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Abstract

Real-time instance segmentation is crucial in various
AI applications. This work designs a network named Fast
Attention based Single-Stage Segmentation NeT (FASSST)
that performs instance segmentation with video-grade speed.
Using an instance attention module (IAM), FASSST quickly
locates target instances and segments with region of interest

(ROI) feature fusion (RFF) aggregating ROI features from
pyramid mask layers. The module employs an efficient single-

stage feature regression, straight from features to instance
coordinates and class probabilities. Experiments on COCO
and CityScapes datasets show that FASSST achieves state-of-
the-art performance under competitive accuracy: real-time
inference of 47.5FPS on a GTX1080Ti GPU and 5.3FPS on
a Jetson Xavier NX board with only 71.6GFLOPs.

1. Introduction

Various computer vision applications, such as object de-

tection and semantic segmentation, have undergone remark-

able progress in recent years [5, 11, 6]. Nevertheless, as a

more complex task, instance segmentation requires precise

locations and semantic masks of all instances in a frame,

which still remains a great challenge especially its imple-

mentation on resource-constrained edge/terminal devices.

Modern researches on instance segmentation mainly fall

into two categories: i) Pixel-wise approach [10, 12] which

learns an affinity relation between image pixels and segments

image by segregating pixels of different instances and group-

ing pixels of same instance. However, a post-processing is

needed to separate instances, leading to unnecessary com-

putational complexity and low speed. ii) Proposal-based

approach [13, 9] which first proposes object candidates by

bounding boxes, then selects interested ones of them, and

at last performs masking. This strategy avoids handling all

pixels of an image, but still requires multiple steps of com-

Proposal-based 
approach with multiple 

steps (e.g., Mask R-CNN)

Figure 1. Different instance segmentation approaches.

putationally expensive candidate proposal. Also, a large

amount of segmentation time is wasted on the unadopted

candidates or overlapped areas, making it hard to achieve a

real-time speed.

To overcome these hurdles, we design FASSST (Fast

Attention-based Single-Stage Segmentation NeT) for real-

time instance segmentation. The contributions are threefold:

1) an instance attention module (IAM) is devised to locate

and segment the target instances, instead of learning pixel-

wise relations or proposing object candidates; 2) a single-
stage feature regression strategy that produces instance co-

ordinates and class probabilities straight from features is

used for video speed signal processing; 3) segmentation is

done via a region of interest (ROI) feature fusion (RFF), ag-

gregating ROI features from the pyramid mask layers and

delivering competitive accuracy with fewer layers.

Figure 1 compares several related works and highlights
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the difference of the proposed FASSST. Experimental re-

sults on COCO [21] and CityScapes [7] show that FASSST

achieves state-of-the-art performance under competitive ac-

curacy: real-time inference of 47.5FPS on a GTX1080Ti

GPU and 5.3FPS on a Jetson Xavier NX board with only

71.6GFLOPs. In what follows, Section 2 reviews some

related works. Section 3 illustrates the FASSST design. Sec-

tion 4 presents experiments on two large-scale datasets and

Section 5 draws the conclusion.

2. Related Instance Segmentation Work

Pixel-wise: Existing pixel-wise approaches for instance

segmentation are usually realized by grouping instance pix-

els into an arbitrary number of instances. Recent work [10]

proposes a discriminative loss function to learn pixel-wise

relations by pushing away pixels belonging to different in-

stances and grouping pixels in the same instance. Later,

SSAP [12] uses a pixel-pair affinity pyramid to group two

pixels each time. And SGN [22] reframes the instance seg-

mentation problem into a sequence of sub-grouping prob-

lems. However, these methods suffer from unsatisfactory

accuracy and speed due to their per-pixel grouping and ex-

pensive post-processing.

