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Abstract

Human pose information is a critical component in many
downstream image processing tasks, such as activity recog-
nition and motion tracking. Likewise, a pose estimator for
the illustrated character domain would provide a valuable
prior for assistive content creation tasks, such as refer-
ence pose retrieval and automatic character animation. But
while modern data-driven techniques have substantially im-
proved pose estimation performance on natural images, lit-
tle work has been done for illustrations. In our work, we
bridge this domain gap by efficiently transfer-learning from
both domain-specific and task-specific source models. Ad-
ditionally, we upgrade and expand an existing illustrated
pose estimation dataset, and introduce two new datasets for
classification and segmentation subtasks. We then apply the
resultant state-of-the-art character pose estimator to solve
the novel task of pose-guided illustration retrieval. All data,
models, and code will be made publicly available.

1. Introduction
Human pose estimation is a foundational computer vi-

sion task with many real-world applications, such as activity
recognition [38], 3D reconstruction [23], motion tracking
[42], virtual try-on [12], person re-identification [36], etc.
The generic formulation is to find, in a given image con-
taining people, the positions and orientations of body parts;
typically, this means locating landmark and joint keypoints
on 2D images, or regressing for bone transformations in 3D.

The usefulness of pose estimation is not limited to the
natural image domain; in particular, we focus on the domain
of illustrated characters. As pose-guided motion retargeting
of realistic humans rapidly advances [16], there is growing
potential for automatic pose-guided animation [19], a tra-
ditionally labor-intensive task for both 2D and 3D artists.
Pose information may also serve as a valuable prior in illus-
tration colorization [57], keyframe interpolation [44], 3D
character reconstruction [5] and rigging [55], etc.

With deep computer vision, we have been able to lever-
age large-scale datasets [34, 1, 49] to train robust estimators

of human pose [20, 8, 15]. However, little work has been
done to solve pose estimation for illustrated characters. Pre-
vious pose estimation work on illustrations by Khungurn
et al. [25] presented a 2D keypoint detector, but relied on
a publicly-unavailable synthetic dataset and an ImageNet-
trained backbone. In addition, the dataset they collected
for supervision lacked variation, and was missing keypoints
and bounding boxes required for evaluation under the more
modern COCO standard [34].

Facing these challenges, we constructed a 2D keypoint
detector with state-of-the-art performance on illustrated
characters, built upon domain-specific components and ef-
ficient transfer learning architectures. We demonstrate the
effectiveness of our methods by implementing a novel illus-
tration retrieval system. Summarizing, we contribute:

• A state-of-the-art pose estimator for illustrated char-
acters, transfer-learned from both domain-specific and
task-specific source models. Despite the absence of
synthetic supervision, we outperform previous work
by 10-20% PDJ@20 [25].

• An application of our proposed pose estimator to solve
the novel task of pose-guided character illustration re-
trieval.

• Datasets for our model and its components, including:
an updated COCO-compliant version of Khungurn et
al.’s [25] pose dataset with 2x the number of sam-
ples and more diverse poses; a novel 1062-class Dan-
booru [2] tagging rulebook; and a character segmenta-
tion dataset 20x larger than those currently available.

2. Related Work
2.1. The Illustration Domain

Though there has been work on caricatures and car-
toons [7, 40], we focus on anime/manga-style drawings
where characters tend to be less abstract. While there
is work for more traditional problems like lineart clean-
ing [43] and sketch extraction [31], more recent studies
include sketch colorization [57], illustration segmentation
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Figure 1. A schematic outlining our two transfer learning architectures: feature concatenation, and feature matching. Note that source
feature specificity is with respect to the target; i.e. task-specific means “related to pose estimation” and domain-specific means “related
to illustrations”. Feature converters and matchers are convolutional networks that learn to mimic or re-appropriate pretrained features,
respectively. While both designs require the pretrained Mask R-CNN components during training, feature matching discards them during
inference, instead relying on the trained matcher network. “BCE” refers to binary cross-entropy loss.

[56], painting relighting [58], image-to-image translation
with photos [26], and keyframe interpolation [44].

Available models for illustrated tasks typically rely on
small manually-collected datasets. For example, the AniSeg
[33] character segmenter is trained on less than 1,000 ex-
amples. While larger datasets are becoming available (e.g.
Danbooru [2] now with 4.2m tagged illustrations), the la-
bels are noisy and long-tailed, leading to poor model per-
formance [3, 27]. Works requiring pose information may
use synthetic renders of anime-style 3D models [25, 19], but
the models are usually not publicly available. In this work,
we present a cleaner tag classification task, a large charac-
ter segmentation dataset, and an upgraded COCO keypoint
dataset; these will all be made available upon publication,
and may serve as a valuable prior for other tasks.

