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Figure 1: Transferring arbitrary styles to complex 3D scenes. Our proposed 3D scene style transfer approach consists
of three main parts: (a) Our model first learns an implicit representation of a 3D scene that disentangles the geometry
and appearance. (b) Then, we transfer the style information from an arbitrary reference style image into the implicit scene
representation. (c) Finally, our model renders stylized novel views with a consistent appearance at various view angles.

Abstract
In this work, we aim to address the 3D scene stylization

problem - generating stylized images of the scene at arbi-
trary novel view angles. A straightforward solution is to
combine existing novel view synthesis and image/video style
transfer approaches, which often leads to blurry results or
inconsistent appearance. Inspired by the high-quality re-
sults of the neural radiance fields (NeRF) method, we pro-
pose a joint framework to directly render novel views with
the desired style. Our framework consists of two compo-
nents: an implicit representation of the 3D scene with the
neural radiance fields model, and a hypernetwork to trans-
fer the style information into the scene representation. To
alleviate the training difficulties and memory burden, we
propose a two-stage training procedure and a patch sub-
sampling approach to optimize the style and content losses
with the neural radiance fields model. After optimization,
our model is able to render consistent novel views at ar-
bitrary view angles with arbitrary style. Both quantitative
evaluation and human subject study have demonstrated that
the proposed method generates faithful stylization results
with consistent appearance across different views.

1. Introduction
This paper focuses on the problem of stylizing complex

3D scenes. As shown in Figure 1, given a set of example im-
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ages of a 3D scene and a reference image with the desired
artistic style, we aim to render consistent stylized images
at arbitrary novel views. The proposed framework enables
various virtual reality (VR) and augmented reality (AR) ap-
plications. For instance, with the growing popularity of vir-
tual tours, our method enables seamless switching between
real-world scenes and virtual artistic styles, such as walking
through the River Seine under Van Gogh’s starry night. 3D
style transfer allows us to change the style of a scene and
ensures style consistency across view angles.

Numerous efforts have been made for controlling the ap-
pearance of the rendered 3D target. For instance, Xiang et
al. [43] and Kanazawa et al. [17] formulate it as a texture
synthesis problem. Specifically, they render the 3D objects
with the desired texture by aligning the coordinates of the
2D UV (texture) map to those of the target object. However,
these methods are designed specifically for a single object
and are not capable of stylizing complex 3D scenes. On the
other hand, PSNet [1] stylizes the point cloud of a 3D scene.
Nevertheless, given a set of images of a 3D scene, it requires
either the ground-truth 3D geometry or the estimated proxy
geometry to build the point cloud. Moreover, the PSNet
scheme suffers from the limited resolution issue due to the
discrete characteristic of the point cloud representation. In
contrast to point clouds that explicitly model 3D scenes, the
recent neural radiance fields (NeRF) [27, 45, 44, 34] meth-
ods introduce an implicit representation that models a 3D
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scene using neural networks. Motivated by the high-quality
novel view synthesis results, we aim to leverage NeRF for
transferring arbitrary styles to complex 3D scenes.

Leveraging NeRF to stylize complex 3D scenes is chal-
lenging for two reasons. First, NeRF models lack the con-
trollability to manipulate the appearance of the 3D scene.
Since the implicit continuous volumetric representation is
built on the deep network with millions of parameters, it
is unclear which parameters control the style information
of the 3D scene. To overcome this issue, one possible
solution is combining existing image/video stylization ap-
proaches [15, 24, 22, 38, 41, 4, 8] with novel view render-
ing techniques [27, 45] by first rendering novel view im-
ages and then performing image stylization. However, as
shown in Figure 2, current image/video stylization methods
do not consider the consistency across different viewpoints
for the same scene. We empirically show that the inconsis-
tency issue leads to various problematic results in Section 4.
The second challenge is the memory limitation to apply the
content and style losses [25] for learning stylization on a
NeRF model. Note that these losses are computed across
holistic images or patches in order to extract meaningful se-
mantic features. However, the NeRF model [45] requires
dense sampling along a camera ray to render a single pixel,
which takes significantly more memory to render a patch
for computing the losses and back-propagate the gradients
(e.g., taking 17, 934 MB to render a patch of size 67× 81).