Proposal-based: Driven by the advancement of object

detection networks, recent works perform instance segmen-

tation with R-CNN to first propose object candidates and

then segment interested ones of them. The work in [8]

utilizes the shared convolutional features among object can-

didates in segmentation layers. DeepMask [25] is developed

for learning mask proposals based on Fast R-CNN. Multi-

task cascaded network [9] is developed with an instance-

aware semantic segmentation on object candidates. Mask

R-CNN [13] is developed as the extension of Faster R-CNN

with a mask branch. All these approaches require multi-
ple steps that first generate object candidates, then segment

interested ones of them, and at last detect and recognize

the correct ones. Apparently, such object proposal methods

waste unnecessary computation on the unadopted candidates

and overlapped areas of candidates.

Single-stage: Lately, there are attempts to produce

a single-stage instance segmentation [3, 29, 17, 27,

4]. FCIS [18] assembles the position-sensitive score

maps within the ROI to directly predict instance masks.

YOLACT [2] tries to combine the prototype masks and pre-

dicted coefficients and then crops with a segmented bound-

ing box. PolarMask [30] introduces the polar represen-

tation to formulate pixel-wise instance segmentation as a

distance regression problem. SOLO [28] divides network

into two branches to generate instance segmentation with

predicted object locations. However, they still require sig-

nificant amounts of pre- or post-processing before or after

localization.

SGN, 
area of interest: 

all pixels

Mask R-CNN, 
area of interest: 

43.7%

FASSST, 
area of interest: 

11.3%

Figure 2. Comparison of area of interest among different instance

segmentation schemes.

3. FASSST
We now elaborate FASSST that leverages an instance

attention module (IAM) to achieve a single-stage real-time

instance segmentation. There are three main design goals:

small size, high speed and high accuracy.

3.1. Observations

Instance segmentation usually requires the correct sepa-

ration of all parts in a frame. In practical application such

as autonomous driving and robotics, to precisely detect the

free-space area and predict trajectories, the frames are of

high-resolution (e.g., 2048 × 1024), which contain a large

number of pixels. We divide frame pixels into two parts:

i) Target object pixels, which are important but practically

minority in frames. ii) Background pixels, which are the ma-

jority in most situations. This implies significant processing

time can be saved if instances in a frame can be quickly and

precisely located. The proportions of area of interest among

different approaches are compared in Figure 2 wherein we

calculate the proportions by: area of interest/frame size, it

can be seen the former two approaches need to handle much

more area than in FASSST.

With such analysis, we present the full architecture of

FASSST in Figure 3. Assuming F ∈ R
Wf×Hf×Df is a

frame, where W , H and D represent the mode dimensions.

First, we use several front convolutional layers of the net-

work backbone as “network head” to extract raw features

E ∈ R
We×He×De of the whole frame. The specific settings

of network head will be further analyzed in the experiment

section. Then, the feature tensor E is parallelly delivered

into the following layers and the IAM. The IAM is applied

to learn instance information tensor I ∈ R
Wi×Hi×Di , in-

cluding instance coordinates and class probabilities, from

raw features. Next, we use the instance information to lo-

cate ROIs on several pyramid mask layers and obtain the

fused ROI features R ∈ R
Wr×Hr×Dr by an ROI feature

fusion module (RFF). Note that the fused ROI feature tensor

2211



+ +
Extracted 
features E

Instance attention module (IAM)

Instance 
information I

ROI feature fusion (RFF)

ROI features
Fused ROI 
features R

Pyramid 
mask layers

FASSST

... R1 R2 R3

...
...

Main network body

Figure 3. Overview of the FASSST architecture.

9 conv layers

...

Extracted 
feature 
tensor E 

d Instance 
information 
tensor I

Figure 4. Instance attention module (IAM) architecture.

carries both local and global context information. Finally,

the representation R is fed into the subsequent small-size

convolutional layers to get the final instance segmentation

results S ∈ R
Ws×Hs .

