
Meta-Meta Classification for One-Shot Learning

Arkabandhu Chowdhury1, Dipak Chaudhari2, Swarat Chaudhuri2, and Chris Jermaine1

1Rice University, 2University of Texas, Austin

Abstract

We present a new approach, called meta-meta classifica-
tion, to learning in small-data settings. In this approach, one
uses a large set of learning problems to design an ensem-
ble of learners, where each learner has high bias and low
variance and is skilled at solving a specific type of learning
problem. The meta-meta classifier learns how to examine a
given learning problem and combine the various learners to
solve the problem. The meta-meta learning approach is espe-
cially suited to solving few-shot learning tasks, as it is easier
to learn to classify a new learning problem with little data
than it is to apply a learning algorithm to a small data set.
We evaluate the approach on a one-shot, one-class-versus-
all classification task and show that it is able to outperform
traditional meta-learning as well as ensembling approaches.

1. Introduction
Meta-learning, often defined informally as “learning to

learn” [43, 34], is a compelling approach for solving very
small-data learning problems, such as one-shot or few-shot
learning [11]. One can generate a data set that consists of a
large number of learning problems, where each problem has
just a few training examples, and then use that set to learn
how to solve learning problems with just a few examples.
This contrasts with competing approaches such as transfer
learning [45], where one solves one or more learning prob-
lems, and then adapt those solutions to a new, small-data
learning problem. Meta-learning learns the learning process,
rather than how to re-purpose an existing learner.

In this paper, we introduce a new approach to meta-
learning, called meta-meta classification. Here, we use a
large set of learning problems to design a set of k different
learners, each of which has high bias and low variance, so
that it is skilled at solving a specific type of learning problem.
Further, the meta-meta classifier also learns how to examine
a new learning problem and select which of the k learners
should be used to solve that particular learning problem.

We call the method meta-meta classification to distin-
guish it from meta-classification, a term commonly used

in ensemble methods [7]. In ensembling, a meta-classifier
is a classifier that aggregates the output from a family of
learned scoring functions. For example, in bagging [4], a
meta-classifier may average the scores output from a family
of scoring functions. In more sophisticated methods, the
meta-classifier may itself be trained so that it learns to pro-
duce an accurate output from a set of less accurate scoring
functions.

In contrast, by training over a corpus of learning prob-
lems rather than a single problem, a meta-meta classifier
designs a set of learners, while at the same time learning
how to examine a new problem and choose which learn-
ers are best to solve that problem. Ultimately, given a new
learning problem, the output of the meta-meta classifier is a
problem-specific meta-classifier defined over the set of scor-
ing functions produced by the learners. Note that while a
meta-meta classifier learns how to produce a meta-classifier,
it is not itself a meta-classifier.

Meta-meta classification is particularly natural for very
small-data learning problems. The underlying assumption
here is that it is easier to classify a new learning problem
with little data than it is to solve the new learning problem
with little data. Intuitively, this may be the case: learned
scoring functions are successfully used all the time to look at
a particular object and predict its label. It does not seem to
be inherently more difficult to look at a single object and its
label (or small set of labeled objects in the case of few-shot
learning) and identify which learners may apply to solving
the problem. If it is possible to look at a restricted number
of training examples and choose an appropriately biased,
low-variance learner that best applies to the learning task,
then the variance reduction realized by choosing a learner
that is highly biased for the problem may result in very low
error, even on highly data-restricted problems.

Motivation. One-shot classification is an important but dif-
ficult problem, with many applications in science and tech-
nology. For example, consider the problem of searching a
database of brain images, to find images with a particular
type of brain lesion, where only a few (or one) images of the
desired injury are available. Our proposed method could eas-

177

ily be used in this case. Note that this example application
is an example of “one-vs-all, open-world, one-shot classi-
fication”, which is under-studied (or never-before studied),
and which we consider in this paper. Almost all prior work
considers n-way classification (for n = 5). Our new method
performs very well on this problem, compared to the obvi-
ous alternatives. For another particular application, consider
the task of recognizing one animal species (for which only
one positive image is available) from among a set of images
taken by an automated wildlife camera. A set of negative
training images may be available, but the set of negative
classes cannot be controlled. Or, consider recognizing a
particular vessel (boat) from among a large set of satellite
images of vessels in the open ocean. In our opinion, these
are as meaningful as the more common 5-way classifica-
tion task seen in most few-shot learning papers. Our work
(and future work) on this sort of one-vs-all problem could
greatly increase the range of problems amenable to one-shot
classification.

Our contributions. We define a new meta-learning strategy
called meta-meta classification, in which a meta-meta classi-
fier is trained to recognize the type of learning task at hand,
and to use that recognition to choose a biased, low-variance
learner appropriate for the task. We show how this strategy
can be used to learn a highly accurate aggregate scoring
function, even for one-shot learning problems. Note that our
meta-meta classifier does not necessitate any particular type
of learner to produce a classifier. We have chosen a gradient
based optimizer, which is close to MAML [13] in essence,
and hence we did a thorough comparison with ensembles
of MAMLs. As an evaluation example, on a one-shot, one-
class-versus-all classification task defined over the ImageNet
corpus, meta-meta classification is able to achieve greater
than 82% test accuracy, compared to less than 61% test ac-
curacy for the baseline MAML approach, and less than 67%
for a comparatively-sized ensemble of MAMLs.