2.2. Transfer Learning & Domain Adaptation

Transfer learning and domain adaptation have been de-
fined somewhat inconsistently throughout the vision and
natural language processing literature [50, 10], though gen-
erally the former is considered broader than the latter. In
this paper, we use the terms interchangeably, referring to
methods that leverage information from a number of re-
lated source domains and tasks, to a specific target domain
and task. Typically, much more data is available for the
source than the target, motivating us to transfer useful re-
lated source knowledge in the absence of sufficient target
data [50]. For deep networks, the simplest practice is to pre-
train a model on source data, and fine-tune its parameters on
target data; however, various techniques have been studied

that work with different levels of target data availability.
Much of the transfer learning work in vision focuses on

extreme cases with significantly limited target domain data,
with emphasis around the task of image classification. In
the few-shot learning case, we may be given as few as ten
(or even one) samples from the target, inviting methods that
embed prototypical target data into a space learned through
prior source knowledge [52]. In particular, it is common
to align parameters of feature extractors across domains,
by directly minimizing pairwise feature distances or by ad-
versarial domain discrimination [35, 48]. If the source and
target are similar enough, it is possible to perform domain
adaptation in the complete absence of labeled target data.
This can be achieved by matching statistical properties of
extracted features [45], or by converting inputs between do-
mains through cycle-consistent image translation [22].

2.3. Pose Estimation

With the availability of large-scale human pose datasets
[34, 1], the vision community has recently been able to
make great strides in pose estimation. A naive baseline was
demonstrated by Mask R-CNN [20], which extended their
detection and segmentation framework to predict single-
pixel masks of joint locations. Other work such as RMPE
take an approach tailored to pose estimation, deploying spa-
tial transformer networks with pose-guided NMS and re-
gion proposal [15]. Around the same time, OpenPose pro-
posed part affinity fields as a bottom-up alternative to the
more common heatmap representation of joints [8]. Human
pose estimation work continues to make headway, extend-
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ing beyond keypoint localization to include dense body part
labels [18] and 3D pose estimation [24, 29, 37].

2.4. Pose Estimation Transfer

Most transfer learning for pose estimation adapts from
synthetically-rendered data to natural images. For exam-
ple, by using mocaps and 3D human models, SURREAL
[49] provides 6 million frames of synthetic video, complete
with a variety of datatypes (2D/3D pose, RGB, depth, op-
tical flow, body parts, etc.). CNNs may be able to directly
generalize pose from synthesized images [49], and can fur-
ther close the domain gap using other priors like motion
[11]. Outside of synthetic-to-real, Cao et al. [30] explore
domain adaptation for quadruped animal pose estimation,
achieving generalization from human pose through adver-
sarial domain discrimination with pseudo-label training.

The closest prior work to our topic was done by Khun-
gurn et al. [25], who collected a modest AnimeDrawings-
Dataset (ADD) of 2k character illustrations with joint key-
points, and a larger synthetic dataset of 1 million frames
rendered from MikuMikuDance (MMD) 3D models and
mocaps. Unfortunately, the MMD dataset is not pub-
licly available, and ADD contains mostly standard forward-
facing poses. In addition, ADD is missing bounding boxes
and several face keypoints, which are necessary for evalu-
ation under the modern COCO standard [34]. We remedy
these issues by training a bounding box detector from our
new character segmentation dataset, labeling missing anno-
tations in ADD, and labeling 2k additional samples in more
varied poses.

Khungurn et al. perform transfer from an ImageNet-
pretrained GoogLeNet backbone [46] and synthetic MMD
data. In the absence of MMD, we instead transfer from
a stronger backbone trained on a new illustration-specific
classification task, as well as from a task-specific model
pretrained on COCO keypoints. We use our subtask mod-
els and data to implement a number of transfer techniques,
from naive fine-tuning to adversarial domain discrimina-
tion. In doing so, we significantly outperform Khungurn
et al. on their reported metrics by 10-20%.

3. Method & Architectures
We provide motivation and architecture details for two

variants of our proposed pose estimator (feature concatena-
tion and feature matching), as well as two submodules crit-
ical for their success (a class-balanced tagger backbone and
a character segmentation model). Architectures for baseline
comparison models are described in Sec. 5.1.

