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Abstract

High dynamic range (HDR) imaging is a highly chal-
lenging task since a large amount of information is lost
due to the limitations of camera sensors. For HDR imag-
ing, some methods capture multiple low dynamic range
(LDR) images with altering exposures to aggregate more in-
formation. However, these approaches introduce ghosting
artifacts when significant inter-frame motions are present.
Moreover, although multi-exposure images are given, we
have little information in severely over-exposed areas. Most
existing methods focus on motion compensation, i.e., align-
ment of multiple LDR shots to reduce the ghosting artifacts,
but they still produce unsatisfying results. These methods
also rather overlook the need to restore the saturated areas.
In this paper, we generate well-aligned multi-exposure fea-
tures by reformulating a motion alignment problem into a
simple brightness adjustment problem. In addition, we pro-
pose a coarse-to-fine merging strategy with explicit satura-
tion compensation. The saturated areas are reconstructed
with similar well-exposed content using adaptive contextual
attention. We demonstrate that our method outperforms the
state-of-the-art methods regarding qualitative and quanti-
tative evaluations.

1. Introduction

With the development of high dynamic range (HDR) dis-
play, the demand for HDR content is rapidly increasing.
HDR content can provide the viewers rich perceptual ex-
periences and also enhance the performance of subsequent
computer vision tasks. Since the direct acquisition of HDR
images is practically tricky and requires expensive imag-
ing devices, HDR imaging techniques using low dynamic
range (LDR) images are drawing considerable attention.
There have been many methods to generate an HDR im-
age from a single LDR input for this reason, where earlier
methods just stretched the dynamic range of the LDR input
[24, 1, 31, 10, 5, 6, 41, 16, 22, 23], and some recent methods
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Figure 1: Input images with large-scale motions in the over-
exposed areas provide insufficient information for HDR re-
construction. Our method successfully hallucinates details
in the saturated regions by aggregating similar well-exposed
content. The results are visualized after tonemapping.

learned LDR-to-HDR mapping using convolutional neural
networks (CNNs) [11, 12, 30, 50, 26, 27]. However, these
single-image HDR reconstruction methods usually suffer
from information loss in under-exposed or over-exposed ar-
eas. Specifically, a large portion of the LDR image con-
tent is washed out in a scene with large lighting variations,
which is hard to be recovered.

Hence, there have also been many methods exploiting
multi-exposure images to collect more information in dark
or very bright areas [9, 28, 20, 13, 14, 4, 2, 3, 54, 3, 25, 35].
But, these methods deliver satisfying performances only
when the multi-exposure images are perfectly aligned or
have slight movements, which is a hardly realistic situation.

To deal with more dynamic scenes with foreground and
background motions, many researchers attempted to align
the input images and integrate the aligned LDR images into
an HDR result [19, 57, 18, 42, 15, 37, 18, 45, 48, 39]. For
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example, several works [18, 36] used optical flow for align-
ing input images and passed the aligned images to a fusion
network. Wu et al. [45] adopted homography transforma-
tion for background alignment and the U-Net for HDR re-
construction. Prabhakar et al. [38] used both homography
and optical flow. Meanwhile, Yan et al. [47, 49] utilized
attention modules and non-local blocks, respectively, to im-
plicitly align the input features. Most of these methods con-
centrated on accurate alignment, and then they used rela-
tively simple techniques in merging the aligned LDR im-
ages or features. Niu et al. [34] adopted GAN to synthesize
missing content but did not perform any explicit hallucina-
tion process. In contrast, we present a coarse-to-fine HDR
reconstruction strategy with consideration of the saturated
areas. Since details in the over-exposed parts are hardly
preserved, we employ the hallucination method. Also, we
do not explicitly use optical flow or alignment but transfer
the brightness of the multi-exposure images to a reference
LDR image so that we can obtain multi-exposure features
having the same structure as the reference.

