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Abstract

Photorealistic style transfer is an image editing task with
the goal to modify an image to match the style of another im-
age while ensuring the result looks like a real photograph.
A limitation of existing models is that they have many pa-
rameters, which in turn prevents their use for larger image
resolutions and leads to slower run-times. We introduce
two mechanisms that enable our design of a more compact
model that we call PhotoWCT2, which preserves state-of-
art stylization strength and photorealism. First, we intro-
duce blockwise training to perform coarse-to-fine feature
transformations that enable state-of-art stylization strength
in a single autoencoder in place of the inefficient cascade of
four autoencoders used in PhotoWCT. Second, we introduce
skip connections of high-frequency residuals in order to pre-
serve image quality when applying the sequential coarse-
to-fine feature transformations. Our PhotoWCT2 model re-
quires fewer parameters (e.g., 30.3% fewer) while support-
ing higher resolution images (e.g., 4K) and achieving faster
stylization than existing models.

1. Introduction
Photorealistic style transfer is the task of rendering an

image in the style of another image such that the result ap-
pears like a real photograph to end users (Figure 1a). A
limitation of existing methods is that they are parameter-
heavy, which results in a number of practical limitations.
First, they cannot support images of 4K resolution (i.e., 8.3
megapixels) and above, also referred to as ultra high defini-
tion (UHD) media. Yet, advancements in technology have
led UHD to become standard in commercial products, as
exemplified by the increasing number of self-made UHD
images and videos shared on online image stocks [4] and
YouTube as well as the trend for more movies and TV
series on streaming platforms (e.g., Netflix [3], Amazon
Prime Video [2]) to support UHD resolution. Other practi-
cal concerns include the ability to run methods on memory-
constrained or power-constrained devices and to support
fast stylization. We aim to introduce a more compact model

Figure 1: (a) A stylization example using our PhotoWCT2.
(b) Comparison of methods for photorealistic style trans-
fer: (b1) The base framework is an autoencoder that trans-
forms the input content image, Ic, and style image, Is, into
a stylized image, Isty , with a single feature transformation.
(b2,b3,b4) The other models perform multi-scale feature
transformation with (b2) PhotoWCT [24] using four cas-
caded autoencoders to achieve coarse-to-fine feature trans-
formation, (b3) WCT2 [41] performing fine-to-coarse fea-
ture transformation in a single autoencoder using wavelet-
based skip connections, and (b4) our PhotoWCT2 realiz-
ing coarse-to-fine feature transformation in a single autoen-
coder with skip connections of high-frequency residuals.

to address these practical limitations.

Our work, like state-of-art methods [24, 41], builds upon
the predominant framework for style transfer methods: an
autoencoder [12, 19, 23, 22, 34]. As exemplified in Fig-
ure 1b:1, this framework takes as input both a content image
and style image (IC , IS), encodes each into a feature rep-
resentation using a pre-trained network, applies a transfor-
mation to alter the content feature with respect to the style
feature, and then finally decodes the resulting feature into
the stylized image (Isty). Our work centers on redesigning
two parameter-heavy mechanisms employed by state-of-art
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methods into lighter weight representations.

Our first aim is to redesign the mechanism employed to
strongly reflect the new style in the rendered image (i.e.,
to achieve strong stylization strength). This mechanism en-
tails using multiple transformations of features of different
scales. The state-of-art method, PhotoWCT [24], employs
four cascaded autoencoders to transform the content image
by recursively modifying its coarse feature to its fine feature
with respect to the corresponding coarse to fine style fea-
tures (illustrated in Figure 1b:2). Intuitively, this strength-
ens the transferred style by first modifying the big picture
of the content image with respect to the style image and
then gradually fine-tuning its fine-grained details. How-
ever, PhotoWCT’s use of multiple autoencoders makes it
computationally expensive. In contrast, WCT2 [23] uses a
single autoencoder to progressively transform the content
image. However, it modifies the content image from its
fine feature to its coarse feature with respect to the corre-
sponding fine to coarse style features before decoding the
transformed feature into the stylized image (illustrated in
Figure 1b:3). This fine-to-coarse feature transformation is
shown experimentally [23] to result in weaker stylization
strength than the coarse-to-fine feature transformation per-
formed by PhotoWCT. Intuitively, this worse performance
may be because initial fine-tuned details might get over-
shadowed by later big-picture modifications. We introduce
a redesign that simultaneously embeds the strengths of Pho-
toWCT and WCT2 while overcoming their limitations. We
achieve this by introducing a novel technique, called block-
wise training, that makes it possible to convert the Pho-
toWCT cascade into a single compact autoencoder that per-
forms coarse-to-fine feature stylization.