3.2. Instance Attention Module

The feature regression schemes for object detection (e.g.,

YOLO [26] and SSD [23]) have been proposed to learn

structured output regression to localize instances and proved

to be efficient. Similarly, in the proposed IAM module, we

regard the instance attention as a single-stage regression

problem and directly learn instance coordinates and class

probabilities from raw features. First, the raw feature tensor

E is generated by the network head:

E = extr(F ), (1)

where extr denotes the feature extractor to extract raw fea-

tures from image pixels. Then, as shown in Figure 3, the

IAM further produces the instance locality information I:

I = attn(E), (2)

where attn represents the instance attention process. attn
regards the instance attention as a single-stage regression

problem, which directly learns instance locality information

I from raw features E [26]. Specifically, I is structured as

an n × c × s tensor (that is Wi = n, Hi = c and Di = s),

where n is the largest number of instances for each frame

which varies for different datasets (e.g., in the COCO exper-

iments we set n = 36), c denotes 4 coordinate predictions

R3

R2

R1

Figure 5. ROI feature fusion architecture.

Instance 
segmentation 
results S

I

r
...

5 conv and 1 deconv layers

Figure 6. Mask generation progress.

of an instance: top-most t, left-most l, bottom-most b, right-

most r, and dimension of s being the number of classes and

respective confidence scores of class probabilities are stored

along the s-axis. These trained coefficients can provide accu-

rate instance coordinates and class probabilities for a frame.

Some detailed sizes of the adopted convolutional layers are

specified in Figure 4. The particular settings of layer scales

and depths for network head, IAM, and later mask “tail” will

be discussed in Section 4.3. The instance information I will

be fed back to the main network body and applied to locate

the ROI features. It should be noted that the overlapped areas

of instances are multi-time processed in FASSST.

3.3. ROI Feature Fusion

After obtaining the important instance coordinates, the

ROI features can be located on layers. First, we apply a

series of pyramid mask layers to exploit deep features. Note

that it has been proved that the shallow layers explore more

on the instance contours, while the deeper layers focus on

the full instances [31, 19]. Then, we employ the RFF to

fuse the features from ROIs of the pyramid mask layers.
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Figure 7. Workflow of FASSST.

The fused ROI features carry both local (instance core) and

global (instance contour) context information, delivering a

high accuracy. Inside the RFF, we apply upsampling and

ReLU operations to aggregate different features. As shown

in Figure 5, the input to this module contains three ROI

features R1, R2 and R3. Note that R2 has a spatial size

double that of R3, and R1 is double that of R2. To form

these, we first perform upsampling on R3 with a rate of 2
through bilinear interpolation:

Ru
3 = upsamp(R3), (3)

where Ru
3 is the upsampled R3 feature tensor and upsamp

represents the corresponding upsampling function. Then, we

upsample Ru
3 to R2 and apply the upsamp operation again.

Finally, the fused feature tensor R is processed by:

R =fuse(R1,R2,R3)

=ReLU(R1 + upsamp(R2 + upsamp(R3))),
(4)

where fuse denotes the feature fusion function. Note that

a ReLU function is further applied to refine the upsampled

features.

3.4. Mask Generation

To generate instance masks from the fused ROI features,

we further apply several small-size convolutional layers as

the “tail” part of the framework, as shown in Figure 6. We

use 5 convolutional layers and 1 deconvolution layer to learn

the mask representation. Assuming the size of fused ROI

feature tensor R is w×h× d, we use 5 convolutional layers

and 1 deconvolution layer to learn the mask representation.

With the mask outputs produced, we can obtain the final

instance segmentation results S of the proposed framework

FASSST. The whole workflow of FASSST is summarized in

Algorithm 1 Forwards Propagation of FASSST Training
Require: Frame data F , training epoch T .

Ensure: Training accuracy P .

