pose regressor.

Compared to one-stage approaches, two-stage methods
typically predicts intermediate features in the first stage, and
then solve for the pose in the second stage. This mecha-
nism receives more attention because its intermediate fea-
ture learning facilitates more potential improvements. For
example, Tekin et al. [57] apply the YOLO object detec-
tor [47] in the first stage to predict object landmarks. Hu et
al. [23] predict landmark locations for each small patch of
the input image. They then aggregate all patch predictions
to establish 2D-3D correspondences for solving the pose.
Oberweger et al. [41] on the other hand, only use patches
of images to train the landmark predictor. The idea is that
at least some patches are not corrupted by the occluder and
they could produce accurate landmark heatmaps. The en-
semble of heatmaps predicted from many patches are com-
bined to obtain final landmarks. PVNet [44] predicts the ob-
ject mask and, for each pixel within the mask, unit vectors
that points to the landmarks. It then utilises a generalised
Hough voting scheme [2] to determine the distribution of
the landmarks.

There are other notable works tackling object pose esti-
mation from different perspectives. Sundermeyer et al. [56,
55] use autoencoders to learn implicit pose representations
by reconstructing the input objects. Cai and Reid [5] pro-
pose a 3D model-free pose estimator via 2D-3D mapping.
To make two-stage methods into a single stage pipeline, Hu
et al. [22] and Wang et al. [59] propose deep architectures to
replace the PnP algorithm in the second stage, while Chen
et al. [8] propose a differentiable PnP method to achieve
end-to-end learning.

3. The ROPE framework

We focus on the problem of 6DOF object pose estima-
tion from a single RGB image. Given an image I and a
known 3D point cloud {zi}ni=1 of the target object, we first
predict a set of 2D landmarks {xi}ni=1 in I that correspond
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Figure 2. Illustration of an occlude-and-blackout augmented example and the architecture of our heatmap prediction network. For clarity,
the backbone and the RPN are represented in the RoI Align module, other modules in the Mask R-CNN framework such as the box head,
as well as relevant losses, are not shown. Our model replaces the original mask head with three keypoint heads.

to the point cloud, then solve the pose y via a RANSAC-
based PnP solver from filtered 2D-3D correspondences.

3.1. Robust landmark prediction

Our 2D landmark prediction is based on the Mask R-
CNN [16] framework. The specific architecture and train-
ing scheme are shown in Figure 2. A basic improve-
ment is substituting the original backbone network with
HRNet [54, 60] to exploit its high-resolution feature maps
which preserve rich semantic information and increase spa-
tial accuracy. Next, we describe two key innovations to
boost occlusion invariance and landmark coherence.

3.1.1 Occlude-and-blackout batch augmentation

Fundamentally, pose estimation for the typical 3D object
will suffer from the problem of self-occlusion. Landmarks
that are at the opposite side of the object would be hard
to predict since their visual features are hidden. In fact, a
practical pose estimator must also contend with additional
occlusions due to, e.g., other objects or scene elements that
further conceal part of the target object from view. It is thus
important that the landmark predictor infers the robust pose
information from potentially different kinds occlusions im-
posed on the object.

Inspired by the ideas of random erasing [65], hide-
and-seek [50], and batch augmentation [21] (all not origi-
nally developed for pose estimation), we develop a novel
Occlude-and-blackout Batch Augmentation (OBA) to pro-
mote robust landmark prediction under occlusion. For each
training batch, after performing regular data augmentations
including rotation, translation, scaling and color jitter, we
extend the batch by including a copy of itself with extra

augmentations, namely, occlude and blackout. Similar to
hide-and-seek, we divide the image region enveloped by
the object bounding box into a grid of patches and replace
each patch, under certain probability, with either noise or
a random patch elsewhere from the same image. We then
blackout everything outside of the object bounding box. An
example is shown in Figure 2.