More specifically, we propose an end-to-end frame-
work with two sub-networks for HDR imaging of dynamic
scenes. First, we present a set of brightness adjustment net-
works (BANs) that takes the multi-exposure inputs and gen-
erates multi-exposure features aligned to those of the refer-
ence image. While most of the existing methods transform
the pixel position and value of multi-exposure images with
respect to a reference, our method transfers the brightness
of multi-exposures to the reference to have perfectly aligned
multi-exposure images. To this end, each BAN adjusts the
exposure of the reference image while retaining its structure
using pixel-adaptive deformable convolutions. In addition,
we introduce a coarse-to-fine merge-and-hallucination net-
work (MAHN) to integrate the set of multi-exposure fea-
tures into an HDR image and hallucinate details in the sat-
urated regions. The hallucination is needed because we
still have insufficient information in challenging areas, even
with the multi-exposure images. For example, when all the
images are over-exposed, or occlusions exist in the high-
lighted areas, naively merging the images leads to poor re-
sults, as shown in Fig. 1. To address this problem, we first
coarsely generate an HDR image and then hallucinate con-
tent in the saturated regions subsequently. Specifically, we
estimate the long-range correlations between the saturated
patch and the well-exposed ones and then fill the saturated
area with the correlated well-exposed content at the fea-
ture level. Extensive quantitative and qualitative evaluations
demonstrate that our method generates a high-quality HDR
image from LDR images in dynamic scenes.

The main contributions of this paper can be summarized
as follows:

• We propose a brightness adjustment network (BAN)
to generate the well-aligned features with dif-

ferent brightness. We reformulate the difficult
image-alignment problem into an easier brightness-
adjustment problem, which significantly alleviates the
ghosting artifacts.

• We propose a merge-and-hallucination network
(MAHN) to integrate the aligned multi-exposure
features into an HDR result while hallucinating details
in the saturated regions. The MAHN explicitly fills
the saturated areas with similar well-exposed content.

2. Related Work
Single-image HDR reconstruction Single-image HDR re-
construction, also referred to as reverse tone mapping or
inverse tone mapping, has been studied for decades. Early
works apply global pixel transformations [24, 1], edit lo-
cal areas [31, 10], or utilize an expand map to enhance the
highlighted regions [5, 6, 41]. Recently, CNN-based meth-
ods [53, 30] are introducing end-to-end networks to learn
the LDR-to-HDR mapping. Several works [12, 26] syn-
thesize a multi-exposure stack and combine them into an
HDR image, while Eilertsen et al. [11] only restore the sat-
urated regions. More recent approaches [50, 27] generate
an HDR image by reversing the LDR image formation pro-
cedure. These methods, however, struggle when severely
under-/over-exposed areas exist.
Multi-image HDR reconstruction Multiple images with
different exposures can provide richer information for HDR
reconstruction. Some conventional methods [9, 28] cap-
ture a series of LDR images and merge them under the as-
sumption that the scene is static. However, since camera
and object motions are inevitable in the real world, the sub-
sequent works propose various methods to handle the dis-
placements. A number of approaches [20, 13, 14, 40, 54, 3,
25, 35] assume that input images are globally aligned and
focus on detecting and rejecting moving pixels. However,
these methods lose considerable information by dropping
the pixels with motions. To perform an explicit alignment,
several methods [19, 57, 18] exploit optical flow, but flow
estimation error easily leads to distortions in the resulting
image. Meanwhile, Sen et al. [42] and Hu et al. [15] rely
on patch-based correspondences.

Recently, CNN-based multi-exposure HDR imaging
methods have been developed. For some examples, Kalan-
tari et al. [18] compensate for motions using an optical flow
algorithm and merge the resulting images using a simple
CNN. Wu et al. [45] first perform homography transforma-
tion to align background motions and pass the aligned im-
ages to an image translation network. Yan et al. [47] lever-
age spatial attention to exclude the misaligned components
and construct a deep network for merging, while Yan et al.
[49] use non-local blocks to align the input features. Also,
Yan et al. [48] and Prabhakar et al. [36] align the images
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Figure 2: Overview of the proposed framework. The brightness adjustment network (BAN) adjusts the brightness of the
reference image to be matched with the corresponding input. The BAN generates a unique kernel and offset value for
each location and applies adaptive convolutions to the reference feature (bottom left). The well-aligned bracketed features
obtained from a set of BANs are fed to the merge-and-hallucination network (MAHN). The MAHN first coarsely merges
the bracketed features into the coarse HDR image and then hallucinates details in saturated areas using adaptive contextual
attention in the fine network. The saturated patches are reconstructed with a weighted sum of the well-exposed content in
the adaptive contextual attention layer according to the estimated attention scores. An example of the attention scores for a
single query patch is illustrated in the bottom right corner, and the attention for all the saturated patches is computed in the
same way.

using optical flow and feed them into a fusion network. Pu
et al. [39] use deformable convolution to align the dynamic
input images, and Niu et al. [34] utilize residual merging
blocks for alignment and expect the adversarial learning to
help to restore missing details. These approaches mostly
give weight to the sophisticated alignment and expect the
merging network to combine the aligned features/images
well. On the contrary, we present a coarse-to-fine HDR re-
construction strategy with supervision on the saturated re-
gions and a brightness adjustment method to produce well-
aligned bracketed features.