3.1. Pose Estimation Transfer Model

We present two versions of our final model: feature con-
catenation, and feature matching. In this section, we assume
that region proposals are given by a separate segmentation

model (Sec. 3.3), and that the domain-specific backbone is
already available (Sec. 3.2); here, we focus on combining
source features to predict keypoints (Fig. 1).

The goal is to perform transfer simultaneously from both
a domain-specific classification backbone (Sec 3.2) and a
task-specific keypoint model (Mask R-CNN [20]). Here, we
chose Mask R-CNN as it showed significantly better out-
of-the-box generalization to illustrations than OpenPose [8]
(Tab. 1). Taking into account that the task-specific model
already achieves mediocre performance on the target do-
main, the feature concatenation model simply stacks fea-
tures from both sources (Fig. 1). In order to perform the
concatenation, it learns shallow feature converters for each
source to decrease the feature channel count and allow bi-
linear sampling to a common higher resolution. The com-
bined features are fed to the head, consisting of a shallow
converter and two ResNet blocks.

The final output is a stack of 25 heatmaps, 17 for COCO
keypoints and 8 for auxiliary appendage midpoints (fol-
lowing Khungurn et al. [25]). We apply pixel-wise bi-
nary cross-entropy loss on each heatmap, targeting a nor-
mal distribution centered on the ground-truth keypoint loca-
tion with standard deviation proportional to the keypoint’s
COCO OKS sigma [34]; the sigmas for auxiliary midpoints
are averaged from endpoints of the body part. At inference,
we gaussian-smooth the heatmaps and take the maximum
pixel value index as the keypoint prediction.

Although feature concatenation produces the best results
(Tab. 1), it is very inefficient. At inference, it must main-
tain the parameters of both source models, and run both
forward models for each prediction; Mask R-CNN is par-
ticularly expensive in this regard. We thus also provide a
feature matching model, inspired by the methods used in
Luo et al. [35]. As shown in Fig. 1, we simultaneously
train an additional matching network that predicts features
from the expensive task-specific model using features from
the domain-specific model. Though matching may be opti-
mized with self-supervision signals such as contrastive loss
[54], we found that feature-wise mean-squared error is suit-
able. Given the matcher, the pretrained Mask R-CNN still
helps training, but is not necessary at inference. Despite its
simplicity, feature matching retains most performance ben-
efits from both source models, while also being significantly
lighter and faster than the concatenation architecture.

3.2. ResNet Tagger

The domain-specific backbone for our model (Fig. 1)
is a pretrained ResNet50 [21] fine-tuned as an illustration
tagger. The tagging task is equivalent to multi-label classi-
fication, in this case predicting the labels applied to an im-
age by the Danbooru imageboard moderators [2]. The 392k
unique tags cover topics including colors, clothing, interac-
tions, composition, and even copyright metainfo.
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Khungurn et al. [25] use an ImageNet-trained
GoogLeNet [46] backbone for their illustrated pose esti-
mator, but we find that Danbooru fine-tuning significantly
boosts transfer performance. There are publicly-available
Danbooru taggers [3, 27], but both their classification
performance and feature learning capabilities are hindered
by uninformative target tags and severe class imbalance.
By alleviating these issues, we achieve significantly better
transfer to pose estimation.

Most available Danbooru taggers [3, 27] take a coarse
approach to defining classes, simply predicting the several
thousand (6-7k) most frequent tags. However, many of
these tags represent contextual information not present in
the image; e.g. neon genesis evangelion (name of a fran-
chise), or alternate costume (fanmade/non-canon clothes).
We instead only allow tags explicitly describing the image
(clothing, body parts, etc.). Selecting tags by frequency
also introduces tag redundancy and annotator disagreement.
There are many high-frequency tags that share similar con-
cepts, but are annotated inconsistently; e.g. hand in hair,
adjusting hair, and hair tucking have vague wiki definitions
for taggers, and many color tags are subjective (aqua hair
vs. blue hair). To address these challenges, we survey Dan-
booru wikis to manually develop a rulebook of tag groups
that defines more explicit and less redundant classes.

Danbooru tag frequencies form a long-tailed distribu-
tion, posing a severe class imbalance problem. In addition
to filtering out under-tagged images (detailed in Sec. 4.2),
we implement an inverse square-root frequency reweighing
scheme to emphasize the learning of less-frequent classes.
More formally, the loss on a sample is:

L(y, ŷ) = 1

C

C−1∑
i=0

wi(yi)BCE(yi, ŷi) (1)

wi(z) =
1

2

(
z

ri
+

1− z

1− ri

)
(2)

ri =

√
Ni√

Ni +
√
N −Ni

(3)

where C is the number of classes, ŷ ∈ [0, 1]C is the predic-
tion, y ∈ {0, 1}C is the ground truth label, BCE is binary
cross entropy loss, N is the total number of samples, and
Ni is the number of positive samples in the ith class. We
found that plain inverse frequency weighing caused numer-
ical instability in training, necessitating the square root.