With random occlusions the network is forced to in-
fer the pose information from a partial view of the object.
Erasing the background helps reducing overfitting and en-
hance generalisability. Moreover, the OBA augmented im-
ages are fed to the network with the original ones in the
same batch, and supervised by the same groundtruth labels.
This encourages the network to learn occlusion-robust and
background-invariant representations.

If the potential occluders are known beforehand, in-
jecting occluder specific information in the training phase
can significantly improve performance [41]. However this
knowledge is often not available in practice. Compared
to methods that augment training images with known ob-
jects [25, 32, 1], our method is occluder-agnostic yet it gen-
eralises well in the testing sets.

3.1.2 Multi-precision supervision

Current heatmap-based landmark prediction networks use
a single groundtruth Gaussian heatmap per landmark for
training. The variance of these heatmaps is a hyper pa-
rameter which requires careful tuning: a smaller variance
may increase prediction accuracy for each individual land-
mark however risk structural inconsistency in the case of
occlusion, due to the lack of holistic understanding of the
object pose. To address this issue we propose a Multi-
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Figure 3. Conceptual illustration of holistic representation learning
via MPS. Note the difference on the information learned by the
feature section S1.

Precision Supervision (MPS) architecture: using three key-
point heads to predict groundtruth Gaussian heatmaps with
different variance.

In Mask R-CNN, the output feature map of the backbone
is aligned with RoI proposals and the RoI features are then
passed to the mask head. We replace the mask head with
three keypoint heads to regress the landmark heatmaps, as
shown in Figure 2. Each keypoint head consists of 8 convo-
lutional layers and 2 upsampling layers.

In the training phase, the groundtruth heatmaps Φ
∗

are constructed as 2D Gaussian feature maps centred on
groundtruth 2D landmarks x∗ and spreading with variance
σ
2. We use σ equal to 8, 3 and 1.5 pixels respectively for

the three keypoint heads, thus creating low, medium and
high precision target heatmaps Φ∗. The loss function is

LJS = JSD(ϕ(Φ),Φ∗), (1)

where JSD(⋅) is the Jensen–Shannon divergence [14] and
ϕ(⋅) is the channel-wise softmax function, i.e., each chan-
nel is normalised to be a probability distribution over the
pixels.

In the testing phase, we only use the predicted heatmaps
Φ from the high-precision keypoint head to obtain the land-
mark coordinates x. Instead of simply taking the “argmax”
of Φ as x, we treat the normalised heatmaps ϕ(Φ) as proba-
bility maps and take their spatial expectations as x. This has
two advantages over the “argmax” approach: it has higher
accuracy because it is continuous rather than discrete; it is
more robust to outlying pixel values.

Although only the high-precision heatmaps are used to
compute the landmark coordinates, the medium and low-
precision keypoint heads play an important role in the
pipeline. Firstly, having target heatmaps with different vari-
ances σ2 helps the model adapt to objects of different sizes.

This also relieves the need for tuning σ as a hyper parame-
ter for each object. Secondly, heatmaps from the medium-
precision keypoint head are used as an auxiliary for filtering
predicted landmarks, as will be explained in the next sub-
section. Lastly and most importantly, MPS boosts holistic
representation learning in the feature maps and increases
landmark coherence. An conceptual illustration is shown in
Figure 3.

In Figure 3, we take one section of the feature tensor
S1 for examination. With single precision supervision, S1
is only responsible for activating the region A1 in the pre-
dicted heatmap of Landmark 1. It does not learn useful in-
formation about Landmark 2. In the MPS scenario, besides
learning about Landmark 1 via A1 and A3, S1 is also ex-
posed to the receptive field of A4 from Landmark 2. This
enforces S1 to incorporate relevant information and become
more “aware” of the location of Landmark 2. The overall
effect is that, each part of the feature tensor not only learns
the necessary information to predict a local landmark, but
also integrates knowledge of other landmarks to understand
a wider context, thus learns a more holistic representation
of the target object pose.