2. Related Work

Meta-meta classification broadly falls under the meta-
learning or “learning to learn” paradigm [19, 43, 2] which
has been shown to produce promising results on few-shot
classification problems.

Among various meta-learning methods, metric-based
methods [20, 17, 12, 39, 40, 41, 15, 47, 42] aim to learn
a similarity function or a distance metric between a pair of
different samples. Siamese networks [20] use a pairwise
verification loss to perform nearest-neighbours classifica-
tion. Matching Networks [47] combine both embedding and
classification to form an end-to-end differentiable nearest
neighbours classifier. Prototypical Networks [41] apply an
inductive bias in the form of class prototypes without full
context embeddings.

Memory-augmented methods [26, 25, 8, 48, 38, 29] learn
to adjust model states using memory-augmented recurrent
networks. For example, [38] represents entries from a sam-
ple set in an external memory, AdaResNet [27] uses memory
and the sample set to produce conditionally shifted neuron
coefficients for the query set, and SNAIL [25] uses an ex-
plicit attention mechanism to leverage specific information
from past experience.

Optimization based methods [13, 1, 14, 51, 23, 16, 28,
37, 35, 33, 52] learn a network initialization that can quickly
adapt to new tasks within a distribution of tasks with a very
few steps of regular gradient descent. MAML [13] backprop-
agates the meta-loss through an inner learning loop, Reptile
[28] incorporates an L2 loss that updates the meta-model
parameters towards the task-specific models, and [23] learns
a layer-wise subspace where gradient-based adaptation is
done.

There have recently been a few papers that have suggested
that transfer-based methods can be more effective in classic
few shot classification problems. Chen et al. [5] propose
Baseline using a simple linear classifier on top of a pre-
trained deep CNN, and Baseline++ using a distance-based
classifier. Some authors [21, 44] suggest using a high-quality
feature extractor by training a deep CNN on a large data set.
Among others, [6] proposes a transductive fine-tuner, [10]
proposes feature diversity through diversity in data sets, and
[9] proposes the idea of ensembling for few-shot learning
through training a number of diverse deep CNNs as feature
extractors during meta-learning.

However, all of these papers mainly address the problem
of few shot multi-class classification where only few images
of a number of classes are available for training. Often in
reality, we may have only a single scarce class with a few im-
ages (or even one image) available for training. The problem
then becomes more of an image retrieval than classification.
To the best of our knowledge, few shot literature hardly
considers this application which we frame as a One-Vs-All
classification problem in this paper.

3. Background and Problem Definition

3.1. Meta-Meta Classification: Overview

Meta-meta classification is an approach to supervised
learning that is particularly relevant to the problem of one-
shot or few-shot learning, as it relies on learning a set of
learners designed specifically to have high inductive bias as
a way to prevent over-fitting, as well as how to apply those
learners when a new learning problem is encountered.

Specifically, for input (feature) domain X and output (la-
bel) domain Y , a meta-meta classifier takes as input a train-
ing set (a multi-set drawn from X × Y), and then returns an
aggregate scoring function g∗ : X × Y → R that combines
the output of the learners (in the context of ensemble-based

178

Figure 1. An aggregate scoring function realized via meta-meta
classification. The meta-meta classifier g(.) uses the training set
DP to select from among the k parameterized learners f1,T1(DP),
f2,T2(DP), and so on, to realize an aggregate scoring function g∗.

learning, this aggregate scoring function is sometimes re-
ferred to as a meta-classifier). As in all forms of supervised
learning, the goal is to produce an aggregate scoring function
that gives relatively high values to pairs from X × Y that
tend to occur together.

In contrast to classical ensemble approaches (such as
stacking [50]), in meta-meta classification, the aggregate
scoring function is constructed without examining how well
the individual scoring functions output by the learners per-
form on the training set (or on a test set). Instead, the meta-
meta classifier learns through experience how the learners
should be combined for different types of problems. This
makes meta-meta classification particularly attractive for
few-shot learning problems, as there is no need to have
enough data to test the accuracy of the output of the learners.

A meta-meta classifier has two parts: a set of learners,
and a meta-aggregation function.

The learners. In classical supervised learning, we have a
single scoring function and a learning algorithm. But in
meta-meta classification, we instead assume an ensemble of
k learners, from which we wish to build an aggregate scoring
function. The ith learner consists of a scoring function fi,θf

i
:

X × Y → R, as well as a training algorithm Ti,θT
i

.
Let D be the set of all multi-sets drawn from X×Y . The

training algorithm Ti,θT
i
: D → Θf

i maps a set of training

examples drawn from X × Y to a particular value for θfi .
As is typical, the scoring function fi,θf

i
is parameterized on

the parameter set θfi chosen from parameter space Θf
i by the

training algorithm. More atypically, the training algorithm
is itself parameterized on a parameter set θTi . This parame-
ter set can contain any parameters that control the learning
process: the learning rate, the number of learning iterations,

the set of parameters to initialize the learning algorithm, etc.

The meta-aggregation function. The goal is to learn, by
looking at a set of learning problems, how to examine a new
problem, and combine those k learners to create a problem-
specific meta-classifier g∗. The meta-aggregation function
is given this task.