Our second aim is to redesign the mechanism used to
recover content information that gets lost by the autoen-
coder when rendering the stylized image. Existing methods
employ skip connections from the autoencoder’s encoder to
its decoder for this purpose. For instance, PhotoWCT [24]
skip-connects from the encoder’s max-pooling layer the in-
dices of computed maximum values (i.e., max-pooling in-
dices) to the paired decoder’s max-unpooling layer (illus-
trated in Figure 1b:2). However, theoretically, max-pooling
is lossy [39, 40] and so these max-pooling indices are not
guaranteed to be sufficient for good image reconstruction,
which in turn results in content distortion in stylized results.
In contrast, WCT2 [41] introduces skip connections based
on wavelets (illustrated in Figure 1b:3) that are guaranteed
with signal processing theories [39, 40] to yield better im-
age reconstruction performance, and are shown experimen-
tally to do so in Section 4.4. As will be discussed in Sec-
tion 3, a key reason behind its advantage is that wavelet-
based skip connections helps recover high-frequency infor-
mation that can easily get lost in the encode-decode pro-
cess. A limitation of wavelet-based skip connections though

is that they require many parameters. We introduce an ar-
chitecture that we call skip connections of high-frequency
residuals that makes it possible to achieve the advantage of
WCT2’s wavelet-based skip connections for better image
reconstruction with considerably fewer parameters.

To summarize our key contributions, we introduce a
new photorealistic style transfer model, which we call
PhotoWCT2 (illustrated in Figure 1b:4), alongside two new
mechanisms used to create this model. The first mecha-
nism is blockwise training for redesigning the coarse-to-
fine feature transformations in PhotoWCT’s cascade of au-
toencoders into a single decoder. The second mechanism
is skip connections of high-frequency residuals that serves
as a lightweight representation of wavelet-based skip con-
nections and enables the success of our blockwise training.
Experiments show our model preserves state-of-art styliza-
tion strength and photorealism while achieving a 30.3% and
15.6% parameter reduction compared to PhotoWCT and
WCT2 respectively. Moreover, experiments show it can
support higher resolution images (i.e., UHD) and achieve
faster stylization than existing methods [24, 41, 6]. Ablation
studies demonstrate that existing mechanisms for training
and skip connections are insufficient to produce our com-
pact model and so underscore the critical need of our two
new mechanisms, blockwise training and skip connections
of high-frequency residuals.

2. Related works

Photorealistic style transfer. In 2017, the seminal neural
network-based method for photorealistic style transfer was
introduced [27]. To address it is relatively slow due to its
need for many iterations of forward passing and backprop-
agation, new methods [24, 41, 6, 37] incurred speed gains
by using one forward pass. Among them, PhotoWCT [24]
achieves the strongest stylization strength at the expense
of a parameter-heavy architecture of four autoencoders.
WCT2 [41] and PhotoNAS [6], in contrast, offer single
autoencoder architectures, with WCT2 being superior due
to its use of fewer layers and wavelet-based skip connec-
tions (which support theory-backed image reconstruction).
We introduce a model that achieves comparable stylization
strength to the state-of-art PhotoWCT while realizing fur-
ther advantages over existing models [24, 41, 6]1, by re-
quiring fewer parameters, supporting stylization of larger
images, and providing faster stylization.

Greedy layerwise training. Like traditional greedy lay-
erwise training for autoencoders [9, 21, 30, 8], our block-
wise training entails splitting an autoencoder into a se-
quence of sub-model pairs and then training the pairs se-

1We cannot compare to [37] because the code has not been released.
With that said, we expect poorer performance from it because it downsizes
images to support high resolution (4K) images and so discards information.
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quentially. However, the traditional approach pairs an en-
coder layer with a decoder layer while our approach pairs
an encoder block with a decoder block. In addition, they are
used for different purposes: while the traditional approach
centers on learning an encoder that represents a specific
dataset [11, 15, 31, 25, 33] and so uses the decoder as a
disposable accessory needed to achieve this aim, our ap-
proach instead fixes a pretrained encoder during training
(e.g., VGG [35]) in order to learn a decoder that can repro-
duce the coarse-to-fine features. Our experiments demon-
strate that blockwise training is non-trivial with existing
neural network architecture components, failing to produce
an effective compact autoencoder (Sections 4.3 and 4.4).
We introduce skip connections of high-frequency residuals
and demonstrate that it overcomes this limitation, enabling
the effective use of blockwise training to develop a compact
autoencoder for photorealistic style transfer.