In this work, we propose a 3D scene style transfer ap-
proach based on NeRF to address the above mentioned
challenges. Our method is able to 1) transfer arbitrary
styles to complex 3D scenes, and 2) be optimized with the
commonly-used content and stylization losses. The pro-
posed method consists of a NeRF model and a hypernet-
work. Our NeRF model has two branches: a geometry
branch and an appearance branch. We first optimize the
NeRF model to reconstruct the input 3D scene, i.e., learn
the implicit scene representation. Then, we fix the parame-
ters of the geometry branch and optimize the hypernetwork
to predict the parameters of the appearance branch in order
to render the 3D scene with the style of the reference image.
Moreover, to alleviate the GPU memory issue, we design
a patch sub-sampling algorithm to train the hypernetwork
using the content and stylization loss functions. After opti-
mizing for a specific scene, our model is able to 1) render
novel views with arbitrary and unseen styles, and 2) gener-
ate consistent stylization results across various viewpoints.
We evaluate the proposed method with quantitative metrics
(e.g., measuring the consistency of stylization across differ-
ent viewpoints) and subjective user studies, which demon-
strate that our method performs favorably against the base-
line approaches on rendering more consistent stylization re-
sults. The main contributions of this work include:
• We propose a 3D scene style transfer approach to render
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Figure 2: Consistency issue of existing approaches. Di-
rectly stylizing the complex 3D scene by combining the
existing novel view synthesis (e.g. [45]) and style transfer
(e.g. [15]) methods produces inconsistent results across var-
ious viewpoints for the same scene. Note that the red boxes
highlight the inconsistent appearance in the stylized results.

novel views of a complex 3D scene with desired style.
• We develop a hypernetwork to control the appearance-

related weights of the NeRF model based on the given
style image. Our model is universal and able to support
arbitrary style images after optimization.

• We demonstrate that our method can synthesize stylized
images that are consistent across different view angles.

2. Related Work
2.1. Novel View Synthesis

Novel view synthesis aims to synthesize a target image
at an arbitrary camera pose from a set of source images.
Conventional approaches [35, 5, 37] often model a scene
with explicit 3D representations, e.g., 3D meshes [6] or 3D
voxels [20] based on the multi-view geometry. This line of
work relies on a large number of source images to ensure the
quality of 3D models. Recently, structure from motion [32]
and multi-view stereo [33] techniques are also widely used
to build up a 3D model. With the rapid advance of deep
learning techniques, several recent approaches learn to es-
timate the 3D representation of a scene, such as mesh [29],
point cloud [26], and 3D voxel [13]. However, these meth-
ods require supervision from the ground-truth 3D repre-
sentations and are only able to reconstruct a single object.
Another group of works builds the 3D representation with-
out ground-truth supervisions. Image based rendering ap-
proaches [30, 31] integrate the image features with the 3D
proxy geometry (which is often reconstructed by multi-view
stereo approaches), and then warp the input images to syn-
thesize the target view. Different from the explicit represen-
tations used in the above schemes, the neural radiance field
approaches [27, 44, 45] encode the 3D scene information
into a multi-layer perceptron (MLP), which is an implicit
3D representation. This method takes the 3D coordinate
and camera view direction as input to directly predict the
RGB values and density, which does not rely on any pre-
processing to obtain the proxy geometry. In this work, we
also learn the implicit 3D representation using the neural ra-
diance field model, but focus on transferring artistic styles
to the rendered novel views.
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2.2. Image and Video Style Transfer

Given a content image and a reference style image, style
transfer methods aim to synthesize an output image which
shows the style of the reference image while preserving the
structure of the content image. As a seminal work, Gatys et
al. [9] iteratively optimize the output image via a pre-trained
model to render the desired style. Afterwards, several meth-
ods [16, 39, 23] develop feed-forward networks to signifi-
cantly reduce the computational cost, but can only transfer a
single or a set of pre-determined styles. To achieve arbitrary
style transfer (i.e. universal style transfer), recent meth-
ods use the adaptive instance normalization (AdaIN) [15],
whitening and coloring transform (WCT) [24], or linear
transformation (LST) [22]. Recently, TPFR [38] approach
disentangles an image into style and content codes, and de-
signs a two-stage peer-regularized layer to transfer the tar-
get style into the style code of the content image.