For a function f : X1×X2× ...→ R, let f(x1, ..., xm) :
Xm+1, Xm+2, ... → R denote the function resulting from
currying f with respect to the first m inputs, and then eval-
uating the resulting curried function at (x1, ..., xm). Then
fi,T

i,θT
i
(Dtrn)(xtst) : Y → R is the result of applying the

training algorithm in learner i—parameterized with θTi —
to training set Dtrn, and then “pre-loading” the resulting
scoring function with xtest.

A meta-aggregation function examines Dtrn, and then
conditioned on that Dtrn, combines each of the k scoring
functions fi,T

i,θT
i
(Dtrn) to create a new, more accurate ag-

gregate scoring function.
Formally, a meta-aggregation function is a function:

gθg : D × (Y → R)k → (Y → R)

By allowing the meta-aggregation function to examine the
set Dtrn and aggregate the scoring functions created by
the k learners, we obtain the aggregate scoring function
g∗⟨θg,θT

1 ,θT
2 ,...,θT

k ⟩(Dtrn, xtst, ytst) ≡

gθg

(
Dtrn,f1,T

1,θT1
(Dtrn)(xtst),

f2,T
2,θT2

(Dtrn)(xtst), ...,

fk,T
k,θT

k
(Dtrn)(xtst)

)
(ytst).

A depiction of how the learners and the meta-aggregation
function together produce an aggregate scoring function g∗

is given in Figure 1.

3.2. Intuition: Why Meta-Meta Classification?

If the training set Dtrn is large, it is unclear that there
is much benefit to meta-meta classification. For large
n = |Dtrn|, we may choose a general-purpose learner with
small inductive bias that works well regardless of the prob-
lem at hand. However, if n is small—n = 1 in the case of
one-shot learning—there may be a significant benefit to the
introduction of a set of learners and a meta-meta classifier.
If sufficient information about the problem-generating distri-
bution P is available through past experience, that we may
learn a high-quality meta-meta classifier. After learning the
meta-meta classifier, tiny training set Dtrn may give enough
information as to the exact nature of the classification task
that the meta-aggregation function can accurately select an
appropriate learner. This learner will ideally have high in-
ductive bias, and be tailored to the specific learning problem.

179

At the same time, it will hopefully have low variance, and
will be accurate, even with the learner has been trained on
very small Dtrn.

In fact, this is the benefit of meta-meta classification: it
allows for the use of a set of highly biased, low variance
learners each of which covers a small subset of the set of
classification problems that are expectedly encountered.

For this to work, a key assumption is that the task of rec-
ognizing which type of learning problem we are faced with
is less data-intensive than the task of actually solving the
learning problem. Hence, faced with limited training data,
we use that data to first determine which type of learning
problem we are faced with, and then use a high-bias learner
that has been designed to perform well on that specific class
of problem.

3.3. Relationship to Other Approaches

Meta-meta classification is related to several other ideas
in machine learning. For example, consider neural archi-
tecture search [53, 31] and related ideas. Both approaches
effectively appeal to a meta-meta classifier that attempts to
choose the best learner for a given task. The key difference,
however, is that neural architecture search typically assumes
large n, so that the meta-meta classifier is trivial. When eval-
uating a learner, simply see how accurate the learner is on a
holdout set. If the learned model is accurate on the holdout
set, the learner is a good choice. In meta-meta classification,
the assumption is that there is little data available to evaluate
the accuracy of a constructed classifier, and so the meta-meta
classifier g is introduced as an alternative to an accuracy test
over a holdout set.

There is an obvious relationship between meta-meta clas-
sification and boosting, bagging [32], and other ensemble
methods. The aggregate scoring function enabled by the
meta-meta classifier is effectively controlling the use of an
ensemble of learners. In ensemble methods, the function that
aggregates the output from an ensemble of learners is often
called a meta-classifier. However, the difference is that a
meta-meta classifier is trained how to produce a task-specific
meta-classifier, it is not itself a meta-classifier. By looking at
a large number of learning problems, the meta-meta classifier
learns how to select an appropriate, high-bias, low-variance
learners from a set of learners, few of which are useful for
any particular classification task.

Meta-meta classification is related to other meta-learning
approaches, for example, [13], as they also assume a distri-
bution of learning tasks, and apply meta-learning to try to
solve the one-shot learning problem. The key difference is
that Finn et al.’s approach can be seen as trying to design a
single learner (scoring function plus training algorithm) that
works well for small-sized DP , for any data-generating P
sampled according to P, rather than attempting to match the
present learning task with an appropriate classifier.