Flexible convolutions Jia et al. [17] propose a dynamic fil-
ter network to generate per-pixel filters conditioned on an
input, which has been applied to various tasks dealing with
motions [33, 32, 21]. Meanwhile, Dai et al. [8] present
deformable convolution to enable flexible operations with
learnable offsets. Zhu et al. [56] extend this work by intro-
ducing a modulation factor. Notably, the deformable con-
volution has been used in various fields related to videos
[7, 55]. Especially, recent video super-resolution methods
[43, 44, 46, 51] leverage deformable convolutions to align
the multiple input frames. In this work, we predict spatially

varying deformable kernels to deal with a challenging im-
age pair with significant motion and exposure difference.

3. Proposed Method
Given a series of LDR images {I−N , . . . , I0, . . . , IN}

sorted by their exposure biases, our goal is to generate an
artifact-free HDR image Hfinal. The proposed method
consists of two stages, as shown in Fig. 2. First, we place
the proposed BANs to control the brightness of the refer-
ence image according to other exposure ones. Instead of
aligning an exposure image to fit the structure of the ref-
erence, we adjust the brightness of the reference with re-
spect to other exposures using the proposed BANs. Each
BAN takes the reference and a differently-exposed image
and applies pixel-adaptive deformable convolutions to the
reference feature to adjust its brightness to that of the dif-
ferent exposure. The resulting multi-exposure features are
stacked and fed into the MAHN, which first merges the
given features into a coarse HDR image Hcoarse and then
hallucinates details in the saturated regions. The saturated
areas are identified by the network and represented as a sat-
uration mask M . The fine network then computes contex-
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tual attention [52] adaptively to find similar content from
unsaturated regions and fills the saturated areas with the
correlated well-exposed content according to the attention
scores. The completion module outputs the final HDR re-
sult Hfinal by replacing the saturated parts in the coarse
HDR image Hcoarse with the corresponding ones in the fine
HDR image Hfine.

Following a previous work [18], which provides a well-
prepared dynamic multi-exposure dataset, we use three
LDR images {I−1, I0, I1} and set the middle exposure im-
age I0 as the reference image in terms of structure. Here,
we use static input images as well as original dynamic in-
put images for training. The static image set {Is−1, I

s
0 , I

s
1}

is generated by adjusting the exposure of the ground truth
HDR image H and then applying gamma correction and
clipping:

Isi = clip((Hti)
1/γ), i = −1, 0, 1, (1)

where ti denotes the exposure time of the corresponding
dynamic input image Idi and γ denotes the gamma correc-
tion parameter. γ is set as 2.2 in our experiments. Since
the proposed BAN aims to generate the bracketed features
instead of learning motions, using static images as inputs
does not hinder its training. The static images can serve as
easy training samples. Then, we map the LDR images to
the HDR images {H−1, H0, H1} using gamma correction:

Hi =
Iγi
ti
, i = −1, 0, 1, (2)

We concatenate the LDR images with these HDR images
along the channel dimension to obtain the 6-channel inputs
{X−1, X0, X1}. Our framework f is represented as fol-
lows:

Hfinal = f(X−1, X0, X1). (3)