On the other hand, applying image style transfer ap-
proaches to a video frame-by-frame often results in tempo-
ral flickering and instability, as a small perturbation in the
input frame may lead to significant changes in the stylized
frame. Therefore, video style transfer methods focus on ad-
dressing the temporal consistency across the video footage.
Existing methods introduce the optical flow to calculate
temporal losses [3, 11, 2] or align intermediate feature rep-
resentations [7, 14] in order to stabilize the model prediction
across nearby video frames. Recent efforts further achieve
consistent and real-time video style transfer through tem-
poral regularization [40, 41], multi-channel correlation [4],
and bilateral learning [42]. Although these methods have
demonstrated impressive performance, they are designed
specifically for stylizing images or video sequences. Since
the consistency across various viewpoints of the same scene
is not considered, directly using existing image/video styl-
ization schemes for our problem has various issues (see Fig-
ure 2 and Section 4).

2.3. Texture Transfer

Texture transfer aims to change the texture or style of a
3D object while keeping the appearance consistent across
different view angles. With the recent advance of deep
learning techniques, different methods [17, 10, 43] are pro-
posed to learn the correspondences between 3D shape (e.g.
meshes) and the texture space for realizing the texture trans-
fer. For instance, Xiang et al. [43] learn a mapping from the
implicit 3D representation to the 2D texture map, such that
one can change the appearance of a 3D model by swapping
the 2D texture map. However, such a texture mapping ap-
proach may generate unnatural results if the texture image
is mapped across object edges or boundaries. In addition
to texture mapping, recently there are several works [18, 1]
proposed to tackle the style transfer task on the 3D repre-
sentations. For instance, Kato et al. [18] propose to build a

neural renderer where the rendering is integrated into neural
networks, and demonstrate its application of style transfer
on 3D models. PSNet [1] performs the style transfer on the
point cloud data via manipulating the point cloud features
in latent space to change the style. However, these meth-
ods rely on explicit 3D representations, such as mesh and
point cloud, and are limited to the object level instead of the
entire scene. Moreover, they do not support synthesizing
stylized images with high-quality, which further limits their
applications in the real world (e.g. AR). In this work, we
resort to the implicit 3D scene representation and focus on
transferring style for real-world 3D scenes with a complex
background to generate the stylized novel views.

3. Proposed Method
Given a set of N images/photos {In}Nn=1 of a static 3D

scene taken from different camera poses {(Rn, tn)}Nn=1,
our goal is to render arbitrary novel views of the 3D scene
with the style extracted from a reference image S. The ren-
dered images should have consistent appearance and styl-
ization effect across different views. To this end, we pro-
pose a 3D style transfer method to enable the universal styl-
ization of a complex 3D scene. We model a 3D scene with
implicit representation by the neural radiance fields (Sec-
tion 3.1), and learn to transfer arbitrary style using a hyper-
network (Section 3.2). To alleviate the training difficulties,
we propose a two-stage training pipeline, where the geo-
metric training stage learns the implicit representation of
a 3D scene by disentangling the geometry and appearance
into two branches, and the stylization training stage learns
to predict the parameters of the appearance branch from the
reference image S (Section 3.3).

3.1. Preliminaries

The model of neural radiance fields (NeRF) proposed
in [27] adopts a sparse set of input views of a 3D scene
for learning to optimize the underlying continuous volu-
metric scene function. The basic idea behind NeRF can
be illustrated in Figure 3(a). Given a camera observing
the 3D scene at the viewing direction d = (θ, φ), we first
march along the rays back-projected from the camera cen-
ter through all the pixels on the image plane for obtaining
the samples of 3D points x = (x, y, z). The scene function
as an implicit scene representation then takes both x and d
as input to output the volume density σ at x and the corre-
sponding RGB color c = (r, g, b) emitted towards the view-
ing direction d. To be detailed, the scene function consists
of three multilayer perceptrons (MLPs): F base, F geo, and
F app. In practice, F base takes x as input where the produced
F base(x) is either passed through F geo to obtain the vol-
ume density σ, or further processed by F app together with d
to obtain the view-dependent color c via F app(F base(x),d).
With accumulating the colors and densities via the volume
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Figure 3: Algorithmic overview. The proposed framework consists of a NeRF model with a geometry branch (i.e. F base

together with F geo) as well as an appearance branch (i.e. F app), and a hypernetwork Ψ. (a) Firstly in the geometric training
stage, it learns to reconstruct the target 3D scene from a set of input images {In}Nn=1. (b) Then in the stylization training
stage, it learns to transfer arbitrary style. We keep the geometry branch fixed, and optimize the hypernetwork Ψ to predict
the parameters W app in the appearance branch according to the style latent vector zS extracted from the input reference style
image S. After two-stage optimization, we use volume rendering to render images with desired style at arbitrary novel views.