1: for k = 1 : T do
2: Feed F into the network head

3: Obtain the extracted features Ek ← extr(F )
4: Feed Ek to IAM

5: Ik ← attn(Ek), parallelly process the main network

body to pyramid mask layers

6: Locate the ROIs: Rk
1 ,R

k
2 ,R

k
3 ← loct(Ik)

7: RFF: Rk ← fuse(Rk
1 ,R

k
2 ,R

k
3)

8: Feed Rk to mask “tail”: Sk ← mask(Rk)
9: end for

10: Get the training accuracy P

Figure 7, where loct represents the ROI localization process,

and mask represents the final mask generation.

3.5. Training Strategy

The forward propagation of FASSST training is presented

in Algorithm 1. Different from the two- or multi-stage train-

ing of proposal-based instance segmentation approaches, the

training of FASSST is a single-stage end-to-end process.The loss function in backward propagation of FASSST

training is built on mask loss Lm, localization loss Ll and

classification loss Lc:

L = λmLm + λlLl + λcLc, (5)

where L is the total loss, λm, λl and λc are set as 5.75, 3
and 1.25, respectively. Specifically, the Lm is based on Dice

Loss [15]:

Lm = 1−Dice(maskp,maskg), (6)

where Dice is the corresponding function for dice coeffi-

cients, maskp and maskg are predicted masks and ground

truth masks, respectively. Moreover, Ll and Lc are based on

the conventional Focal Loss [20].

4. Experiments
We present a thorough evaluation and ablation study of

the proposed FASSST. Our experimental setup employs

Caffe for coding; a single NVIDIA GTX-1080Ti GPU card

for hardware realization; and an NVIDIA Jetson Xavier

NX board for terminal implementation. Benchmarking is

made on two instance segmentation datasets: COCO and

CityScapes. Note that in all comparisons, the accuracy and

efficiency data of some open source models are practically

evaluated in our machine. Moreover, the plain FASSST rep-

resents main network body with MobileNet-54-V2 backbone

and network head with input frame scale 416×416. We will

emphasize by suffix if different settings are used. All these

settings will be further discussed in Section 4.3 on ablation

study.
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Figure 8. Sample visual results of FASSST on COCO.

Category Approach Backbone AP AP50 AP75 APS APM APL

Pixel-wise
SGN [22] - 25.0 44.9 25.8 - - -

SSAP [12] ResNet-101-FPN 29.4 48.1 28.8 - 28.6 -

Proposal-based

FCIS [18] ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0

FCIS+++ [18] ResNet-101-C5-dilated 33.6 54.5 37.9 - - -

MNC [9] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6

Mask R-CNN [13] ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4

Single-stage

ExtremeNet [32] Hourglass-104 18.9 44.5 13.7 10.4 20.4 28.3

YOLACT [2] ResNet-101-FPN 31.2 50.6 32.8 12.1 33.3 47.1

SOLO [28] ResNet-101-FPN 37.8 59.5 40.4 16.4 40.6 54.2
SipMask [17] ResNet-101-FPN 32.8 53.4 34.3 9.3 35.6 54.0
CenterMask [17] ResNet-50-FPN 32.9 - - 12.9 34.7 48.7

PolarMask [30] ResNet-101-FPN 30.4 51.9 31.0 13.4 32.4 42.8

Proposed FASSST MobileNet-54-V2 34.2 56.4 38.1 14.9 36.7 53.8
i) - represents not reported or no open source for evaluation.

ii) red: ranking 1st; yellow: ranking 2nd; blue: ranking 3rd.
Table 1. Accuracy comparison with state-of-the-arts on COCO.

4.1. Evaluation on COCO

We first train and evaluate FASSST with the COCO2017

segmentation benchmark that involves 80 foreground in-

stance classes and one background class. The original dataset

contains 118K (train) and 41K (test) instance pixel-level la-

beled images. Specifically, we perform training on train2017
and evaluation on test-dev. Using a batch size as 8, epochs

as 100 and a learning rate as 0.005, each full training on

COCO costs 3 ∼ 4 days. Some visual results by FASSST

are shown in Figure 8 where we sample a wide range of in-

stance sizes. It is observed that existing instances are located

and segmented in the frames by FASSST.