3.3. Character Segmentation & Bounding Boxes

In order to produce bounding boxes around each sub-
ject in the image, we first train an illustrated character seg-
menter. As we assume one subject per image, we can de-
rive a bounding box by enclosing the thresholded segmenta-
tion output. The single-subject assumption also removes the

need for region proposal and NMS infrastructure present in
available illustrated segmenters [33], so that our model may
focus on producing clean segmentations only. Our segmen-
tation model is based on DeepLabv3 [9], with three addi-
tional layers at the end of the head for finer segmentations
at the input image resolution. We initialize with pretrained
DeepLabv3 weights from PyTorch [39], and fine-tune the
full model using pixel-wise binary cross-entropy loss.

4. Data Collection
Unless mentioned otherwise, we train with random im-

age rotation, translation, scaling, flipping, and recoloring.

4.1. Pose Data

We extend the AnimeDrawingsDataset (ADD), first col-
lected by Khungurn et al. [25]. The original dataset
had 2000 illustrated full-body single-character images from
Danbooru, each annotated with joint keypoints. However,
ADD did not follow the now popularized COCO standard
[34]; in particular, it was missing facial keypoints (eyes and
ears) and bounding boxes. In order to evaluate and com-
pare with modern pose estimators, we manually labeled the
missing keypoints using an open-source COCO annotator
[4] and automatically generated bounding boxes using the
character segmenter described in Sec. 3.3. We also manu-
ally remove 57 images with multiple characters, or without
the full body in view.

In addition, we improve the diversity of poses in ADD
by collecting an additional 2043 samples. A major weak-
ness of ADD is its lack of backwards-facing characters;
only 5.45% of the entire 2k dataset had a back-related
Danbooru tag (e.g. back, from behind, looking back,
etc.). We specifically filtered for back-related images
when annotating, resulting in a total of 850 in the up-
dated dataset (21.25%). We also selected for other no-
tably under-represented poses, like difficult leg tags (soles,
bent over, leg up, crossed legs, squatting, kneeling, etc.),
arm tags (stretch, arms up, hands clasped, etc.), and lying
tags (on side, on stomach).

Our final updated dataset contains 4000 illustrated char-
acter images with all 17 COCO keypoints and bounding
boxes. We designate 3200 images for training (previously
1373), 313 for validation (previously 97), and 487 for test-
ing (same as original ADD). For each input image, we first
scale and crop such that the bounding box is centered and
padded by at least 10% of the edge length on all sides. We
then perform augmentations; flips require swapping left-
right keypoints, and full 360-degree rotations are allowed.

4.2. ResNet Tagger Data

Our ResNet50 tagger is trained on a new subset of
the 512px SFW Danbooru2019 dataset [2]. The original
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Model OKS@50 OKS@75 PCKh@50 PDJ@20 PCPm@50 params ms/img
Feature Concatenation (+new data) 0.8982 0.7930 0.7866 0.8403 0.8551 86.8m 217.7
Feature Concatenation 0.8827 0.7723 0.7762 0.8282 0.8435 86.8m 217.7
Feature Matching (+new data) 0.8953 0.7907 0.7851 0.8423 0.8599 9.9m 147.8
Feature Matching 0.8769 0.7680 0.7675 0.8251 0.8343 9.9m 147.8
Task Fine-tuning Only 0.8026 0.6481 0.7032 0.7666 0.7446 77.5m 174.5
Domain Features Only 0.8607 0.7467 0.7444 0.8076 0.8215 9.6m 143.7
Task Fine-tuning w/ Domain Features 0.8548 0.7209 0.7544 0.8181 0.8084 41.1m 147.8
Adversarial (DeepFashion2) 0.8321 0.6804 0.7108 0.7823 0.7778 9.9m 147.8
Adversarial (COCO) 0.8065 0.6362 0.6788 0.7607 0.7350 9.9m 147.8
Task-Pretrained (R-CNN) 0.7584 0.6724 0.6960 0.7357 0.6679 77.5m 174.5
Task-Pretrained (OpenPose) 0.4922 0.4222 0.4447 0.4796 0.4381 52.3m 128.2
Ours (equiv. to feat. concat.) 0.8827 0.7723 0.7762 0.8282 0.8435 86.8m 217.7
RF5 Backbone 0.8547 0.7358 0.7427 0.8015 0.8005 86.8m 217.7
ImageNet-pretrained Backbone 0.8218 0.6919 0.7060 0.7649 0.7571 86.8m 217.7