Algorithm 1 End-to-End Gradient Descent
Meta-Learn (P, k, b, ntrn, ntst)
// P: Distribution of distributions to learn from
// k: # of learners
// b: Meta-learning batch size (# of problems)
// ntrn: # of training instances in a learning problem
// ntst: # of test instances to evaluate a scoring function
Initialize θ = ⟨θg, θT1 , θT2 , ..., θTk ⟩ ← rand()
while loss decreases do

for j = 1 to b do
Sample P ∼ P
Sample Dtrn,j = {(xi, yi)}i=1...ntrn

∼ P
Sample Dtst,j = {(xi, yi)}i=1...ntst

∼ P
end for
θ ← θ − α

b×ntst

∑b
j=1

∑
(xtst,ytst)∈Dtst,j

∇ℓ (g∗θ(Dtrn,j , xtst), ytst) (θ)
end while
return θ

4. Learning a Meta-Meta Classifier
4.1. Background

Assume a universe of probability distributions P , each
defined over the domain X×Y , and a distribution P defined
over this universe. Hence P is a distribution of distributions.
Now, consider the following hierarchical stochastic process
for generating a triple (Dtrn, xtst, ytst) from P:

1. Sample P ∼ P

2. Sample Dtrn = {(xi, yi)}i=1...n ∼ P

3. Sample (xtst, ytst) ∼ P

Here, Dtrn is a training data set, and (xtst, ytst) is a test
pair.

Assume some loss function ℓ : (Y → R)×Y → R. That
is, ℓ takes as an argument a scoring function defined over
domain Y , a “true” value for the output selected from Y , and
scores how accurately the scores reflect the “true” output.
Generally, any loss function can be used for ℓ: squared
error if Y is the set of real numbers, cross-entropy if Y is
a set of categories, etc. For example, for a scoring function
f : Y → R, the squared error loss function is:

ℓl2(f, y) =
(
y − argmaxŷf(ŷ)

)2
The goal when learning a meta-meta classifier is to choose

⟨θg, θT1 , θT2 , ..., θTk ⟩ from the parameter space Θg × ΘT
1 ×

ΘT
2 × ... × ΘT

k so as to minimize the expected loss of the
meta-meta classifier (or the “meta-loss”):

E(Dtrn,xtst,ytst)∼P

[
ℓ
(
g∗⟨θg,θT

1 ,θT
2 ,...,θT

k ⟩(Dtrn, xtst), ytst

)]
There are many possible instantiations of this idea. We

now briefly describe a couple of them.

180

4.2. Example: End-to-End Gradient Descent

Assume that each of the k learners utilizes gradient de-
scent, and that g is differentiable with respect to θg . Further,
assume that Ti performs one gradient update at learning rate
λ using θTi as the initialization of the gradient descent, so
that Θf

i = ΘT
i and:1

Ti,θT
i
(Dtrn) = θTi −

λ

n

∑
(x,y)∈DT

∇ℓ(fi,θf
i
(x), y)(θTi).

Then, letting θ = ⟨θg, θT1 , θT2 , ..., θTk ⟩ we can run a gradient
descent algorithm to learn the meta-aggregation function
parameters θg as well as each of the θTi parameters for the
various learners. Assuming meta-learning rate α, we re-
peatedly sample (Dtrn, xtst, ytst) ∼ P and for each sample,
apply the following update rule:

θ = θ − α∇ℓ (g∗θ(Dtrn, xtst), ytst) (θ)

Note that it is easily possible to extend this to training al-
gorithms that perform more than a single gradient update;
this merely requires expanding the expression computed by
Ti,θT

i
for an appropriate number of gradient steps. In prac-

tice, however, only a small number of gradient updates will
be used in a small-data setting; a large number of steps will
typically result in over-fitting.

Also, in practice, it may make sense to back-propagate
the meta-loss from more than a single (xtst, ytxt) test pair,
as more test pairs may give a more stable estimate of the
meta-loss and decrease time-until-convergence.

Finally, there is nothing preventing the use of a batch of
learning problems P1, P2, ... during each iteration of gradi-
ent descent. Again, this may result in a more stable algorithm
that takes less time to converge.

The full algorithm for end-to-end gradient descent, which
uses a batch of learning problems as well as an arbitrarily-
sized test set for back-propagation is in Algorithm 1.

4.3. Example: Clustering Plus Gradient Descent

Unfortunately, the algorithm from the previous subsection
may not work well in practice. Note that while the meta-
meta classifier is being trained in a supervised manner—the
goal is to learn a meta-meta classifier that can generate an ac-
curate meta-classifier, in one important sense, the algorithm
is unsupervised.

Ultimately, the meta-aggregation function gθg must look
at a specific training set Dtrn and determine which of the
learners is most appropriate for the underlying problem. If,
at the time that gθg is being learned, the learners themselves
are being learned, this may be viewed as an unsupervised

1Here, ∇ℓ(f
i,θ

f
i
(x), y)(θTi) denotes “the gradient of the ith loss func-

tion with respect to parameter set θfi , evaluated at θTi .”

Algorithm 2 Three-Step-Meta-Learning
Meta-Learn (P, h, k, b, ntrn, ntst)
// P: Distribution of distributions to learn from
// h: Embedding function for problem instance
// k: # of learners
// b: Meta-learning batch size (# of problems)
// ntrn: # of training instances in a learning problem
// ntst: # of test instances to evaluate a scoring function
Initialize θ = ⟨θg, θT1 , θT2 , ..., θTk ⟩ ← rand()

// Cluster a set of problem instances
Q = {}
for m = 1 to big do

Sample P ∼ P;
Q = Q ∪ {h({(xi, yi)}i=1...ntrn

∼ P)}
end for
Run k-means on Q to obtain µ1, µ2, ..., µk

// Create and partition a set of training distributions
Pj = {} for j = 1 to k
for m = 1 to big do