4.1.1 Accuracy Analysis

The accuracy of FASSST on COCO is measured in terms of

the standard average precision (AP) metrics, namely, AP50,
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Figure 9. Sample visual results of FASSST on Cityscapes.

AP75, and APS , APM , APL. Here AP50 and AP75 represent

the AP scores over IoU thresholds at 0.5 and 0.75, respec-

tively; APS , APM and APL denote the AP scores for small

objects (area< 322), medium objects (322 <area< 962) and

large objects (area> 962), respectively. In Table 1, we report

the accuracy comparison on COCO between FASSST and

state-of-the-art pixel-wise and proposal-based models. We

conclude that FASSST can achieve competitive accuracy

as well as video speed using the more compact backbone
(MobileNet-54-V2) for the main network body. The aver-

age AP of FASSST reaches 34.2, which outperforms various

state-of-the-arts and is only slightly lower than Mask R-CNN

and SOLO.

4.1.2 Efficiency Analysis

Here we evaluate the inference speed, computational com-

plexity and storage of FASSST. Table 2 compares the FPS

(frames per second), FLOPs (floating-point operations per

second) and storage size between FASSST and state-of-the-

arts. Note that all listed results are practically measured

on one single GTX-1080Ti card. In particular, FASSST ex-

hibits a major niche in the inference speed which reaches

59.2FPS and is 5.7× faster than the popular Mask R-CNN.

This video-grade speed can be considered to be “very fast”
for instance segmentation. Also, the proposed framework re-

quires the least FLOPs (71.6G) and storage (36.3MB) among

all schemes, which are 3.8× and 6.7× smaller than the Mask

R-CNN, respectively.

4.2. Evaluation on CityScapes

We further test FASSST on the CityScapes, a large-scale

dataset with high quality pixel-level annotations of 5000 im-

Approach FPS FLOPs (G) Storage (MB)

SSAP [12] 5.5 - -

FCIS [18] 6.2 364.1 207.0
Mask R-CNN [13] 10.3 273.6 242.3

RetinaMask [20] 6.8 358.3 423.6

MS R-CNN [14] 11.5 - -

YOLACT-550 [2] 41.7 97.3 121.8
SOLO [28] 22.5 - 422.0

PolarMask-400 [30] 23.1 248.7 409.3

FASSST 59.2 71.6 36.3
Table 2. Efficiency comparison with state-of-the-arts on COCO.

ages of 2048 × 1024 resolution collected in street scenes

from 50 different cities. Following the evaluation protocol

for instance segmentation, we select 8 instance labels for

training: person, rider, car, truck, bus, train, motorcycle and

bicycle (belonging to two super categories: human and vehi-
cle, and all other labels are considered as background), which

are regarded as the most important classes in autonomous

driving. The training and testing sets contain 2975 and 1525
images, respectively. Sample visual instance segmentation

results on CityScapes are presented in Figure 9. Again, we

conclude that FASSST can accurately locate and mask the

designated instances, even for crowds in the distance.

4.2.1 Accuracy Analysis

We evaluate the standard metrics AP and AP50, which are

the same with COCO experiments, and individual AP scores

for every instance class. Here we present the accuracy com-

parison on CityScapes between FASSST and state-of-the-art

methods in Table 3. The proposed FASSST with lightweight

MobileNet-54-V2 backbone outperforms various state-of-

the-arts on all AP scores.
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Approach AP AP50 person rider car truck bus train motorcycle bicycle

InstanceCut [16] 13.0 27.9 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7

SGN [22] 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

SegNet [1] 29.5 55.6 29.9 23.4 43.4 29.8 41.0 33.3 18.7 16.7
SSAP [12] 32.7 51.8 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2

Mask R-CNN [13] 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

Mask R-CNN[COCO] [13] 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7
GMIS [24] 27.3 45.6 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8

FASSST-768[COCO] 31.1 56.2 34.5 26.8 49.9 28.7 38.3 27.8 24.2 18.7
“[COCO]” means with pretrained COCO model.