A holistic representation enables heatmap predictions to
be more robust against occlusions. As shown in Figure 4,
when trained without MPS, novel occlusions result in con-
fused heatmap activations. On the other hand, a holistic
representation learned via MPS is able to produces stable
heatmaps for the occluded landmarks. This also boosts the
structural consistency of landmark predictions as shown in
Figure 5 and 7, which is further discussed in Section 4.3.

3.2. Landmark filtering

Many pose estimation pipelines include a refinement
stage which is either optimisation-based [27, 7, 51] or
learning-based [46, 34, 30, 64]. While such post-processing
is effective in boosting prediction accuracy, it adds addi-
tional computation burdens which is a disadvantage espe-
cially for real-time applications. In order to boost predic-
tion accuracy while at the same time avoiding heavy post-
processing computation, we make use of the multi-heads
design of MPS for selecting high-quality landmark predic-
tions before passing them to the PnP solver, thus alleviating
the need for significant pose refinement.

Specifically, for an image I , let {xi} denote the set
of predicted landmark coordinates from the high-precision
keypoint head, and {xm

i } denote the set of landmark coordi-
nates predicted from the medium-precision keypoint head.
We then select a subset

{xi∣∥xi − x
m
i ∥2 ≤ ϵ} (2)

for the PnP solver to compute the pose. In other words, a
landmark prediction from the high-precision head will only
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Figure 4. The effect of holistic representation learning in heatmap
prediction. Predictions of heatmap 1 are from a model (MV1)
trained without MPS while those of heatmap 2 are from the full
model (original) with MPS. Details of models (MV1 and original)
are provided in Section 4.3.1.

be selected for the pose solver if it is verified by the corre-
sponding medium-precision prediction, where ϵ is the ver-
ification threshold. In the case that the selected subset has
fewer than 4 points, which is the minimum number required
by a PnP solver, we then use the 4 points with the smallest
∥xi − x

m
i ∥2 values as the subset.

While in this work we focus on the base pose estima-
tor and report its performances without any refinement, our
pipeline can be easily extended to stack one or multiple re-
finers such as [38, 33, 55].

4. Experiments
In this section we conduct experiments to validate the

effectiveness of ROPE as well as to compare it to SOTA
methods of RGB image-based pose estimation.

4.1. Datasets and metrics

We choose the widely used LINEMOD [19], its ex-
tension Occluded-LINEMOD [3] and the YCB-Video [62]
datasets for our experiments.

For LINEMOD, we follow the convention of previous

works [46, 57, 44, 64] by using 15% of the images of
each object as training set and the remaining 85% as test-
ing set. The training images are selected in such a way
that the relative rotation between them are larger than a
threshold. For each object, we additionally use 1312 ren-
dered images of the isolated object for training, which are
obtained from [20]. For Occluded-LINEMOD the whole
dataset is used for testing while images of the correspond-
ing objects in LINEMOD, as well as the rendered images,
are used for training. We also follow the protocol of [62, 41]
for the YCB-Video dataset: we use 80 out of the 92 video
sequences as well as the 80000 synthetic images for train-
ing, and test on 2949 key frames from the reserved 12 se-
quences.

We report the ADD(-S) metric which combines the ADD
metric [19] for asymmetric objects and the ADD-S met-
ric [62] for symmetric ones. The ADD metric computes the
percentage of correctly estimated poses. A pose is consid-
ered correct if the object model points, when transformed
by the predicted and groundtruth poses respectively, have
an average distance of less 10% of the model diameter. For
ADD-S, this distance is instead computed based on the clos-
est point distance. The ADD(-S) metric is preferred over
the 2D projection metric [4] because it directly measures
the alignment discrepancy in 3D.

For the YCB-Video dataset we also report the AUC met-
ric proposed in [62] and adopted in [41, 44]. The AUC met-
ric is the area under the ADD(-S) curve when varying the
distance threshold for a pose to be deemed correct. We vary
this threshold from 0 to 10 cm, in accordance with [62].