Sample P ∼ P;
D = {(xi, yi)}i=1...ntrn ∼ P
Add P to Pj where j = argminj ||µj − h(D)||2

end for

// Learn each of the training algorithms
for j = 1 to k do

while loss decreases do
for l = 1 to b do

Sample P ∼ Pj

Sample Dtrn,l = {(xi, yi)}i=1...ntrn
∼ P

Sample Dtst,l = {(xi, yi)}i=1...ntst ∼ P
end for
θTj ← θTj − α

b×ntst

∑b
i=1

∑
(xtst,ytst)∈Dtst,i

∇ℓ
(
fj,T

j,θT
j
(Dtrn)(xtst, ytst

)(
θTj

)
end while

end for

// Now, learn g
while loss decreases do

for j = 1 to b do
Sample P ∼ P
Sample Dtrn,j = {(xi, yi)}i=1...ntrn

∼ P
Sample Dtst,j = {(xi, yi)}i=1...ntst

∼ P
end for
θg ← θg − α

b×ntst

∑b
j=1

∑
(xtst,ytst)∈Dtst,j

∇ℓ
(
gθg

(
Dtrn,f1,T

1,θT1
(Dtrn)(xtst),

f2,T
2,θT2

(Dtrn)(xtst), ...,

fk,T
k,θT

k
(Dtrn)(xtst)

)
(ytst)

)
(θg)

end while
return θ

181

Figure 2. Learning a meta-meta classifier utilizing a pre-clustering
of learning problems.

task; it is unclear how to segment the possible problems in
P into categories so that a reasonable learner or learners can
be designed for each category.

In practice, unsupervised learning tasks are notoriously
sensitive to initialization. Few machine learning practitioners
running a k-means algorithm would sample the initial means
from a Normal(⃗0, I) distribution, for example, as this would
likely produce terrible results. Instead, the initial means may
be sampled from the data set to be clustered.

Unfortunately, learning a meta-meta classifier consist-
ing of a number of neural network learners via full gradi-
ent descent (Algorithm 1), starting with a typical, random
neural-network initialization for individual learning param-
eters ⟨θT1 , θT2 , ..., θTk ⟩, is akin to initializing a k-means al-
gorithm poorly. In practice, all θTi values will be terrible,
but one will be slightly less terrible than the others, and the
meta-aggregation function will learn to route most problems
to the corresponding learner. As a result, the other learners
are starved of training data and ignored, and the learned so-
lution is equivalent to what would have been returned from
the MAML method [13].

One way around this is to sample a large number of dis-
tributions from P and explicitly cluster those distributions
as a separate step. This requires having some way to clus-
ter distributions of problems; we assume some embedding
problem-specific embedding function that is able to map

problem distributions (possibly non-deterministically) into a
high-dimensional space, where they can be clustered using a
k-means algorithm (here k is the number of learners that are
to be meta-learned).

A procedure that uses such an explicit clustering step is
depicted in Algorithm 2. The procedure is depicted picto-
rially in Figure 2. After first producing the k clusters of
problem distributions, one learner is meta-learned per distri-
bution cluster. Then, in a final step, the procedure trains the
meta-aggregation function so that it is able to combine the
output of the learners.

Finally, we point out that Algorithm 1 and Algorithm 2
can be used together. Algorithm 2 could be used to produce
a high-quality initialization that is refined using Algorithm
1; the combined procedure is likely to outperform either
individual methodology.

5. Experimental Evaluation

5.1. One-vs-All One-Shot Image Classification

The first application we consider is open-world classi-
fication, where the goal is to recognize a single positive
class from a large number of negative classes, some without
training examples. This is one-vs-all (OvA) or one-vs-rest
(OvR) classification [30]. Hence, we evaluate the utility of
meta-meta classification for a series of one-shot image classi-
fication tasks, where the goal is to recognize—given a single
example—members of a single class which are mixed in with
a number of other, “background” classes. We wish to answer
two key questions. First, does increasing k (the number of
learners) actually increase classification accuracy? Second,
does meta-meta classification outperform a simple ensemble
of meta-learners? That is, does the biased ensembling of
meta-meta classification outperform the simple tactic of just
using a number of independent meta-learners?

Meta-learning relies on being able to generate a distribu-
tion of learning problems. To generate a learning problem,
we sample 51 classes from the classes available for meta-
learning, and one is randomly designated as a “positive”
class. The training set Dtrn is generated by sampling one
image from the selected positive class, and 50 images from
the 50 negative classes (some negative classes may have
multiple samples, and some may not be represented in the
sample set), and test set Dtst is similarly generated by sam-
pling 50 images from the positive class, and 50 from the
negative classes.

We consider several different image classification tasks,
but the first is to learn to classify images from the ImageNet
database. We use the ILSVRC-2012 dataset [36], the most
popular flavor of ImageNet data. We hold back 10% of
the 1000 ILSVRC-2012 classes for testing, and 90% of the
classes are available for meta-learning.