rendering techniques, the high-quality 2D images as the ob-
servation of the 3D scene from various views can be gener-
ated. Please note that in practical implementation [27] both
x and d are firstly transformed into positional embeddings
before being utilized by the MLPs (i.e. F base and F app).

While the original NeRF model seems to demonstrate
compelling capability in the view synthesis, when it is
adopted to tackle the 360◦ captures of unbounded and com-
plex scenes, simultaneously modelling the nearby and far
objects (related to foreground and background respectively)
by the same volumetric scene function would cause prob-
lems for volume rendering as being required to handle the
large dynamic depth range between objects, as pointed out
by [45]. To deal with such issue, NeRF++ [45] separates
the foreground and background objects into the inner vol-
ume and outer volume by a unit sphere, with having two
NeRFs adopted to model them respectively, where an in-
verted sphere parameterization is particularly applied on the
coordinate system of outer volume for bounding the unlim-
ited distance between the background objects and the origin.
In our work, we hence adopt the model of NeRF++ [45] to
represent the unbounded and complex 3D scenes.

3.2. Stylizing Implicit Representations

Without loss of generality, the operation of style trans-
fer aims to keep the geometry/content of the target scene
while modifying its appearance/texture according to the ref-
erence style image. From the design of NeRF++ models,
we can see that the geometry and the appearance informa-

tion of the scene are respectively represented by the volume
densities and the view-dependent color values at each 3D
location. Therefore, to stylize the 3D scene implicitly en-
coded by NeRF++, we propose a novel approach to mod-
ify the parameters of the MLP (i.e. F app, the appearance
branch) which is responsible for predicting the color val-
ues, while keeping the other MLPs (i.e. F base and F geo, the
geometry branch) fixed to retain the geometry of the tar-
get scene. Basically, our stylization method on the NeRF-
based scene representation is realized by two components:
the style variational autoencoder (i.e., style-VAE) to ex-
tract the style latent vector zS from the style image S, and
the hypernetwork Ψ [12] to estimate the weights for mod-
ifying F app according to zS (as illustrated in Figure 3). We
detail these two components in the supplementary material.

3.3. Model Training

The training procedure for our 3D scene style transfer
approach contains the geometric training stage and the styl-
ization training stage. We describe these two stages and the
corresponding objective functions in the following.

Geometric Training Stage (First Stage). In this stage we
aim to learn a NeRF-based representation of the target 3D
scene from the given N images {In}Nn=1 taken from differ-
ent camera poses {(Rn, tn)}Nn=1. The NeRF++ [45] model
is adopted and its training process is briefly summarized as
follows. At each optimization iteration, we randomly sam-
ple M pixels from input images to form a batch of cam-
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era rays {rm}Mm=1 and 3D points (marching along the rays)
based on the corresponding camera poses and camera in-
trinsic. With taking these 3D points and their correspond-
ing view directions (i.e. the directions of the correspond-
ing camera rays) as input to the scene function of NeRF++
to obtain the output set of volume densities and colors, the
volume rendering technique is used to render the color value
ĉ(rm) of each ray rm. The objective for training the MLPs
of the scene function (i.e. F base, F geo, and F app) is the mean
square error (MSE) between ĉ(rm) and the groundtruth
color c(rm) of the corresponding image pixel of ray rm.

Lfirst =
1

M

M∑
m=1

‖ĉ(rm)− c(rm)‖2 (1)

Stylization Training Stage (Second Stage). As in the
previous geometric training stage, we have encoded the
complete geometry and the original appearance of the tar-
get 3D scene into the NeRF++ model, now in the styliza-
tion training stage we focus on learning the hypernetwork
Ψ to predict from the style latent vector zS the weights
W app for updating MLP F app, where zS is extracted from
the style reference image S by the pre-trained encoders of
style-VAE, i.e. Evae(E(S)). Note that as the geometry of
the 3D scene should be retained during the stylization, both
F base and F geo are kept fixed during this training stage.