4.2. Implementation details

For each object model we apply the farthest point sam-
pling (FPS) algorithm [44] on the 3D point cloud and se-
lect 11 landmarks. The groundtruth 2D landmarks are then
obtained by projecting the 3D landmarks with groundtruth
camera pose and intrinsics. We use ImgAug [26] for regu-
lar data augmentations including rotation, translation, scal-
ing and color jitter before the OBA. We use the Adam
optimizer [29] and train the model for 250 epochs on
LINEMOD and 200 epochs on Occluded-LINEMOD and
YCB-Video. We set the landmark verification threshold ϵ
to 1 pixel for all datasets.

4.3. Ablation studies

We conduct various ablation tests to investigate the effect
of the proposed OBA and MPS.

4.3.1 Model variations

To verify the efficacy of OBA and MPS, we create two
Model Variants (MV) of ROPE:
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Figure 5. Comparing performances of model variants on the Occluded-LINEMOD dataset with qualitative examples.
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Figure 6. A toy example for the intuition of incoherence measure
ci. The mean residual ri for prediction 1 (blue) and prediction 2
(green) are both 0.608. However, their mean incoherence measure
ci are 0.604 and 0.074, respectively. Although both predictions
are identical in terms of accuracy, prediction 2 has much better
coherence as the green triangle is much more similar in shape to
the groundtruth than the blue one.

1. (MV1: w/ OBA, w/o MPS) While keeping everything
else of the original ROPE unchanged, we remove the
low and medium-precision keypoint heads, and train
the one-head-model with high-precision groundtruth
heatmaps.

2. (MV2: w/o OBA, w/o MPS) On top MV1, we further
remove OBA in training. Note that common data aug-
mentations including rotation, translation, scaling and
color jitter, are still kept.

Figure 5 shows the overall ADD(-S) on the Occluded-
LINEMOD dataset, as well as qualitative results of all
model variants. Without both OBA and MPS, object detec-
tion can easily fail and landmark prediction is precarious.
We can clearly see that occlusion-robust feature learning
enforced by OBA significantly increases the reliability of
object detection and landmark prediction. In addition, by
comparing MV1 and the original model, it is obvious that
MPS boosts the structural consistency of the predicted land-
marks, especially in occluded regions. This shows that a
holistic representation induced by MPS enhances landmark

Figure 7. Comparing the results of training with and without MPS
on LINEMOD, while keeping all else equal. The vertical location
of each bubble represents the mean prediction residual ri of all
landmarks in the testing sets. The size of each bubble indicates the
mean incoherence ci.

coherence, strengthening the model’s ability to extrapolate
to the occluded part of the object.

4.3.2 Accuracy and coherence of landmarks

To formally analyse the effect of holistic representation
learning, we quantify accuracy and structural consistency of
landmark predictions and compare them when trained with
and without MPS. For accuracy, we define

ri = ∥xi − x
∗
i ∥2 (3)

as the prediction residual of a 2D landmark xi. We also
define a measure of incoherence

ci = ∥(xi − x
∗
i ) −m∥2 (4)
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ADD(-S)
Without refinement With refinement

PVNet Pix2Pose DPOD CDPN GDR Ours SSD-6D DPOD+ HybridPose DeepIM
[44] [42] [64] [35] [59] [27] [64] [51] [33]

ape 43.62 58.10 53.28 64.38 - 81.52 65.00 87.70 63.10 77.00
benchevise 99.90 91.00 95.34 97.77 - 100.00 80.00 98.50 99.90 97.50
cam 86.86 60.90 90.36 91.67 - 96.86 78.00 96.10 90.40 93.50
can 95.47 84.40 94.10 95.87 - 98.72 86.00 99.70 98.50 96.50
cat 79.34 65.00 60.38 83.83 - 94.71 70.00 94.70 89.40 82.10
driller 96.43 76.30 97.72 96.23 - 99.01 73.00 98.80 98.50 95.00
duck 52.58 43.80 66.01 66.76 - 85.35 66.00 86.30 65.00 77.70
eggbox* 99.15 96.80 99.72 99.72 - 100.00 100.00 99.90 100.00 97.10
glue* 95.66 79.40 93.83 99.61 - 99.42 100.00 96.80 98.80 99.40
holepuncher 81.92 74.80 65.83 85.82 - 90.39 49.00 86.90 89.70 52.80
iron 98.88 83.40 99.80 97.85 - 100.00 78.00 100.00 100.00 98.30
lamp 99.33 82.00 88.11 97.89 - 99.42 73.00 96.80 99.50 97.50
phone 92.41 45.00 74.24 90.75 - 97.64 79.00 94.70 94.90 87.70
average 86.27 72.38 82.98 89.86 93.70 95.61 76.69 95.15 91.36 88.60