Table 3. Accuracy comparison with state-of-the-arts on CityScapes.

Approach FPS FLOPs (G) Storage (MB)

SegNet [1] 2.4 604.7 112.0
SSAP [12] 3.4 - -

Mask R-CNN [13] 6.9 463.5 245.6

YOLACT-700 [2] 21.7 214.3 192.0
PolarMask-800 [30] 18.3 324.8 705.4

FASSST-768 47.5 112.8 43.7
Table 4. Efficiency comparison with state-of-the-arts on CityScapes.

4.2.2 Efficiency Analysis

We further report efficiency analysis of FASSST on

CityScapes. As shown in Table 4, FASSST achieves

47.5FPS on the a single GTX1080Ti GPU, which is a 2.2×
speedup versus the representative single-stage instance seg-

mentation method YOLACT. The FLOPs and model size of

FASSST are only 112.8G and 41.3MB, i.e., 1.9× and 4.6×
smaller than YOLACT, respectively. In addition, we further

evaluate FASSST on a terminal device of NVIDIA Jetson

Xavier NX board, the inference speed achieves remarkable

5.3FPS. Therefore, we conclude that FASSST provides a

real-time and hardware-friendly instance segmentation for

edge computing.

4.3. Ablation Study

We run a series of ablations to further analyze FASSST.

Note that all experiments are evaluated on COCO and

CityScapes with the same software-hardware setting.

4.3.1 Network Head

The first concern arises from the beginning of network. As

the network head extracts important features for the sub-

sequent parts, the input frame scale and depth should be

investigated. In Table 5, we compare different heads’ scales

and depths. At a frame scale of 416, changing the head depth

from 4 to 5 provides 3.7 AP gains while 5 to 6 provides 0.1
AP gains and the accuracy becomes stable. Therefore, we

conclude that 5 is the best choice for layer depth of network

head in the main network body. Next, setting depth to be

5, changing input frame scale from 416 to 768 provides 2.2
AP gain, and causes 11.7FPS loss. In practice, we keep

both scales for network head and apply FASSST-416 as the

default, and enable FASSST-768 when the frame sizes are

large (e.g., in CityScapes). Note that same investigation of

depths has been thoroughly performed on the IAM and mask

“tail” modules, and hence we determine the current settings

(9 conv layers for the IAM, and 5 conv and 1 deconv layers

for the mask “tail”).

4.3.2 Backbone Architecture

For the backbone architecture, we avoid using the com-

monly used complex backbones like ResNet-101-FPN and

ResNeXt-101-FPN. In Table 6, we evaluate FASSST with

two different backbones. The results show that ResNet-

50-FPN obtains better accuracy (0.7 higher on AP) than

MobileNet-54-V2 but loses much speed (20.4FPS). Subse-

quently, we employ MobileNet-54-V2 as the default back-

bone due to its compactness and decent accuracy. Neverthe-

less, FASSST with more complex ResNet-50-FPN already

achieves 38.8FPS and outperforms most approaches in Ta-

ble 2 except YOLACT-550.

4.3.3 Number of Boxes

The number of boxes n in IAM plays an important role in the

instance localization prediction, which is set to balance the

performance and computational complexity of IAM. In Ta-

ble 7, we report the AP scores on both COCO and CityScapes

with different n values which are the squared numbers from

4 to 9. As we can see, the speeds FPScoco and FPScity get

lower smoothly as n goes up. Among all schemes, n = 36
and n = 49 get the highest APcoco 34.2 and APcity 31.1,

and thus are determined to be the best settings on COCO and

CityScapes, respectively. The comparison of visual results

on COCO with different n (16, 36 and 81) is further shown

in Figure 10. It can be observed that n = 36 delivers the best

performance for which all instances are precisely located

and segmented.