As the goal of our style transfer is to stylize the whole
scene such that the generated images of view synthesis are
able to demonstrate the similar style as the reference image
S, ideally we should render the holistic images or patches
to compute typical content and style losses [15], which are
widely used in style transfer works, for validating the effec-
tiveness of stylization. However, since rendering a single
pixel already needs dense sampling on the camera ray to ob-
tain numerous 3D points for querying the NeRF++ model, it
would be even more costly in terms of GPU memory usage
when attempting to render the holistic image/patch and per-
form the back-propagation for network optimization. In or-
der to tackle such issue, we propose a patch sub-sampling
algorithm to enable the computation of content and style
losses. Note that Schwarz et al. [34] demonstrate that using
sparse sampling rather than down-sampling can retain the
high-frequency details of the real image. As illustrated in
Figure 4, a random window is firstly cropped from the in-
put image with having the height and width of such window
at least larger than a ratio (Λw and Λh respectively) of the
input image size, then we uniformly sample ηw × ηh pixels
from such window to form a smaller patch (where the num-
ber of pixels is constrained by the GPU memory). Using
our patch sub-sampling algorithm to select the patch P (In)
from input image In and its paired patch P (Ĩn) from the
stylization result Ĩn, the content and style losses are com-
puted between them. In detail, the content loss Lcontent en-

Figure 4: Patch sub-sampling. We randomly crop the
input image with various window sizes (i.e., dash-lined
boxes) and use the nearest neighbor sub-sampling to get the
cropped patch, as the three patches shown in the right.

courages P (In) and P (Ĩn) to have similar content features:

Lcontent =
∥∥∥τ(P (In))− τ(P (Ĩn))

∥∥∥
2

(2)

where τ(·) denotes the feature representation obtained from
the relu4 1 layer of an ImageNet-pretrained VGG-19 net-
work. And the style loss Lstyle measures the mean squared
error in terms of feature statistics between P (Ĩn) and the
reference style image S, which is defined as:

Lstyle =
∑
l

∥∥∥µ(τl(S))− µ(τl(P (Ĩn)))
∥∥∥
2

+
∑
l

∥∥∥Σ(τl(S))− Σ(τl(P (Ĩn)))
∥∥∥
2

(3)

where µ and Σ denote the mean and standard deviation re-
spectively, and τl(·) denotes the feature representation ob-
tained from the l-th layer of an ImageNet-pretrained VGG-
19 network, basically relu1 1, relu2 1, relu3 1, and
relu4 1 layers are used.

The overall objective function for the stylization training
stage, in which the gradients are back-propagated to learn
the hypernetwork Ψ, is then defined as:

Lsecond = Lcontent + λstyleLstyle (4)

where the hyperparameter λstyle controls the balance be-
tween the content loss and style loss, and we set λstyle = 15
for all our experiments.

Implementation Details. In the geometric training stage,
our NeRF model is trained for 250, 000 iterations and we
set M = 67 × 81; while in the stylization training stage,
hypernetwork Ψ is trained for 100, 000 iterations and we
set Λw,Λh, ηw, and ηh to 1/3, 1/2, 81, and 67. We adopt
the Adam optimizer for both stages with learning rates set
to 0.0005 and 0.001, respectively. Following [36], each
style image used in our experiments is resized and randomly
cropped to be the size of 256× 256.
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4. Experimental Results and Analysis
In this section, we present qualitative and quantitative

results to validate the effectiveness of our proposed frame-
work. Please refer to our project page1 for source code,
pre-trained model and more qualitative results.

Datasets. We conduct the experiments using five real-
world 3D scenes collected in the Tanks and Temples [19]
dataset, i.e., Family, Francis, Horse, Playground and Truck.
During the geometric training stage, we follow [27] to use
the COLMAP SfM [32] method to estimate the camera
poses and intrinsics of the input images for each 3D scene.
On the other hand, we use 81442 images in the WikiArt
dataset [28] as the reference style images. Specifically, we
randomly select 112 images as the testing data and keep the
others (i.e., totally 81330) for the stylization training stage.