Table 1. Performance of different architectures and ablations described in Sec. 5.1. Note that the parameter count and speed are measured
in inference mode with batch size one; “m” refers to “millions of parameters”.

dataset contains 2.83m images with over 390k tags, but af-
ter filtering and retagging we arrive at 837k images with
1062 classes. The new classes are derived from manually-
selected union rules over 2027 raw tags, as described in Sec.
3.2; the rulebook has 314 body-part, 545 clothing, and 203
miscellaneous (e.g. image composition) classes.

To combat the class imbalance problem described in Sec.
3.2, we also rigorously filtered the dataset. We remove all
images that are not single-person (solo, 1girl, or 1boy), are
comics (comic, 4koma, doujinshi, etc.), or are smaller than
512px. Most critically, we remove all images with less
than 12 positive tags; these images are very likely under-
tagged, and would have introduced many false-negatives to
the ground truth. The final subset of 837k images has sig-
nificantly reduced class imbalance (median class frequency
0.38%, minimum 0.04%) compared to the datasets of avail-
able taggers (median 0.07%, min 0.01%) [3].

We split the dataset 80-10-10 train-val-test. As some
tags are color-sensitive, we do not jitter the hue; similarly
as some tags are orientation-sensitive, we allow up to 15-
degree rotations and horizontal flips only.

4.3. Character Segmentation Data

To obtain character bounding boxes, we train a char-
acter segmentation model and enclose output regions at
0.5 threshold (Sec. 3.3). The inputs to our segmen-
tation system are augmented composites of RGBA fore-
grounds (with transparent backgrounds) onto RGB back-
grounds; the synthetic ground truth is the foreground al-
pha. The available AniSeg dataset [33] has only 945
images, with manually-labeled segmentations that are not
pixel-perfectly aligned. We thus collect our own larger
synthetic compositing dataset. Our background images
are a mix of illustrated scenery (5.8k Danbooru images

with scenery and no humans tag) and stock textures (2.3k
scraped [13] from the Pixiv Dataset [32]). We collect
single-character foreground images from Danbooru with
the transparent background tag; 18.5k samples are used,
after filtering images with text, non-transparency, or more
than one connected component in the alpha channel. Count-
ing each foreground as a single sample, this makes our new
dataset roughly 20x larger than AniSeg. The foregrounds
and backgrounds are randomly paired for compositing dur-
ing training, with 5% chance of having no foreground. We
hold out 2048 deterministic foreground-background pairs
for validation and testing (1024 each).

5. Experiments
We used PyTorch [39] wrapped in Lightning [14]; some

models use the R101-FPN keypoint detection R-CNN from
Detectron2 [53]. All models can be trained with a single
GTX1080ti (11GB VRAM). Unless otherwise mentioned,
we trained models using the Adam [28] optimizer, with
0.001 learning rate and batch size 32, for 1,000 epochs.

The ResNet backbone is trained on the Danbooru tag
classification task using our new manual tagging rulebook
(Sec. 4.2). The character segmenter used for bound-
ing boxes is trained with our new character segmentation
dataset (Sec. 4.3). Using the previous two submodules, we
train the pose estimator using our upgraded version of the
ADD dataset (Sec. 4.1). All data and code will be released
upon publication.

5.1. Pose Estimation Transfer

Table 1 shows the performance of different architectures.
We report COCO OKS [34], PCKh and PCPm [1], and PDJ
(for comparison with Khungurn et al. [25]). From the top

797



keypoint OKS@50 OKS@75 PCKh@50 PDJ@20 PDJ@20 [25]
nose 0.9466 (+0.4%) 0.8419 (+3.8%) 0.9918 (+0.2%) 0.9897 (+0.2%) 0.794 (+24.7%)
eyes 0.9795 (+1.1%) 0.9363 (+4.3%) 0.9928 (+0.0%) 0.9928 (+0.1%) *0.890 (+11.6%)
ears 0.9589 (+1.3%) 0.8573 (+0.8%) 0.9836 (+0.1%) 0.9795 (-0.2%) *0.890 (+10.1%)
shoulders 0.9825 (+2.8%) 0.9240 (+1.8%) 0.8973 (+2.6%) 0.9343 (+2.0%) *0.786 (+18.9%)
elbows 0.8655 (+3.8%) 0.7320 (+6.4%) 0.7290 (+5.7%) 0.7916 (+4.2%) 0.641 (+23.5%)
wrists 0.7341 (+2.0%) 0.5657 (+2.4%) 0.6263 (+1.2%) 0.6961 (+1.5%) 0.503 (+38.4%)
hips 0.9630 (+0.0%) 0.8686 (+2.8%) 0.6704 (-1.1%) 0.7854 (+0.7%) *0.786 (-0.1%)
knees 0.8686 (+2.8%) 0.7444 (+2.5%) 0.6643 (+2.9%) 0.7577 (+3.4%) 0.610 (+24.2%)
ankles 0.8090 (+1.3%) 0.6910 (-0.3%) 0.6263 (+1.0%) 0.7105 (+1.8%) 0.596 (+19.2%)