4.3.4 RFF

The proposed RFF has significant impact on the performance

of instance segmentation results. Table 9 shows the accuracy

results with/without RFF. Note that we directly feed ROI
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Scale Depth AP AP50 AP75 APS APM APL FPS

416

4 30.5 50.3 31.8 12.4 33.1 46.2 62.3

5 34.2 56.4 38.1 14.9 36.7 53.8 59.2
6 34.3 56.8 38.1 15.1 36.4 53.9 50.6

768

4 33.3 52.6 35.4 14.3 35.2 48.6 52.1

5 36.4 56.7 39.6 16.1 38.3 54.1 47.5
6 36.8 56.9 39.7 16.5 38.7 54.3 40.6

The chosen ones are in bold.
Table 5. Network Head: Larger and deeper head brings higher accuracy, while too large or deep head highly slows down the speed on COCO.

Backbone AP AP50 AP75 APS APM APL FPS

MobileNet-54-V2 34.2 56.4 38.1 14.9 36.7 53.8 59.2
ResNet-50-FPN 34.9 57.6 39.1 15.8 37.0 55.1 38.8

Table 6. Backbone Architecture: Backbone with higher complexity gains expected benefits but lowers the speed on COCO.

Number of Boxes APcoco APcity FPScoco FPScity

16 31.5 27.3 65.1 52.1

25 33.3 29.5 63.5 51.0

36 34.2 30.6 59.2 49.5
49 34.0 31.1 55.6 47.5

64 32.6 30.8 49.6 42.3

81 30.1 28.6 41.9 34.7

“coco” and “city” mean on COCO and CityScapes datasets, respectively.
Table 7. Number of Boxes: More boxes in IAM bring accuracy benefits but speed decreases, while too many boxes cause accuracy loss due

to overfitting.

COCO model AP AP50 person rider car truck bus train motorcycle bicycle

with 31.1 56.2 34.5 26.8 49.9 28.7 38.3 27.8 24.2 18.7
without 25.8 49.2 29.5 21.7 44.9 23.1 33.5 21.0 18.4 14.2

Table 8. Pretrained COCO Model: Pretrained model on COCO remarkably improves the accuracy on CityScapes.

RFF AP AP50 AP75 APS APM APL

with 34.2 56.4 38.1 14.9 36.7 53.8
without 29.5 52.0 33.2 11.4 32.2 46.7

Table 9. RFF: Fused ROI features make significant difference to

instance segmentation accuracy.

n=16, missed 
1 handbag n=36 

n=81, wrongly detected 
2 sports balls, 1 surfboard 

and 1 handbag

Figure 10. Visual results on COCO with different numbers of boxes.

features of the first pyramid mask layer to the following part

if without RFF. It can be observed that RFF brings a 4.7
improvement on AP, which verifies its importance.

4.3.5 COCO Pretrained Model

Finally we evaluate the impacts of COCO pretrained model

adopted in CityScapes training. Table 8 reports the AP

scores on CityScapes with/without COCO pretrained model.

We have the observation that the COCO pretrained model

provides a 5.3 AP improvement on CityScapes.

5. Conclusion

This work has developed a network named FASSST for

real-time instance segmentation with video-grade speed. An

instance attention module is proposed to locate and seg-

ment the target instances. A single-stage feature regres-

sion strategy is applied to map features to instance coordi-

nates and class probabilities, followed by ROI feature fu-

sion to aggregate information from the pyramid mask layers

for final mask generation. Experiments on the large-scale

COCO and CityScapes datasets demonstrate the state-of-

the-art performance of FASSST: 47.5FPS on a GTX1080Ti

GPU and 5.3FPS on a Jetson Xavier NX board with only

71.6GFLOPs.
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