Table 1. Test accuracy on the LINEMOD dataset in terms of the ADD(-S) metric. Objects with a “*” sign are considered as symmetric
objects and the ADD-S metric is used. The result of SSD-6D is obtained from [57]. The result of HybridPose is from its fourth version
update in [52].

ADD(-S)
Without refinement With refinement

HM PVNet Hu Pix2Pose DPOD Hu2 GDR Ours DPOD+ HybridPose
[41] [44] [23] [42] [64] [22] [59] [64] [51]

ape 15.30 15.81 12.10 22.00 - 19.20 39.30 28.03 - 20.90
can 44.70 63.30 39.90 44.70 - 65.10 79.20 75.06 - 75.30
cat 9.33 16.68 8.20 22.70 - 18.90 23.50 25.53 - 24.90
driller 55.40 65.65 45.20 44.70 - 69.00 71.30 61.86 - 70.20
duck 19.60 25.24 17.20 15.00 - 25.30 44.40 19.07 - 27.90
eggbox* 23.00 50.17 22.10 25.20 - 52.00 58.20 45.62 - 52.40
glue* 41.40 49.62 35.80 32.40 - 51.40 49.30 56.92 - 53.80
holepuncher 20.40 39.67 36.00 49.50 - 45.60 58.70 55.54 - 54.20
average 28.64 40.77 27.06 32.03 32.80 43.30 53.00 45.95 47.30 47.45

Table 2. Test accuracy on the Occluded-LINEMOD dataset in terms of the ADD(-S) metric. Objects with a “*” sign are considered as
symmetric objects and the ADD-S metric is used. The result of HybridPose is from its fourth version update in [52].

for a landmark prediction xi where m =
1
n
∑n

i=1(xi −x
∗
i )

is the mean error vector for an image. The smaller ci is, the
more coherent a prediction xi is, resulting a more consis-
tent structure of prediction to the groundtruth. An intuitive
example is shown in Figure 6.

As shown in Figure 7, training with MPS effectively low-
ers the mean residuals. Furthermore, the mean incoherence
are also smaller for all objects. This confirms that a more
holistic understanding of the object pose can produce more
accurate and structurally consistent landmark predictions.

4.4. Comparing to SOTA methods

We report results on the LINEMOD dataset in Ta-
ble 1. We group methods into two types depending on
whether they include a separate refinement step or not. Our

method achieves the best average ADD(-S), as well as the
best ADD(-S) on most individual objects. Moreover, our
method even outperforms all SOTA methods with refine-
ment, further attesting the power of ROPE. The results on
the Occluded-LINEMOD dataset are summarised in Ta-
ble 2. In the non-refinement group, our method ranked sec-
ond amongst current SOTA methods overall and best on two
individual objects. A sample of qualitative results are pro-
vided in Figures 1 and 5. The results on the YCB-Video
dataset are reported in Table 3. Without refinement, ROPE
has the best performance when evaluated with ADD(-S).