Table 2. Keypoint breakdown of our most performant “feature concatenation” model trained on our extended ADD dataset. In the center,
we list the relative improvement of each metric when training on additional data. On the right, we display the PDJ@20 from Khungurn
et al. [25], and report the relative difference from our best model. *Note that due to keypoint incompatibilities, we fill missing keypoint
results from [25] using the most similar keypoints reported: “head” for eyes and ears, and “body” for shoulders and hips.

Model F-1 pre. rec. IoU
Ours 0.9472 0.9427 0.9576 0.9326
YAAS SOLOv2 0.9061 0.9003 0.9379 0.9077
YAAS CondInst 0.8866 0.8824 0.8999 0.9158
AniSeg 0.5857 0.5877 0.5954 0.6651

Table 3. Comparison of our character segmentation and bounding
box performance, described in Sec. 5.3.

four rows, we see that our proposed feature concatenation
and matching models perform the best out overall, and that
the addition of our new data increases performance. We also
observe that while concatenation performs marginally better
than matching, matching is 8.8x more parameter efficient
and one-third faster at inference.

The second group of Table 1 shows other architectures,
roughly in order of method complexity. Here, as in Fig. 1,
“task” source features refer to Mask R-CNN pose estima-
tion features, and “domain” source features refer to illustra-
tion features extracted by our ResNet50 tag classifier.

“Task Fine-tuning Only” fine-tunes the pretrained
Mask R-CNN head with its frozen default backbone; the
last head layer is re-initialized to accommodate auxiliary
appendage keypoints. This is vanilla transfer by fine-tuning
a task-specific source network on a small task-specific tar-
get domain dataset.

“Domain Features Only” is our frozen ResNet50 back-
bone with a keypoint head. This is vanilla transfer by adding
a new task head to a domain-specific source network.

“Task Fine-tuning w/ Domain Features” fine-tunes the
pretrained Mask R-CNN head as above, but replaces the R-
CNN backbone with our frozen ResNet50 backbone. This
is a naive method of incorporating both sources, attempting
to adapt the task source’s pretrained prediction component
to new domain features.

“Adversarial (DeepFashion2)” reuses the feature
matching architecture, but performs adversarial domain dis-

crimination instead of MSE matching. The discriminator
is a shallow 2-layer convnet, trained to separate Mask R-
CNN features of randomly sampled DeepFashion2 [17] im-
ages from ResNet features of Danbooru illustrations. As
the feature maps to discriminate are spatial, we are careful
to employ only 1x1 kernels in the discriminator; otherwise,
the discriminator could pick up intrinsic anatomical differ-
ences. The matching network now fools the discriminator
by adversarially aligning the feature distributions.

“Adversarial (COCO)” is the same adversarial archi-
tecture as above, but using COCO [34] images containing
people instead of Deepfashion2.

While domain-features-only is the cheapest architecture
overall, it is only slightly more efficient than feature match-
ing, and loses all benefits of task-specific transfer. How-
ever, the performance drop from feature concatenation to
domain-features-only and task-with-domain-features is not
very large (2-3% OKS@50); meanwhile, there is a wide
gap to task-fine-tuning-only. This shows that the domain-
specific ResNet50 backbone trained on our new body-tag
rulebook provides much more predictive power than the
task-specific pretrained Mask R-CNN.

It is important to note that the adversarial models exhib-
ited significant instability during training. After extensive
hyperparameter tuning, the best DeepFashion2 model re-
turns NaN loss at epoch 795, and the best COCO model fails
at epoch 354; all other models safely exited at epoch 1,000.
DeepFashion2 likely outperforms COCO because the image
composition is much more similar to that of Danbooru; im-
ages are typically single-person portraits with most of the
body in view. Adversarial losses are notoriously difficult
to optimize, and in our case destabilized training so as to
perform worse than not having been used at all.