Skip connections. A challenge is how to employ skip
connections [32, 18] within autoencoders for photorealis-
tic style transfer. In particular, when an autoencoder con-
sists of an encoder that is a fixed pre-trained model and a
decoder that learns its inverse function, directly connecting
an output from a layer le in the encoder to some layer ld
of the decoder results in a short circuit phenomenon [6].
This means the connection is so informative that it over-
shadows the middle layers between le and ld, such that the
middle layers will not affect the pixel values in the output
of the decoder after training. Numerous variants of skip
connections address this issue, including indices of maxi-
mal values between max-pooling/unpooling layers for Pho-
toWCT [24], instance-normalized skip-connected features
for PhotoNAS [6], and a theoretically motivated wavelet-
based approach for WCT2 [41]. We simplify the wavelet-
based architecture into a computationally light variant we
call skip connections of high-frequency residuals.

As will be detailed in Section 3.2.3, the computation of a
high-frequency residual is similar to that of the first differ-
ence image in a Laplacian pyramid [10]. However, while a
Laplacian pyramid is built upon an image for multiple lev-
els, a high-frequency residual is computed from a feature
map and does not form a pyramid. Moreover, most previous
works [14, 17, 20, 38, 16, 7] that integrate a Laplacian pyra-
mid into neural networks heuristically leverage the concept
that a Laplacian pyramid preserves high-frequency details
from the input image to generate images of better quality.
We extend prior work by providing a theoretical explanation
why our approach can realize an autoencoder for coarse-to-
fine feature transformation for photorealistic style transfer.

3. Method

We now introduce our new model PhotoWCT2 and our
two mechanisms that enable its creation: blockwise training

and skip connections of high-frequency residuals.

3.1. Background

To begin, we describe the parameter-heavy mechanisms
used in state-of-art photorealistic style transfer methods that
we aim to redesign into compact representations.

PhotoWCT’s coarse-to-fine feature transformations.
As summarized in the Introduction and illustrated in Fig-
ure 1b:2, PhotoWCT [24] consists of a cascade of four au-
toencoders AECN ’s (N = 1, 2, 3, 4), where each includes
an encoder encN and decoder decN . encN is a pretrained
network, specifically VGGNet, from the input layer to the
reluN 1 layer. decN is structurally symmetric to encN . To
realize the coarse-to-fine feature transformation, the cas-
cade of four autoencoders is in the order from N = 4 to
N = 1. Specifically, content and style images are first en-
coded by enc4 into the relu4 1 features. The relu4 1 con-
tent feature is then transformed with reference to the relu4 1
style feature using a ZCA feature transformation [23, 13].
The transformed feature is then decoded by dec4 to become
an image I4. The three steps of encoding, transformation,
and decoding repeat in the next three rounds ofN = 3, 2, 1,
with IN+1 as the content image, until the stylized image I1
is decoded by dec1. Finally, image smoothing (using guided
filtering) is applied as a post-processing step to I1 to remove
undesired artifacts in the final stylized image.2

Wavelet-based skip connections. The architecture of
wavelet-based skip connections, which were introduced as
part of WCT2 [41], is shown in Figure 2a. Note that
WCT2 is an autoencoder which emulates AEC4 in Pho-
toWCT while replacing its max-pooling/unpooling layers
with wavelet pooling/unpooling layers for better image re-
construction. As exemplified in Figure 2a, its wavelet pool-
ing layer, when given a feature F, produces a low-frequency
component FLL and three high-frequency components
FLH , FHL, and FHH . Structurally, FLL propagates
through the middle layers (encpart-decpart ≜ AECpart) of
the network. The skip connections FLH , FHL, FHH are
then aggregated with FLL at the corresponding wavelet un-
pooling layer in the decoder. The intuition is that most in-
formation of F gets carried by FLL, and the high-frequency
information FLH , FHL, and FHH can be supplemented to
improve the model’s reconstruction.

Mathematically, a wavelet pooling/unpooling performs
four depthwise convolutions/deconvolutions with stride 2
using the following Haar wavelet kernels:

KLL =
1

2

[
1 1
1 1

]
,KLH =

1

2

[
−1 1
−1 1

]
,KHH =

1

2

[
1 −1
−1 1

]
(1)

2The original code for this step has a bug. We describe this issue and
our fix in the Supplementary Materials.
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Figure 2: Shown are the middle layers of an autoencoder be-
tween a pooling and an unpooling layer for (a) WCT2[41]
and (b) our method. (a) The wavelet-based skip connection
uses the wavelet pooling (blue rectangles) and wavelet un-
pooling (green rectangles) to improve the image reconstruc-
tion ability. (b) Our skip connection of the high-frequency
residual simplifies this wavelet-based skip connection into
a more compact representation.

and KHL = KT
LH . Let (Kij ∗ f)↓2 and (Kij ∗ f)↑2 denote

the 2-strided convolution and deconvolution of Kij (i, j ∈
{L,H}) and a feature f , respectively.