4.5. Data efficiency

The LINEMOD dataset has about 1200 images for each
object, which results in approximately 180 images (15%)
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ADD(-S) AUC of ADD(-S)
Without refinement Without refinement With refinement

HM Hu Hu2 GDR Ours HM PVNet GDR Ours DeepIM CosyPose
[41] [23] [22] [59] [41] [44] [59] [34] [30]

master chef can 31.20 33.00 - - 46.52 69.00 - - 71.17 71.20 -
cracker box 75.00 44.60 - - 92.63 80.20 - - 89.86 83.60 -
sugar box 47.20 75.60 - - 99.15 76.20 - - 93.21 94.10 -
tomato soup can 30.20 40.80 - - 60.90 70.00 - - 82.53 86.10 -
mustard bottle 72.50 70.60 - - 100.00 84.80 - - 95.34 91.50 -
tuna fish can 4.31 18.10 - - 52.96 49.40 - - 88.01 87.70 -
pudding box 48.30 12.20 - - 79.91 82.20 - - 90.5 82.70 -
gelatin box 37.20 59.40 - - 58.88 81.80 - - 89.36 91.90 -
potted meat can 40.30 33.30 - - 58.62 66.20 - - 74.54 76.20 -
banana 6.20 16.60 - - 36.94 52.90 - - 58.77 81.20 -
pitcher base 53.80 90.00 - - 99.65 69.90 - - 92.86 90.10 -
bleach cleanser 57.20 70.90 - - 75.22 73.30 - - 77.35 81.20 -
bowl* 49.50 30.50 - - 45.07 80.30 - - 70.81 81.40 -
mug 10.50 40.70 - - 66.04 50.50 - - 89.1 81.40 -
power drill 63.00 63.50 - - 94.99 78.30 - - 89.4 85.50 -
wood block* 48.20 27.70 - - 55.37 65.20 - - 70.62 81.90 -
scissors 0.55 17.10 - - 71.27 28.20 - - 84.82 60.90 -
large marker 11.70 4.80 - - 11.73 48.20 - - 53.25 75.60 -
large clamp* 12.20 25.60 - - 68.12 47.20 - - 77.1 74.30 -
extra large clamp* 17.30 8.80 - - 56.16 47.50 - - 55.19 73.30 -
foam brick* 63.80 34.70 - - 68.40 85.60 - - 83.78 81.90 -
average 37.15 38.98 53.90 60.10 66.59 66.04 73.40 84.40 79.88 81.90 84.50

Table 3. Test accuracy on the YCB-Video dataset. Objects with a “*” sign are considered as symmetric objects.

for the training set. To supplement such a small training
set many methods generate a large amount of synthetic im-
ages. For example, PVNet [44] renders 20000 images for
each object and the same strategy is adopted in [52]. Al-
though we only use a moderate amount of 1312 synthetic
images on top of the 180 in training, we test our model’s
performance in a extremely data-efficient case: only using
the ∼180 images for training.

As shown in Table 4, despite having slightly lower
ADD(-S) then the baseline, our model achieves an over-
all accuracy of 93.22% which is close to the current SOTA
method GDR [59]. This is accomplished with as few as
around 180 training images, demonstrating superior data ef-
ficiency for our method.

5. Conclusion

We propose ROPE, a framework for robust object
pose estimation against occlusions. We show that en-
forcing occlusion-robust feature learning and encourag-
ing holistic representation learning are the key to achieve
occlusion-robustness. Evaluations on three popularly used
benchmark datasets, LINEMOD, Occluded-LINEMOD and
YCB-Video, show that ROPE either outperforms or is com-

ADD(-S) Training images
∼180 ∼1500

ape 78.57 81.52
benchvise 98.93 100.00
cam 90.88 96.86
can 98.03 98.72
cat 92.22 94.71
driller 98.02 99.01
duck 79.06 85.35
eggbox* 99.72 100.00
glue* 97.68 99.42
holepuncher 88.30 90.39
iron 96.83 100.00
lamp 98.85 99.42
phone 94.81 97.64
average 93.22 95.61

Table 4. Comparing performances of ROPE in the extremely data-
efficient setting (∼180) and in the original setting (∼1500) on the
LINEMOD dataset. Both models are without refinement.

petitive to SOTA methods, without the need of refinement.
Our method is also highly data-efficient.
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