The fourth group of Table 4.3 shows out-of-the-box gen-
eralization to illustrations for Mask R-CNN [20] and Open-
Pose [8]. We use Mask R-CNN as our task-specific source,
as it is less-overfit to natural images than OpenPose.
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Figure 2. Pose-based retrieval. From left to right, we show the query image (descriptor distance zero) followed by its five nearest neighbors
(duplicate and NSFW images removed). Each illustration is annotated with its Danbooru ID, descriptor distance to the query, and the
predicted bounding box with COCO keypoints. Please see supplementary materials for full artist attribution and additional examples.

Table 4.3 gives a keypoint breakdown and comparison
with Khungurn et al. [25]. The results demonstrate that
training on our additional more varied data improves the
overall model performance; this is especially true for ap-
pendage keypoints, which are more variable than the head
and torso. We also see significant improvement from results
reported in Khungurn et al. The exception is the hips, for
which we compare to their “body” keypoint at the navel.
While this is not a direct comparison, our PDJ on hips is
nevertheless low relative to other keypoints. This is because
PDJ does not account for the intrinsic ambiguity of the hips;
looking at the OKS, which accounts for annotator disagree-
ment, we see that hip performance is actually quite high.

An important caveat is that the metrics are generally not
comparable with those reported in human pose estimation.
COCO OKS, for example, was designed using annotator
disagreement on natural images [34]; however, illustrated
character proportions deviate widely from the standard hu-

man form (i.e. bigger head and eyes). Characters also tend
to take up more screen space proportional to body size (i.e.
big hair and clothing), leading to looser thresholds normal-
ized by bounding box size.

5.2. ResNet Tagger Backbone

We train our ResNet50 tagger backbone to produce
illustration-specific source features (Fig. 1). Taking into
account the class imbalance, we accumulate gradients for
an effective batch size of 512. Considering the minimum
(0.04%) and median (0.38%) class frequencies, we may ex-
pect the smallest class to appear 0.2 times per batch, and the
median class to appear 1.9 times per batch.

To demonstrate the effectiveness of our tag rulebook and
class reweighing strategy, we report performance on pose
estimation using two other ResNet50 backbones: the RF5
tagger [3], and the default ImageNet-pretrained ResNet50
from PyTorch [39]. While there are several Danbooru tag-
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gers available [3, 27], we chose to compare our backbone
to the RF5 tagger [3] because it is the most architecturally
similar to our ResNet50, and relatively better-documented.
The backbones all share the same architecture and parame-
ter count, and are all placed into our feature concatenation
transfer model for the ablation.

The backbone ablation results are shown in the last three
rows of Table 1. As expected, a classifier trained with
our novel body-part-specific tagging rulebook and class-
balancing techniques significantly improves transfer to pose
estimation. Note that our tagger also outperforms RF5 at
classification (on shared target classes); please refer to the
supplementary materials for more details.

5.3. Character Segmentation & Bounding Boxes

We compare the segmentation and bounding box perfor-
mance of our system with that of publicly-available models.
AniSeg [33] is a Faster-RCNN [41], and YAAS [59] pro-
vides SOLOv2 [51] and CondInst [47] models. These de-
tectors may detect more than one character, and their bound-
ing boxes are not necessarily tight around segmentations;
for simplicity, we union all predicted segmentations of an
image, and redraw a tight bounding box around the union.
We evaluate all models on the same test set described in
Sec. 4.3. Table 3 shows that training with our new 20x
larger dataset outperforms available models in both mean
F-1 (segmentation) and IoU (bounding boxes); we thus use
it in our pipeline for bounding box prediction.

6. Application: Pose-guided Retrieval
An immediate application of our illustrated pose estima-

tor is a pose-guided character retrieval system. We construct
a proof-of-concept retriever that takes a query character (or
user-specified keypoints and bounding box) and searches
for illustrated characters in a similar pose. This system can
serve as a useful search tool for artists, who often use refer-
ence drawings while illustrating.

Our pose retriever performs a simple nearest-neighbor
search. The support images consist of single-character Dan-
booru illustrations with the full body tag. Using our best-
performing model, we extract bounding boxes and keypoint
locations for each character, normalize the keypoints by the
longest bounding box dimension, and finally store the pair-
wise euclidean distances between the normalized keypoints.
This process ensures the pairwise-distance descriptor is in-
variant to translation, rotation, and image scale. At infer-
ence, we extract the descriptor from the query, and find the
euclidean k-nearest neighbors from the support set.