Each fi is the convolutional network architecture used by

182

Table 1. Experimental results. The 95% confidence interval of observed test accuracy, computed over 10,000 problems is given. k denotes
the number of models trained.

k WHOLE DATA WHOLE DATA MM-CLASSIFIER NEAREST META-META
HARD BAGGING SOFT BAGGING ON WHOLE DATA CLUSTER CLASSIFIER

IMAGENET ILSVRC-2012 RESULTS

2 61.87 ± 0.22 62.27 ± 0.24 62.79 ± 0.22 61.71 ± 0.25 66.26 ± 0.20
4 62.48 ± 0.23 61.61 ± 0.24 63.74 ± 0.23 69.53 ± 0.22 74.02 ± 0.17
8 62.82 ± 0.24 62.40 ± 0.25 64.28 ± 0.23 74.45 ± 0.21 77.92 ± 0.17
16 63.12 ± 0.24 63.34 ± 0.25 66.11 ± 0.24 74.70 ± 0.22 82.49 ± 0.16

CROSS-DOMAIN RESULTS (META-LEARNING ON ILSVRC-2012, TEST ON CUB-2011)

2 63.60 ± 0.22 64.38 ± 0.25 64.63 ± 0.25 71.53 ± 0.20 70.87 ± 0.20
4 66.36 ± 0.22 66.27 ± 0.23 66.99 ± 0.23 69.76 ± 0.22 72.44 ± 0.17
8 66.94 ± 0.24 67.04 ± 0.25 67.52 ± 0.25 74.29 ± 0.15 77.98 ± 0.14
16 67.21 ± 0.25 67.72 ± 0.26 69.61 ± 0.26 84.04 ± 0.12 85.67 ± 0.11

AIRCRAFT DATA SET RESULTS

2 65.39 ± 0.31 65.66 ± 0.30 69.57 ± 0.24 68.88 ± 0.31 70.65 ± 0.26
4 70.62 ± 0.27 71.03 ± 0.26 73.00 ± 0.21 71.72 ± 0.28 76.05 ± 0.23
8 71.84 ± 0.26 72.23 ± 0.27 75.93 ± 0.19 73.35 ± 0.27 78.61 ± 0.23

OMNIGLOT DATA SET RESULTS

2 71.24 ± 0.35 70.69 ± 0.29 73.26 ± 0.35 73.57 ± 0.33 78.70 ± 0.31
4 73.83 ± 0.35 77.32 ± 0.29 79.16 ± 0.21 77.07 ± 0.28 85.27 ± 0.18
8 77.70 ± 0.31 77.61 ± 0.28 85.25 ± 0.20 80.15 ± 0.27 90.87 ± 0.15
16 79.38 ± 0.28 79.56 ± 0.31 88.04 ± 0.18 82.02 ± 0.26 92.07 ± 0.14

[13], which has 4 modules with a 3 × 3 convolutions and 32
filters, a ReLU nonlinearity, and 2 × 2 max-pooling. The
scoring function is realized using a fully connected layer
after the convolutions, and the last layer is fed into a softmax.
Each θTi is the initial set of weights used when training
the ith network. During training, five iterations of gradient
descent are performed.

The meta-aggregation function g is realized by a simple,
fully-connected neural network with two 256-neuron hidden
layers. As input, this network accepts:

1. fi,θf
i
(xtst,−1) for i in {1...k} (that is, the “no” score

each learner gives to the test image)

2. fi,θf
i
(xtst,+1) for i in {1...k} (the “yes” score that

each learner gives to the test image)

3. The 512-dimensional output of a ResNet network [18],
where the final classification layers have been dropped,
applied to the positive image in Dtrn. This encoding
allows the meta-aggregation function to classify the
classification problem.

Here, θg consists of the weights used in the fully-
connected neural network, as well as the ResNet network
used to encode Dtrn.

When using the three-step training process, we sample
a training set from the distribution, and our embedding

function h pushes the positive training instance in that set
through a pre-trained ResNet network. We pre-trained a
modified ResNet-152 classifier on the classes reserved for
meta-learning and used the penultimate layer for feature
extraction. We changed the number of output channels of
the convolutions from [64, 128, 256, 512] to [64, 64, 128,
256] and block expansion from 4 to 2. This was done just
to decrease the extracted feature size from the usual 2048 to
512.

Finally, each θTi is the starting parameters of the gradient
descent used by the ith learner. Hence, in this instantiation
of meta-meta classification, we are learning a set of MAML
learners [13].

Additional One-Shot Learning Problems. We test
three additional one-shot learning problems.

(1) Meta-learn on ImageNet ILSVRC-2012, test on the
CUB-2011 Birds data set [49]. In this task, meta-learning
is performed exactly as above, on 900 classes selected from
the ImageNet ILSVRC-2012 data set. However, the testing
distribution is different. Each positive class for testing is
selected from among the CUB-2011 Birds data set, and the
negative classes are selected from among the 100 classes
held back from the ILSVRC-2012 data set. The goal is to
perform cross-domain testing.

(2) Meta-learn on 87 classes from the Aircraft data set
[24], test on 15 classes. During testing, one of the 15 test

183

classes is chosen as the positive class, the other 14 classes
are the negative classes. One training image is available
from the positive class, and 50 from the 14 negative classes.
The goal is to perform fine-grained testing.

(3) Meta-learn on 1200 characters from the Omniglot
data set [22], test on 423 characters. During testing, a letter
from the testing set is selected as the positive class, and 50
other test letters are selected as negative classes. Again, one
image from the positive class is available, and 50 images of
the other letters are available.