3.1. Brightness Adjustment Network (BAN)

Given the reference image I0 and the supporting image
Ii, the BAN aims to adjust the brightness of the reference
image I0 in accordance with the exposure of the supporting
image Ii. To this end, the BAN extracts features to pre-
dict spatially-varying deformable convolution kernels and
applies the adaptive convolutions to deal with the input pair
with motion and brightness difference. Note that we per-
form self-adjustment in the middle BAN. The generated
features are free from the ghosting artifacts since we do
not compensate for large motions between the input images
but generate the adjusted features of I0 that do not have
structure-difference from the reference.
Feature extraction Our feature extractor has an individual
branch for each input and fuses the information from two
branches in a progressive manner. The features from the
reference image are integrated into the supporting branch

so that multi-level information is propagated. The detailed
architecture of the feature extractor is illustrated in the sup-
plementary material.
Adaptive convolution The extracted features are then
passed to two separate paths to produce convolution ker-
nels K and offsets Θ. The kernels K and the offsets Θ are
unique for each position p0 on the feature map. Here, we
set the kernel size as 3 × 3 and the regular grid as R =
{(−1,−1), (−1, 0), . . . , (1, 1)}. With the pre-specified off-
set pn ∈ R, n = 1, . . . , |R|, the adaptive convolution is
applied to each location p0 on the reference feature F0 to
generate the adjusted feature F̄0,i whose brightness matches
with the one of the supporting feature Fi:

F̄0,i(p0) =
∑

pn∈R
K(p0 + pn)F0(p0 + pn +∆pn), (4)

where ∆pn ∈ Θ is the learnable offset. Since p0 + pn +
∆pn can be fractional, bilinear interpolation is used to com-
pute the value F0(p0 + pn +∆pn).

Unlike previous works [43, 44, 46, 51] which adopt the
deformable convolution, the proposed method applies the
convolutions to the reference feature, and the supporting
image is only involved in feature extraction. We prevent
undesirable ghosting artifacts by converting the alignment
problem into an easier brightness adjustment problem. We
show the effect of this reformulation in Section 4.3. Further-
more, learning per-pixel kernels as well as offsets enables
more flexible operations.

3.2. Merge-And-Hallucination Network (MAHN)

For generating a high-quality HDR result, the MAHN
first merges the well-aligned bracketed features into a
coarse HDR image Hcoarse and then hallucinates details
within the saturated areas by aggregating similar content in
the unsaturated (i.e., well-exposed) areas. The coarse net-
work integrates the bracketed features using residual blocks.
The following fine network is branched into two paths: a
hallucination branch and a refinement branch. While the
refinement branch refines the coarse result with dilated con-
volutions locally, the hallucination branch explicitly fills the
saturated regions with similar valid content by estimating
long-range adaptive contextual attention.

Our core idea is to find the correlated valid content to
the saturated parts and assemble them to compensate for
the lost content in the saturated areas. First, we construct
a saturation mask M to indicate the saturated regions. We
place a convolutional layer with a sigmoid activation func-
tion after the last residual block in the coarse network to
obtain the sample-specific saturation mask. The saturation
mask M represents how saturated each pixel is with values
in range [0, 1]. An example is shown in Fig. 3. This adaptive
mask generation strategy enables sample-specific hallucina-
tion, contrary to pre-defined rules such as thresholding. The
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Hcoarse M Hfine

Figure 3: The saturation mask M represents the saturation
level of the coarse HDR image Hcoarse. As a result of hal-
lucination using the adaptive contextual attention, the fine
HDR image Hfine clearly retains richer details in the satu-
rated parts.

hallucination branch fills the over-exposed regions (close to
value 1 on the M ) with the correlated well-exposed content
(close to value 0 on the M ) by measuring the patch-wise
cosine similarity:

sx,y,x′,y′ =
ox,y

∥ox,y∥
· wx′,y′

∥wx′,y′∥
, (5)

where ox,y denotes the over-exposed patch at (x, y) and
wx,y denotes the well-exposed patch at (x′, y′). To ob-
tain the attention scores, we apply softmax along the x′y′-
dimension and then multiply 1−M which represents well-
exposedness so that valid patches can contribute more to the
reconstruction. We replace the over-exposed patches with a
combination of the well-exposed patches according to the
estimated attention scores. The effectiveness of our adap-
tive contextual attention is validated in Section 4.3. Note
that the whole process is implemented using convolution
operations.

The saturation-compensated features are concatenated
with the refined features from the refinement branch and go
through additional layers to reconstruct the fine HDR image
Hfine. The fine HDR image Hfine exhibits clear improve-
ments in the saturated areas as shown in Fig. 3. Finally, the
completion module generates the final HDR image Hfinal

by replacing the saturated pixels of Hcoarse with the ones
of Hfine:

Hfinal = (1−M)⊙Hcoarse +M ⊙Hfine, (6)

where ⊙ denotes the Hadamard product.