In practice, we compute descriptors using all 25 pre-
dicted keypoints (17 COCO and 8 additional appendage
midpoints). This makes the descriptor 300-dimensional (25
choose 2), which is generally too large for tree-based near-
est neighbors [6]. However, since our support set consists of

136k points, we are still able to brute force search in reason-
able time. Empirically, each query takes about 0.1341s for
keypoint extraction (GPU) and 0.0638s for search (CPU).

To demonstrate the effectiveness of our pose estimator,
we present several query results in Fig. 2; while there is no
ground-truth to measure quantitative performance, qualita-
tive inspection suggests that our model works well. We can
retrieve reasonably similar illustrations for standard poses
as shown in the first row, as well as more difficult poses for
which illustrators would want references. Note that while
our system has no awareness of perspective, it is able to
effectively leverage keypoint cues to retrieve similarly fore-
shortened views in the last row. For more examples, please
refer to our supplementary materials.

7. Conclusion & Future Work
While we may continue to improve the transfer perfor-

mance through methods like pseudo-labeling [30] or cycle-
consistent image translation [22], we can also begin extend-
ing our work to multi-character detection and pose estima-
tion. While it is possible to construct a naive instance-based
segmentation and keypoint estimation dataset by composit-
ing background-removed ADD samples, we cannot expect
a system trained on such data to perform well in-the-wild.
Character interactions in illustrations are often much more
complex than human interactions in real life, with much
more frequent physical contact. For example, Danbooru
has 43.6k images tagged with holding hands and 59.1k with
hugging, already accounting for 2.8% of the entire dataset.
Simply compositing independent characters together would
not be able to model the intricacies of the illustration do-
main; we would again need to expand our datasets with an-
notated instances of character interactions.

As a fundamental vision task, pose estimation also pro-
vides a valuable prior for numerous other novel applications
in the illustrated domain. Our pose estimator opens the door
to pose-guided retargeting for automatic character anima-
tion, better keyframe interpolation, pose-aware illustration
colorization, 3D character reconstruction, etc.

In conclusion, we demonstrate state-of-the-art pose es-
timation on the illustrated character domain, by leverag-
ing both domain-specific and task-specific source models.
Our model significantly outperforms prior art [25] despite
the absence of synthetic supervision, thanks to successful
transfer from our new illustration tagging subtask focused
on classifying body-related tags. In addition, we provide
a single-region proposer trained on a novel character seg-
mentation dataset 20x larger than those currently available,
as well as an updated illustration pose estimation dataset
with twice the number of samples in more diverse poses.
Our model performance allows for the novel task of pose-
guided character illustration retrieval, and paves the way for
future applications in the illustrated domain.
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Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[40] Omid Poursaeed, Vladimir Kim, Eli Shechtman, Jun Saito,
and Serge Belongie. Neural puppet: Generative layered car-
toon characters. In Proceedings of the IEEE/CVF WACV,
pages 3346–3356, 2020.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. arXiv preprint arXiv:1506.01497, 2015.

[42] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp,
Mark Finocchio, Richard Moore, Alex Kipman, and Andrew
Blake. Real-time human pose recognition in parts from sin-
gle depth images. In CVPR 2011, pages 1297–1304. Ieee,
2011.

[43] Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa.
Mastering sketching: adversarial augmentation for struc-
tured prediction. ACM Transactions on Graphics (TOG),
37(1):1–13, 2018.

[44] Li Siyao, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dim-
itris N Metaxas, Chen Change Loy, and Ziwei Liu. Deep
animation video interpolation in the wild. arXiv preprint
arXiv:2104.02495, 2021.

[45] Baochen Sun and Kate Saenko. Deep coral: Correlation
alignment for deep domain adaptation. In European con-
ference on computer vision, pages 443–450. Springer, 2016.

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE CVPR, pages 1–9,
2015.

[47] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional
convolutions for instance segmentation. arXiv preprint
arXiv:2003.05664, 2020.

[48] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In Proceed-
ings of the IEEE CVPR, pages 7167–7176, 2017.

[49] Gul Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In Proceedings of the IEEE
CVPR, pages 109–117, 2017.

[50] Mei Wang and Weihong Deng. Deep visual domain adapta-
tion: A survey. Neurocomputing, 312:135–153, 2018.

[51] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmentation.
Advances in Neural Information Processing Systems, 2020.

[52] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M
Ni. Generalizing from a few examples: A survey on few-
shot learning. ACM Computing Surveys (CSUR), 53(3):1–34,
2020.

[53] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019.

[54] Xiangyu Xu, Hao Chen, Francesc Moreno-Noguer, László A
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