Competitive Methods Tested. To evaluate the efficacy
of our ideas, we compare meta-meta classification against
ensembles of meta-learners. In our experiments, the individ-
ual learners in the ensemble are MAML learners [13]. While
a number of improvements to MAML have been suggested
in the last couple of years (several of which are described
in the Related Work section of this paper), we use MAML
as a comparison point because our meta-meta classifier is
effectively learning a set of MAML models. This facilitate
an apples-to-apples comparison, though we note that MAML
(both in meta-meta classification, and in the ensemble) could
be replaced with any reasonable alternative.

Overall, we evaluate the following five classifiers: (1)
Whole-data hard bagging: this is hard bagging over an en-
semble of MAML models all trained on the entire data set.
(2) Whole-data soft bagging: soft bagging over an ensem-
ble of MAML models. (3) Meta-meta classifier on whole
data: here we first learn a set of MAML models, each on
the whole data, but then learn a meta-meta classifier (step
three of three-step meta-learning) on the MAML models.
This is useful for testing the utility of segmenting the data.
(4) Nearest cluster: this is essentially the first two steps of
three-step meta-learning, with the final classifier replaced
with a simple nearest neighbor classifier on the ResNet fea-
tures. (5) Meta-meta classifier: this is the full three-step
meta-learning.

Results. For each data set and each of the five compet-
itive methods, we increase the number of learners k loga-
rithmically (with a step of 2) until we found no significant
improvement in the classification performance. In each case,
we randomly generate 10,000 learning problems to evaluate
each method, and the method is scored using accuracy on 50
positive and 50 negative examples. For the evaluation, we
use five iterations of gradient descent. All results (including
average accuracy, 95% confidence interval width) are given
in Table 1. For comparison, a single MAML model achieved
60.78% accruacy on ImageNet ILSVRC-2012, 62.37% ac-
curacy on the cross-domain bird recognition problem, and
64.92% and 65.95% accuracy on the aircraft and Omniglot
problems.

Discussion. Across all of the learning tasks, the meta-
meta classifier consistently had the best accuracy—often
considerably higher than the other options, and much higher

than a single MAML model. For example, on the ILSVRC-
2012 data set, a meta-meta classifier with 16 classes obtains
more than 82% accuracy, compared to just under 61% accu-
racy with a single MAML model.

5.2. 5-way One-Shot Image Classification

While meta-meta classification is designed for OvA or
OvR classification, it can easily be adapted to 5-way classifi-
cation, which is more commonly studied in the meta-learning
literature. This is done by treating a 5-way classification
problem as five different OvA classification problems [3].
That is, given a 5-way, one-shot classification problem, we
train the meta-meta classifier five times, where we cycle
through the five classes, with each class in turn serving as
the “one”, and the other four classes serving as the “all”.
Then, when it is time to classify a test image, we choose
class associated with the classifier giving the highest positive
score.

To test the utility of meta-meta classification for 5-way
classification, we follow the procedure in [13] with the
ILSVRC-2012 data set. We randomly sample one image
each from five randomly sampled classes as the support data
for training, and randomly sample 15 images each from those
classes as query data for testing. We sample 600 such prob-
lems from our test split, and measure the accuracy as well
as 95% confidence interval. On the ILSVRC-2012 data set,
16-cluster meta-meta classification obtained 57.23±1.72%
accuracy, whereas MAML gave us 49.64±1.07% accuracy,
for a net gain of +7.59% compared to MAML. Compar-
ing with the results presented in [46] which also tested 5-
way classification accuracy on ILSVRC-2012, +7.59% net
gain beats the two best meta-learning methods tested: Proto-
MAML (proposed in [46]; +4.02%) and Proto-Net (proposed
in [41], +4.99%). We also tested meta-meta classification for
5-way classification on the Aircraft data set, and obtained
57.12±1.86% accuracy compared to MAML’s 51.35±1.1%,
for a net gain of +5.77%.

6. Conclusion

We have explored a new type of meta-learning, called
meta-meta classification. The idea is to learn a set of learn-
ers tailored to different problem types, as well as a function
called a “meta-meta classifier” that is able to look at a par-
ticular problem and decide how to combine the learners to
solve that problem. Meta-meta classification is predicated
on the assumption that it is easier to classify a problem (and
choose an appropriate set of learners) than it is to learn to
solve the problem with little data. We have shown through a
series of experiments that meta-meta classification can have
much high accuracy.

Acknowledgments. The work in this paper was funded by
NSF grant #1918651 and by NIH award # UL1TR003167.

184

References
[1] Antreas Antoniou, Harri Edwards, and Amos Storkey. How

to train your maml. In Seventh International Conference on
Learning Representations, 2019.

[2] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan
Gecsei. On the optimization of a synaptic learning rule. In
Preprints Conf. Optimality in Artificial and Biological Neural
Networks, pages 6–8. Univ. of Texas, 1992.

[3] Christopher M Bishop. Pattern recognition and machine
learning. springer, 2006.

[4] Leo Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[5] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. arXiv preprint arXiv:1904.04232, 2019.

[6] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran,
and Stefano Soatto. A baseline for few-shot image classifica-
tion. arXiv preprint arXiv:1909.02729, 2019.

[7] Thomas G Dietterich. Ensemble methods in machine learn-
ing. In International workshop on multiple classifier systems,
pages 1–15. Springer, 2000.