Compared Methods. To the best of our knowledge, there
is no existing method that focuses on stylizing complex 3D
scenes. Therefore, we combine different image/video styl-
ization methods with the novel view synthesis (NVS) algo-
rithms to build three types of the baseline approaches:
• Image stylization→ NVS: we stylize the input images of

the target scene, then perform novel view synthesis.
• NVS→ image stylization: we perform image stylization

on the novel view synthesis results.
• NVS→ video stylization: we treat a series of novel view

synthesis results (generally along a smooth camera path)
as the video, then perform video stylization.

Specifically, we use NeRF model described in Figure 3 (a)
as the novel view synthesis approach. The AdaIN [15],
WCT [24], LST [22], and TPFR [38] schemes are used
for image stylization. Finally, we use two video stylization
frameworks, i.e., ReReVST [41] and MCCNet [4].

4.1. Qualitative Results

We present the qualitative comparisons in Figure 5 and 8.
The baseline “image stylization → NVS” produces blurry
results, as shown in Figure 5. Since the input images are
processed independently by the AdaIN [15] approach, the
stylized images are not consistent across different views of
the same scene. Therefore, the optimization of the NeRF
model with these inconsistent images leads to blurry results.
Moreover, as the NeRF model is optimized for a specific
style, this baseline method is not capable of transferring ar-
bitrary style to the 3D scene. On the other hand, the baseline
“NVS → image stylization” also produces inconsistent re-
sults across different viewpoints, as highlighted in the red
boxes in Figure 8. In particular, the baseline based on the
WCT [24] approach fails to preserve the content of the orig-
inal 3D scene, while the other one based on the TPFR [38]
scheme does not transfer the desired style provided by the

1 Project page: https://ztex08010518.github.io/3dstyletransfer/

Figure 5: Qualitative results of “image stylization →
NVS” baseline. Since the training images (top row) are
stylized independently by AdaIN [15], the stylized train-
ing images are not consistent (red boxes). Therefore, the
novel view synthesis algorithm blends such inconsistency
and produces blurry results (bottom row).

reference image. In contrast, the results synthesized by our
method not only match the desired style, but also are con-
sistent across various novel views.

We demonstrate the qualitative results by the baseline
“NVS → video stylization” in Figure 8. Although these
video-stylization-based methods are trained to consider the
short-term consistency, they fail to produce consistent re-
sults between two far-away viewpoints due to the error ac-
cumulation, e.g., the head and the back of the statue. In
contrast, since our framework is trained to stylize the holis-
tic 3D scene, it generates results that are consistent between
both short-range or long-range viewpoints. More stylized
results of our proposed method are provided in Figure 9.

4.2. Quantitative Results

User Preference Study. To evaluate the quality of styliz-
ing complex 3D scenes, we conduct a study to understand
the user preference between the results rendered by the pro-
posed and baseline methods. Here we focus on the compari-
son against “NVS→ image stylization” and “NVS→ video
stylization” baselines as the results of “image stylization→
NVS” ones are generally blurry as shown in Figure 5.

There are 73 users participated in this study. For each
user, there are 2 tests conducted for each comparison (i.e.
proposed method versus one baseline in terms of stylization
quality or temporal consistency). As shown in Figure 6, our
proposed method performs favorably against the baseline
schemes in terms of both the stylization quality and consis-
tency. We also observe that the “NVS→ video stylization”
baseline produces videos with less flickering compared to
the “NVS → image stylization” ones since they consider
the temporal consistency. However, these approaches fail to
preserve the consistency between two far-away viewpoints,
as demonstrated in the following experiments.

Consistency. In addition to the user preference study that
evaluates the quality of the stylization results, we use the
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(a) Stylization

(b) Consistency

Figure 6: User preference study. We present two novel
view synthesis results (created as videos) generated by dif-
ferent methods, and ask the user to select the one that 1)
matches the given style image and 2) shows less flickering.

metric from Lai et al. [21] to measure the consistency be-
tween different stylized novel view images. More details
of the consistency metric are provided in the supplementary
materials. In the following experiments, we evaluate the
consistency from two different perspectives: 1) the short-
range consistency between nearby novel views, and 2) the
long-range consistency between far-away novel views.