The wavelet unpooling output Fcat in Figure 2a is the
concatenation of four components F

′

LL, F̃LH , F̃HL, and
F̃HH , mathematically described as:

F
′

LL = (KLL ∗ AECpart((KLL ∗ F)↓2)))↑2, (2)

F̃ij = (Kij ∗ (Kij ∗ F)↓2))↑2, i, j ∈ {L,H}. (3)

While this type of skip connection prevents the loss of high-
frequency information of the input image and so leads to
better image reconstruction [41], it is computationally ex-
pensive. For comparison, it requires four times as many pa-
rameters as the max-pooling indices skip connection used
by PhotoWCT, since the wavelet unpooling output Fcat

has four times the channel length of PhotoWCT’s max-
unpooling output.

3.2. Our approach: PhotoWCT2

3.2.1 Model architecture

We design our model as an autoencoder AECbt. An
overview of its architecture is shown in Figure 3a.

For the encoder, we rely on PhotoWCT’s encoder enc4
(described in Section 3.1). As exemplified in Figure 3a,
enc4 is split into the series of blocks enc4blk1, enc4blk2,
enc4blk3, and enc4blk4. The output layer of the block
enc4blkN is the reluN 1 layer in VGGNet.

We design the decoder, which we call decbt, to be struc-
turally symmetric to enc4. As exemplified in Figure 3a,
decbt is split into the series of blocks decbtblk4, decbtblk3,

Figure 3: (a) Overview of our PhotoWCT2 model architec-
ture and (b) illustration of our blockwise training strategy
needed to effectively support coarse-to-fine feature trans-
formation in a single autoencoder. The three shown cir-
cles indicate the losses blockwise training minimizes, with
1 representing function inversion loss, 2 representing image
reconstruction loss, and 3 representing perceptual loss.

decbtblk2, and decbtblk1. We design the decbtblkN ’s to be
structurally symmetric to the enc4blkN ’s, with the goal that
it will learn the inverse function of enc4blkN , i.e., to con-
vert reluN 1 features to relu(N-1) 1 features. As such, after
training, the decoder taking the relu4 1 feature at the bottle-
neck should be able to sequentially reproduce the relu3 1,
relu2 1, and relu1 1 features and the input image.

In order to realize the coarse-to-fine feature transforma-
tions, we embed feature transformations at the bottleneck
between the encoder and decoder as well as the outputs
of decbtblk4, decbtblk3, and decbtblk2 blocks (illustrated in
Figure 1b:4). Recall that the purpose of each transformation
is to alter each content feature with respect to each style fea-
ture at a different scale. Following PhotoWCT, we employ
ZCA transformations. We will describe in Section 3.2.2
blockwise training, which is the critical ingredient to make
this compact design possible.

We also integrate skip connections into the autoencoder
in order to improve not only the image reconstruction, as
shown for WCT2 [41], but also the feature reconstruction in
our blockwise training (as will be shown in Section 4.4). We
insert our new skip connections of high-frequency residuals
in the same positions as used for PhotoWCT’s max-pooling
indices skip connections. Consequently, in enc4blkN for
N = 2, 3, 4, we replace the original max-pooling with an
average-pooling layer from which a skip connection of the
high-frequency residual links to the counterpart upsampling
layer in decbtblkN . Our new, compact skip connection de-
sign will be described in Section 3.2.3.

Finally, as done for PhotoWCT, image smoothing (via
guided filtering) is applied as a post-processing step.
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3.2.2 Blockwise training

We propose two methods: end-to-end training and block-
wise training to realize the four function inversions for the
decoder. End-to-end training enables the decoder to learn
the four function inversions at once. While end-to-end train-
ing is good enough to invert the functions, we improve upon
it by proposing blockwise training. Our blockwise train-
ing approach is illustrated in Figure 3b. As shown, learn-
ing of the four function inversions for the decoder is dis-
tributed into four steps such that, at each step, a decoder
block decbtblkN learns the inverse function of enc4blkN . It
will be demonstrated in Section 4.3 that this training ap-
proach enables more faithful feature reconstruction and im-
age reconstruction in the decoder than alternatives including
end-to-end training.