[8] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya
Sutskever, and Pieter Abbeel. Rl $ˆ 2$: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

[9] Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Di-
versity with cooperation: Ensemble methods for few-shot
classification. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 3723–3731, 2019.

[10] Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Se-
lecting Relevant Features from a Multi-domain Represen-
tation for Few-shot Classification. arXiv e-prints, page
arXiv:2003.09338, Mar. 2020.

[11] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning
of object categories. IEEE transactions on pattern analysis
and machine intelligence, 28(4):594–611, 2006.

[12] Michael Fink. Object classification from a single example
utilizing class relevance metrics. In Advances in neural infor-
mation processing systems, pages 449–456, 2005.

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pages 1126–1135. JMLR. org,
2017.

[14] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilis-
tic model-agnostic meta-learning. In Advances in Neural
Information Processing Systems, pages 9516–9527, 2018.

[15] Jacob Goldberger, Geoffrey E Hinton, Sam T Roweis, and
Ruslan R Salakhutdinov. Neighbourhood components anal-
ysis. In Advances in neural information processing systems,
pages 513–520, 2005.

[16] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and
Thomas Griffiths. Recasting gradient-based meta-learning as
hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

[17] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In 2006

IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 1735–1742.
IEEE, 2006.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[19] Geoffrey E Hinton and David C Plaut. Using fast weights
to deblur old memories. In Proceedings of the ninth annual
conference of the Cognitive Science Society, pages 177–186,
1987.

[20] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
ICML deep learning workshop, volume 2, 2015.

[21] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning.
arXiv preprint arXiv:1912.11370, 6, 2019.

[22] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenen-
baum. Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, 2015.

[23] Yoonho Lee and Seungjin Choi. Gradient-based meta-
learning with learned layerwise metric and subspace. arXiv
preprint arXiv:1801.05558, 2018.

[24] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical report,
2013.

[25] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner. arXiv preprint
arXiv:1707.03141, 2017.

[26] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In
Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2554–2563. JMLR. org, 2017.

[27] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and
Adam Trischler. Rapid adaptation with conditionally shifted
neurons. arXiv preprint arXiv:1712.09926, 2017.

[28] Alex Nichol and John Schulman. Reptile: a scalable met-
alearning algorithm. arXiv preprint arXiv:1803.02999, 2:2,
2018.

[29] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre La-
coste. Tadam: Task dependent adaptive metric for improved
few-shot learning. In Advances in Neural Information Pro-
cessing Systems, pages 721–731, 2018.

[30] Florent Perronnin, Zeynep Akata, Zaid Harchaoui, and
Cordelia Schmid. Towards good practice in large-scale learn-
ing for image classification. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3482–3489.
IEEE, 2012.

[31] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268, 2018.

[32] J Ross Quinlan et al. Bagging, boosting, and c4. 5. In
AAAI/IAAI, Vol. 1, pages 725–730, 1996.

[33] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. 2016.

[34] Larry A Rendell, Raj Sheshu, and David K Tcheng. Layered
concept-learning and dynamically variable bias management.
In IJCAI, pages 308–314, 1987.

185

[35] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour,
and Pieter Abbeel. Promp: Proximal meta-policy search.
arXiv preprint arXiv:1810.06784, 2018.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–
252, 2015.

[37] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol
Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell.
Meta-learning with latent embedding optimization. arXiv
preprint arXiv:1807.05960, 2018.

[38] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. Meta-learning with memory-
augmented neural networks. In International conference on
machine learning, pages 1842–1850, 2016.

[39] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015.

[40] Pranav Shyam, Shubham Gupta, and Ambedkar Dukkipati.
Attentive recurrent comparators. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70,
pages 3173–3181. JMLR. org, 2017.

[41] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Advances in Neural
Information Processing Systems, pages 4077–4087, 2017.

[42] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior
Wolf. Web-scale training for face identification. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2746–2754, 2015.

[43] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduc-
tion and overview. In Learning to learn, pages 3–17. Springer,
1998.

[44] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-
fication: a good embedding is all you need? arXiv preprint
arXiv:2003.11539, 2020.

[45] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook
of research on machine learning applications and trends:
algorithms, methods, and techniques, pages 242–264. IGI
Global, 2010.

[46] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lam-
blin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles Gelada,
Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset:
A dataset of datasets for learning to learn from few examples.
arXiv preprint arXiv:1903.03096, 2019.

[47] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning. In
Advances in neural information processing systems, pages
3630–3638, 2016.

[48] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva
Tirumala, Hubert Soyer, Joel Z Leibo, Demis Hassabis, and
Matthew Botvinick. Prefrontal cortex as a meta-reinforcement
learning system. Nature neuroscience, 21(6):860, 2018.

[49] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-
ogy, 2010.

[50] David H Wolpert. Stacked generalization. Neural networks,
5(2):241–259, 1992.

[51] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim,
Yoshua Bengio, and Sungjin Ahn. Bayesian model-agnostic
meta-learning. In Advances in Neural Information Processing
Systems, pages 7332–7342, 2018.

[52] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Ben-
gio, and Yangqiu Song. Metagan: An adversarial approach
to few-shot learning. In Advances in Neural Information
Processing Systems, pages 2365–2374, 2018.

[53] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

186