3.3. Training Loss

We propose a hybrid loss to enhance both fidelity
and perceptual quality. Since HDR images are mostly
tonemapped for displaying, we compute the loss functions
between the tonemapped predicted HDR image T (Ĥ) and
the tonemapped ground truth HDR image T (H). The HDR
image H is tonemapped with the differentiable µ-law:

T (H) =
log(1 + µH)

log(1 +H)
, (7)

where µ is a parameter that defines the level of compression.
µ is set as 5000.
Reconstruction loss We use a simple ℓ1 reconstruction loss
to minimize the distance between T (Ĥ) and T (H). The
reconstruction loss is defined as:

Lrecon =
∥∥∥T (Ĥ)− T (H)

∥∥∥
1
. (8)

Color loss To address the color shift problem, we also de-
fine color loss, which is based on the cosine similarity be-
tween the RGB vectors of T (Ĥ) and T (H). Formally, it is
described as:

Lcolor = 1− 1

N

N∑
n=1

v̂n · vn
∥v̂n∥ ∥vn∥

, (9)

where N is the total number of pixels of the HDR image,
and v̂n and vn denote the RGB vectors at the n-th pixel of
T (Ĥ) and T (H), respectively.
Perceptual loss To generate a more realistic texture, we
adopt the VGG loss Lvgg as our perceptual loss. We use
three feature maps after the first, second, and third block
of VGG-16 network for the VGG loss. The total variation
(TV) loss Ltv is also included for smoothness.
Total loss From the above losses, the overall loss is defined
as L = λreconLrecon+λcolorLcolor +λvggLvgg +λtvLtv,
which is applied to the coarse output Hcoarse, the fine
output Hfine, and the final output Hfinal with different
weights. We empirically set the corresponding weights as
specified in Table 1.

Table 1: The weights for each loss constituting our total
loss.

λrecon λcolor λvgg λtv

Hcoarse 1 1 0.001 0.1
Hfine 1 1 0.001 0.1
Hfinal 1 0 0 0

3.4. Implementation Details

We sample patches of size 128 × 128 from the training
images and apply augmentations: random rotation and flip-
ping. We use Adam optimizer with a learning rate of 10−4

and set the batch size as 16. Each batch is composed of the
dynamic images and the static images with the ratio of 3 : 1.
We train our model on a single NVIDIA RTX 2080 Ti GPU.

4. Experiments
4.1. Experimental Settings

Datasets We use the dataset constructed by Kalantari et al.
[18] for both training and testing. This dataset consists of 74
scenes for training and 15 scenes for testing, each of which
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Table 2: Quantitative comparisons of our method with state-of-the-art methods. † indicates that the values are taken from their
original papers. O.F. and Homo. refer to the optical flow-based alignment and the homography transformation, respectively.

Methods Pre-alignment Boundary PSNRT SSIMT PSNRL SSIML HDR-VDP-2
O.F. Homo. Cropping

Sen [42] 41.11 0.9815 38.82 0.9749 57.43
Hu [15] 34.87 0.9698 31.72 0.9511 55.20
AHDRNet [47] 42.22 0.9904 41.26 0.9862 61.54
NHDRRNet† [49] 42.41 0.9887 - - -
Prabhakar† [36] ✓ 42.82 - 41.33 - -
HDR-GAN† [34] 43.92 0.9905 41.57 0.9865 -
Ours 44.48 0.9917 42.45 0.9880 61.76
Kalantari [18] ✓ ✓ 42.83 0.9877 41.49 0.9858 59.82
Ours ✓ 43.42 0.9892 41.68 0.9866 61.81
Wu [45] ✓ ✓ 42.49 0.9889 42.06 0.9870 61.30
Prabhakar [38] ✓ ✓ ✓ 41.95 0.9873 41.82 0.9879 61.23
Ours ✓ ✓ 43.11 0.9901 42.37 0.9879 61.70

contains three dynamic LDR images with different expo-
sures. We also conduct qualitative evaluations on Sen et
al.’s [42] dataset. Both datasets contain LDR images which
have large-scale motions and severe saturation.
Evaluation metrics We use five evaluation metrics for the
quantitative evaluation. We compute the PSNR and SSIM
values between the predicted and ground truth HDR images
after tonemapping (PSNRT and SSIMT ) and in the linear
domain (PSNRL and SSIML). We also calculate the HDR-
VDP-2 score [29] to measure the visual quality of HDR im-
ages.