Mathematically, the decoder blocks decbtblkN ’s are
trained in the order from N = 1 to N = 4 by minimiz-
ing the loss LN :

LN (I) = 1N ̸=1||ϕN−1(I)− decbtblkN (ϕN (I))||22
+ ||I − ψN (ϕN (I))||22
+ λ||ϕN (I)− ϕN (ψN (ϕN (I)))||22,

(4)

where ϕN and ψN are the functions of the series
{enc4blk1, . . . , enc4blkN} and {decbtblkN , . . . , decbtblk1},
respectively, 1N ̸=1 is an indicator function equal to one
when N ̸= 1 and zero when N = 1, and λ is set to one for
N ̸= 1 and zero for N = 1. The three terms in Equation 4
are the function inversion, image reconstruction, and per-
ceptual losses, respectively. When training a decoder block,
the previously trained blocks and the encoder are fixed.3

3.2.3 Skip connections of high-frequency residuals

Our skip connection of a high-frequency residual is illus-
trated in Figure 2b. It helps achieve the aim of end-to-
end and blockwise trainings of feature/image reconstruc-
tion, utilizing and simplifying wavelet-based skip connec-
tions into a less computationally expensive representation
by replacing the Haar convolutions with average pooling,
upsampling and substraction and the Haar deconvolutions
with upsampling and addition (as observed when compar-
ing Figure 2a to Figure 2b). In doing so, it redesigns the
concatenation of F

′

LL, F̃LH , F̃HL, and F̃HH for wavelet-
based skip connections into an addition for our approach,
thereby enabling the channel length of our outcome Fsum

to become one fourth that of Fcat from the wavelet-based
skip connection.

3Due to space constraints, we show in the Supplementary Materials
two advantages of training from N = 1 to N = 4 over the reversed order
(N = 4 to N = 1): better image reconstruction and ease of redesigning a
cascade of fewer autoencoders (e.g., 3) into a single autoencoder.

Our motivation for this addition-based approach is an
approximation resulting from the observation that the low-
frequency parts of an image are much better reconstructed
by an autoencoder than the high-frequency edges, as exem-
plified in Figure 5b. Taking advantage of this observation,
we assume a low-frequency feature f can be approximately
reconstructed by AECpart (described in Section 3.1), i.e.,
AECpart(f) ≈ f . This assumption implies the following
approximation:

F
′

LL = (KLL ∗ AECpart((KLL ∗ F)↓2)))↑2
≈ (KLL ∗ (KLL ∗ F)↓2))↑2 = F̃LL.

(5)

With the Haar wavelet expansion F = F̃LL+F̃LH+F̃HL+
F̃HH and the substitution F̃LL ≈ F

′

LL, we arrive at the
following approximation F

′

LL + F̃LH + F̃HL + F̃HH ≈
F. This implies that with addition as feature aggregation, a
wavelet pooling input F in the encoder is likely to be recon-
structed at the wavelet unpooling layer in the decoder.

In describing the implementation of the encoder part in
Figure 2b, let Fhres be the sum of high-frequency com-
ponents F̃LH + F̃HL + F̃HH . We call Fhres the high-
frequency residual of F since it is the difference between
F and the low-frequency component F̃LL. By substituting
KLL in Equation 3 with its matrix form, F̃LL can be rewrit-
ten as follows:

F̃LL =
(1
2

[
1 1
1 1

]
∗
(1
2

[
1 1
1 1

]
∗ F

)
↓2

)
↑2

=
([

1 1
1 1

]
∗
(1
4

[
1 1
1 1

]
∗ F

)
↓2

)
↑2

= upsampling(avgpooling(F)).

(6)

Therefore, the computation of Fhres simplifies to the
following: F is first average-pooled to become a low-
frequency feature Favg = avgpooling(F), which in turn
is upsampled and subtracted from F. Note that if we gener-
alize to build a pyramid on a feature map but not an image
and replace the 2-by-2 matrices of ones in Equation 6 by 5-
by-5 Gaussian matrices, Fhres becomes the first difference
‘image’ in the Laplacian pyramid [10] of F. Also note that
different from the Haar pyramid [5] of F, where the first
level saves Fij (i, j ∈ {L,H}) of the half size of F, our
framework saves FLL and Fhres of the same size as F.