Table 1 shows the short-range consistency scores. In this
experiment, we use every two adjacent novel views, i.e., the
t − th and (t − 1) − th frames in the testing videos, to
compute the consistency score. We observe that the results
generated by the image stylization baseline methods are not
consistent as the novel view images are processed indepen-
dently. Moreover, while the TPFR [38] approach achieves
the lowest scores among all the baseline schemes, it fails
to capture the desired style of the reference image in some
cases, as shown in Figure 8.

Table 1: Quantitative comparisons on short-range con-
sistency. We compute the consistency score (the lower the
better) between stylized images at two adjacent novel views.

Methods Family Francis Horse Playground Truck Average

AdaIN 2.0172 1.9015 2.5102 1.7011 1.8582 1.9976
WCT 2.9717 2.8170 3.5992 2.5998 3.0162 3.0008
LST 4.3897 3.2608 4.0586 3.1262 3.6980 3.7067
TPFR 1.0930 0.6611 1.2504 0.6448 0.6908 0.8680

ReReVST 1.0089 0.8431 1.3006 0.6404 0.8617 0.9309
MCCNet 1.1006 0.8334 1.4186 0.9609 1.1359 1.0899

Ours 0.2885 0.2653 0.4127 0.2708 0.2735 0.3022

We present the long-range consistency score in Table 2.
Specifically, we use every two far-away views, i.e., the t−th
and (t−7)− th frames in the testing videos, to compute the
consistency score. Since the distance between two views is
larger, the consistency scores of all methods in this exper-
iment are higher than those in the short-range study. Al-
though the video stylization baselines generally better pre-
serve the short-range consistency than the image stylization
ones, they fail to maintain the consistency between two far-
away views due to the error accumulation. In contrast, the
proposed method is capable of synthesizing images that are
both short-range and long-range consistent.

Table 2: Quantitative comparisons on long-range consis-
tency. We compute the consistency score (the lower the bet-
ter) between stylized images at two far-away novel views.

Methods Family Francis Horse Playground Truck Average

AdaIN 6.4704 5.5091 5.5914 6.4771 5.2145 5.8526
WCT 6.7233 6.2752 6.8781 6.3403 6.6640 6.5767
LST 8.0778 6.1186 8.1056 8.6210 9.3647 8.0575
TPFR 4.2423 2.5301 5.0199 5.1047 3.1312 4.0056

ReReVST 4.8321 4.5702 4.3904 5.8077 4.4881 4.8177
MCCNet 5.7786 4.1305 4.6071 5.3677 4.7280 4.9224

Ours 3.5101 2.8598 2.5637 3.2701 2.7423 2.9892

4.3. Limitations

The quality of the stylization results is limited by the
backbone NeRF model. As the red boxes shown in Fig-
ure 7, the proposed method produces blurry stylization re-
sults since the backbone model fails to capture the details
of the trees. In contrast, the details of both the original and
stylized wheels demonstrated in the green boxes are clear.

(a) Ground-truth view (b) After geometric training stage (c) Stylization result

Figure 7: Failure cases. Our proposed method is limited by
the backbone NeRF model. The red boxes show a negative
example that the details are blurry while the green boxes
show a positive example that the details are clear.

5. Conclusions
In this paper, we propose a NeRF model for transferring

arbitrary styles to complex 3D scenes. We design a hyper-
network to predict the appearance-related parameters in the
NeRF model to stylize the 3D scene according to the input
reference (style) image. In addition, we develop a two-stage
training strategy along with the patch sub-sampling algo-
rithm to learn the hypernetwork. Qualitative and quantita-
tive results validate that the proposed method renders high-
quality novel view images with the desired style.
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Ours

AdaIN[15]

WCT[24]

LST[22]

TPFR[37]

ReReVST[40]

MCCNet[4]

Training image  
& desired style

.
Figure 8: Qualitative comparisons. The bottom row presents one of the training images of the target scene with the
input reference (style) image and the stylization results of our proposed approach. The red boxes highlight the inconsistent
stylization across different views, while our proposed method is consistent across different view angles with desired style.

Training image  
& desired style Stylization results

Figure 9: Qualitative results of our proposed framework of 3D scene stylization. For each row, the leftmost column
presents one of the training images of the target scene together with the input reference (style) image on the top-left corner,
while the remaining columns demonstrate the stylization results at various novel views.
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