To reproduce the feature F in the decoder by
skip-connecting Fhres, Favg is forward-passed through
AECpart, upsampled, and added to Fhres as illustrated in
Figure 2b. The sum feature Fsum reproduces F under the
assumption AECpart(f) ≈ f for a low-frequency feature f :

Fsum = upsampling(AECpart(Favg)) + Fhres

≈ upsampling(Favg) + Fhres

= F̃LL + (F̃LH + F̃HL + F̃HH) = F.

(7)
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4. Experiments

We now evaluate our style transfer model and two mech-
anisms for creating it: blockwise training (BT) and skip
connections of high-frequency residuals. For comparison,
we also include our model resulting from end-to-end (E2E)
training. We refer to our two models as PhotoWCT2 when
distinction is not necessary, and PhotoWCT2 (E2E) and
PhotoWCT2 (BT) otherwise. We conduct all experiments
on an Nvidia 1080-Ti GPU with 11GB memory.

4.1. Model size and speed

First, we assess model size and two benefits that arise
from a more compact model: model speed and support for
higher resolution images.

Baselines. For comparison, we evaluate two top-
performing models, PhotoWCT [24] and WCT2 [41], as
well as the more recent PhotoNAS model [6].

Dataset. We test all models on five resolutions: 1024 ×
512, 1280×720 (HD), 1920×1080 (Full HD), 2560×1440
(Quad HD), and 3840×2160 (4K UHD). To efficiently col-
lect images, we download a 4K video [1] from YouTube and
sample a frame per second to collect 100 frames. We then
downsample each frame to the other lower resolutions.

Results. Table 1(a,b) shows the number of parameters, the
number of layers4 on the mainstream path of each model
(i.e., skip connections are excluded), and the models’ styl-
ization speed for different resolutions.

As observed in Table 1a, our PhotoWCT2 model is the
most lightweight. It uses 82.5% fewer parameters than Pho-
toNAS (7.05M vs. 40.24M), 30.3% fewer parameters than
WCT2 (7.05M vs. 10.12M), and 15.6% fewer parameters
than PhotoWCT (7.05M vs. 8.35M).

PhotoWCT2 is also the only model that can handle all the
tested resolutions. This implies that it is the only approach
that can stylize UHD (i.e., 4K) images.

Additionally, our PhotoWCT2 can stylize images at the
fastest speeds among all models. For instance, PhotoWCT2

is 0.27 and 0.22 seconds faster than WCT2 and PhotoWCT
for FHD images, taking 0.53 seconds. PhotoWCT2 also
saves 0.42 seconds compared to PhotoWCT (0.82 vs. 1.24)
for QHD image stylization.

4.2. Image quality and stylization strength

We next assess to what extent our compressed model can
preserve the advantages of existing methods, specifically
the ability to generate high quality images and render im-
ages with a strong stylization strength.

4The following types of layers are counted: convolution, deconvolu-
tion, max-pooling, average pooling, and upsampling layers.

Baselines. For comparison, we again evaluate PhotoNAS,
PhotoWCT, and WCT2. As an upper bound, we also evalu-
ate the quality of the original content images, which we re-
fer to as “pristine” images. This enables examination of the
extent to which stylization downgrades the original quality.

Dataset. We use the modified version of the DPST
dataset [27].5 We swap the roles of content and style im-
ages in each pair to generate more examples, resulting in
100 stylized images per model.

Metrics. Four no-reference image quality assess-
ment algorithms are adopted for the quality evaluation:
BRISQUE [28] (0, 100), NIQE [29] (0, ∞), NIMA-
quality [36] (1, 10), and NIMA-aesthetic (1, 10), where
the range of a metric value is shown in a parenthesis pair
with the bold number as the best. We use regularized
style loss from DPST [27] to evaluate stylization strength
(description in the Supplementary Materials). The lower
the mean style loss L̄s,m of a method m, the stronger the
method’s stylization strength.

Results. Table 1(c) shows the image quality assessment6

and stylization strength results. Note that all reported scores
are the mean of values across the 100 stylized images.

For image quality, we observe that our PhotoWCT2 per-
forms similarly to the other top-performing methods: Pho-
toWCT and WCT2. Our PhotoWCT2 performs slightly bet-
ter with respect to two of the metrics (NIQE and NIMA-a)
and slightly worse for the other two metrics. This high-
lights that our PhotoWCT2 can preserve the quality of the
top-performing PhotoWCT and WCT2 methods while us-
ing considerably fewer model parameters.

For stylization strength, we observe again that our
PhotoWCT2 performs comparably to the top-performing
PhotoWCT; i.e., -0.70 for PhotoWCT versus -0.66 and -
0.69 for our PhotoWCT2 (E2E) and PhotoWCT2 (BT). We
attribute the stronger stylization strength of PhotoWCT2

(BT) than that of PhotoWCT2 (E2E) to the better fea-
ture/image reconstruction ability of PhotoWCT2 (BT) (see
Section 4.3). Moreover, our models considerably outper-
form the other two baselines. For example, PhotoWCT2

(BT) results in scores that are 1.71 and 1.49 better than that
of PhotoNAS and WCT2 respectively. We illustrate qualita-
tively the stylization strength of our approach compared to
the baselines in Figure 4a.

4.3. Ablation study on training strategies

Next we compare using blockwise training to train our
AECbt architecture (described in Section 3.2.1) with two
other methods: end-to-end and vanilla training methods.

5The original dataset consists of 60 content-style image pairs including
some toy examples, which are excluded here.

6We suspect the NIQE metric is inferior, since the scores for WCT2,
PhotoWCT, and our model are better than those for pristine images.
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Model
(a) Size (b) Speed performance (c) Image quality & Stylization strength

# par # layer 1024×512
HD FHD QHD 4K BRIS NIQE NIMA-q NIMA-a L̄s,m1280×720 1920×1080 2560×1440 3840×2160 (27.4) (3.19) (5.11) (5.27)

PhNAS 40.24M 35 0.23 OOM OOM OOM OOM 33.0 3.24 4.75 4.92 1.02
WCT2 10.12M 24 0.30 0.43 0.80 OOM OOM 30.8 3.07 4.91 5.01 0.80
PhWCT 8.35M 48 0.21+0.03 0.32+0.06 0.61+0.14 1.01+0.23 OOM 31.8 2.90 4.88 5.06 -0.70
Ours (E2E) 7.05M 24 0.18+0.03 0.24+0.06 0.39+0.14 0.59+0.23 1.22+0.54 31.7 2.91 4.90 5.10 -0.66
Ours (BT) 31.6 2.90 4.90 5.10 -0.69

Table 1: Characteristics of our models (PhotoWCT2 (E2E) and PhotoWCT2 (BT)) and three baselines PhotoNAS (PhNAS),
WCT2, and PhotoWCT (PhWCT) in terms of model size, speed performance, image quality, and stylization performance. Our
models are the most lightweight, the fastest, able to handle the largest resolution (4K), while preserving the good image qual-
ity and strong stylization strength of existing state-of-art methods. BRIS: BRISQUE. NIMA-q/a: NIMA-quality/aesthetic.
OOM: out-of-memory. (The four values in the parentheses for (c) are scores for pristine images.)

Figure 4: Stylized results from (a) different models and (b) our model trained with vanilla training. Our end-to-end trained
model (PhotoWCT2 (E2E)) and blockwisely trained model (PhotoWCT2 (BT)) can produce visually pleasant results and
strong stylization strength comparable to that of PhotoWCT. See more results in Supplementary Material.

Recall that end-to-end training enables the decoder to learn
the four function inversions at once. Vanilla training, used
for WCT2 and PhotoNAS, uses AECbt as a vanilla autoen-
coder that only realizes image reconstruction (i.e., without
reluN 1 feature reproduction) in the decoder.

Dataset. We randomly sample 500 images from the
MSCOCO [26] dataset.

Metrics. We evaluate with respect to two metrics. First,
we assess the image reconstruction ability by computing
a pixelwise L2 loss between an input image I of shape
H×W×C and a reconstructed image Irec: ||I−Irec||22

HWC . Sec-
ond, we assess the feature reconstruction ability by com-
puting a relative L2 loss between a feature FN (N = 1, 2,
3) from the reluN 1 layer in the encoder block enc4blkN
and a reproduced feature FN,r from the decoder block

decbtblkN+1: ||FN−FN,r||22
||FN ||22

. The reason for using the rel-
ative error instead of the absolute error is that an element
value in FN or FN,r can be large, resulting in a misleading
large absolute difference ||FN −FN,r||22 even if the relative
error is small and so suggests a good reconstruction. Mean
values are reported for each training strategy.

(a) Different training strategies w/ high-freq residuals

Strategy relu3 1 relu2 1 relu1 1 image

Vanilla training 3.887 1.163 1.211 0.0003
End-to-end training 0.048 0.022 0.008 0.0008
Blockwise training 0.035 0.021 0.008 0.0006

(b) Different skip connection types w/ blockwise training

Type relu3 1 relu2 1 relu1 1 image

no skip connect. 0.144 0.183 0.162 0.0052
indices of max.[24] 0.090 0.092 0.065 0.0028
instance norm.[6] 0.045 0.048 0.037 0.0012
wavelet-based skip [41] 0.043 0.030 0.010 0.0006
high-freq residuals 0.035 0.021 0.008 0.0006

Table 2: Loss values for feature and image reconstruction
in the decoder resulting from (a) different training strategies
and (b) different skip connection types. Results show that
blockwise training and high-frequency residuals together
achieve the best reconstruction performance.

Results. Quantitative results are reported in Table 2a. We
observe that our blockwise training results in the best fea-
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Figure 5: Image reconstruction ability of blockwisely trained autoencoders with different skip connection types. The wavelet-
based skip connections in (e) and our high-frequency residuals in (f) achieve the best result among (b-f). The fine grained
study in (g) shows its good reconstruction results from the supply of high-frequency information in the input image by the
high-frequency residuals. Our high-frequency residuals are the lightweight version of wavelet-based skip connections.

ture reconstruction and second best image reconstruction.
We attribute the better reconstruction ability of blockwise
training than that of end-to-end training to the distribution
of the load of four function inversions into four individual
steps. Also, the high feature reconstruction losses of vanilla
training indicates that it fails to reproduce any reluN 1 fea-
tures and so fails to realize the PhotoWCT algorithm. Qual-
itative results from vanilla training are shown in Figure 4b.

4.4. Ablation study on skip connection types

Next we compare our skip connections based on high-
frequency residuals to three alternative lightweight options
(1-3) and the heavyweight option (4): (1) no skip connec-
tions, (2) skip connections of indices of maximum values
used in PhotoWCT [24], (3) instance-normalized skip con-
nections used in PhotoNAS [6], and (4) wavelet-based skip
connections used in WCT2 [41]. To do so, we train four
variants of AECbt with our blockwise training, each with
high-frequency residuals replaced by one of the above skip
connection types. We employ the same experimental met-
rics and dataset as in Section 4.3.

Results. The average loss across all images for feature
and image reconstruction is shown in Table 2b. We observe
that our skip connections of high-frequency residuals con-
sistently leads to considerable improvements over the three
alternative lightweight options. Our skip connections even
perform slightly better than the heavyweight wavelet-based
skip connections. The autoencoder without skip connec-
tions has the worst performance, as indicated by the high-
est loss values. Compared to this no skip connection case,
our high-frequency residuals improves by 75.7%, 88.5%,
95.0%, and 88.5% for relu3 1, relu2 1, relu1 1, and im-
age reconstruction, respectively. When skip connections of
indices of maximal values or instance-normalized skip con-
nections are applied, the performance improves slightly.

In Figure 5, we exemplify the image reconstruction abil-
ity of each model with different skip connection types. We
notice in Figure 5b that the reconstructed result without

skip connections captures the general idea, such as color, of
the input image but fails to reconstruct the high-frequency
edges. Although skip connections of indices of maximum
values and instance-normalized skip connections improve
the reconstruction of high-frequency components, failures
still arise including uneven blue sky around leaves and ar-
tifacts within leaves as shown in the zoomed-in crops in
Figures 5c and 5d. In contrast, the results from wavelet-
based skip connections and high-frequency residuals in Fig-
ures 5(ef) are reconstructed better and closer to the original
image.

We exemplify the influence of high-frequency residu-
als on image reconstruction in Figure 5g. We show what
a reconstructed image looks like when there are no high-
frequency residuals and when there are only high-frequency
residuals. In the former case, the skip connections to the de-
coder are replaced by zero tensors, while in the latter case,
the connection between the encoder and decoder at the bot-
tleneck is cut and instead the input to the decoder is a zero
tensor. As shown in Figure 5g, the result from no high-
frequency residuals is a low-frequency, blurry image, while
the result from high-frequency residuals is only the high-
frequency edges of the input image. This implies that high-
frequency residuals reinforce image reconstruction by sup-
plying high-frequency components from the input image.

5. Conclusion
We designed a compact photorealistic style trans-

fer model to embed lightweight representations of
PhotoWCT’s coarse-to-fine feature transformations and
WCT2’s wavelet-based skip connections. Two novel mech-
anisms, blockwise training and skip connections of high
frequency residuals made this compact representation pos-
sible. Experiments demonstrate that our PhotoWCT2 pre-
serves the strong stylization strength of PhotoWCT and
good image/feature reconstruction ability of WCT2 while
supporting stylization of higher resolution images and faster
stylization speed without loss to image quality.
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