4.2. Comparisons

We compare our results with previous state-of-the-art
methods, including two patch-based methods [42, 15] and
seven CNN-based approaches [18, 45, 47, 49, 36, 34, 38].
Note that Kalantari et al. [18] and Prabhakar et al. [36]
first align the input images using optical flow and Wu et
al. [45] apply homography transformation. Also, Prabhakar
et al. [38] use both of them for pre-alignment. We used
the official codes if they are provided. Otherwise, we re-
implemented their methods according to their papers except
three methods [49, 36, 34]. We used the quantitative results
reported in their papers, since we could not reproduce their
results due to absence of the necessary data [36] or insuf-
ficient implementation details [49, 34]. HDR-VDP-2 score
is not taken because it changes depending on the evaluation
setting, which is not specified in their papers.
Quantitative evaluations We compute five metrics men-
tioned above in Table 2 for the quantitative evaluations.
Note that Kalantari et al.’s method [18] needs to crop 6
pixels near image boundary, thus we compare with this
method separately after boundary cropping to evaluate on
the same input. Also, the methods of Wu et al. [45] and

Prabhakar et al. [38] lose boundary content irregularly due
to homography transformation, thus we apply homography
transformation and pass the cropped images to our frame-
work for fair comparisons with these methods. But, we do
not use homography transformation during training. The
evaluations are conducted on full images without losing
image boundary for our method and the other six meth-
ods [42, 15, 47, 49, 36, 34]. It can be seen that the pro-
posed method achieves the best performance in terms of all
metrics, which validates that the results produced by our
method are visually pleasing both in the linear domain and
after tonemapping. Note that our method is an end-to-end
framework which does not require any pre-alignment pro-
cess such as homography transformation and optical flow
algorithm.

Qualitative evaluations We compare our visual results
with state-of-the-art methods. Fig. 4 shows a challenging
case where all the input images are over-exposed and large-
scale motion exists. While the other methods fail to recon-
struct detailed texture, our method successfully hallucinates
details in the severely saturated regions. Our method also
generates realistic details even when the given information
is insufficient due to occlusions, while the other methods
introduce ghosting artifacts or color distortions within the
saturated areas.

We also demonstrate our generalization ability by evalu-
ating on Sen et al. ’s dataset [42]. Fig. 7 shows the results
on the case where the input images contain large saturated
areas and especially the reference image provides little in-
formation. It can be shown that the proposed method suc-
cessfully hallucinates details and texture in the saturated ar-
eas. More visual results are presented in the supplementary
material.
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Figure 4: Qualitative comparisons of our method with state-of-the-art methods.

Table 3: Comparisons of the proposed brightness adjust-
ment strategy with the motion compensation scheme.

Methods PSNRT SSIMT PSNRL SSIML

Motion Compensation 44.23 0.9913 42.21 0.9878
Brightness Adjustment 44.48 0.9917 42.45 0.9880

4.3. Ablation Study

In this section, we evaluate the contributions of the pro-
posed components.
Brightness adjustment The proposed approach generates
well-aligned multi-exposure features by reformulating a
motion alignment problem into a simple brightness ad-
justment problem. We demonstrate the effectiveness of
this reformulation in Table 3. We compare the proposed
brightness adjustment method with the motion compensa-
tion method which uses the same architecture as the pro-
posed one but aligns the supporting image to have the same
structure as the reference as most previous works do. The
motion compensation method needs to align the images
with large motions and thus are prone to artifacts. Fig. 5
shows that the motion compensation scheme fails to handle
the ghosting artifacts when the foreground motion exists in
the over-exposed areas. It can be seen that the proposed
reformulation strategy greatly eases the task and results in
favorable performance.
Coarse-to-fine MAHN Our MAHN first reconstructs a
coarse HDR image and then hallucinates content in satu-
rated regions in the fine network. We validate the effective-
ness of our coarse-to-fine reconstruction strategy and con-
tribution of each sub-network in Table 4. The coarse-to-
fine architecture shows even better performances than the

(a) Input LDR images

(b) M.C. (c) B.A. (d) GT

Figure 5: Effectiveness of the proposed brightness adjust-
ment network. M.C. and B.A. denote motion compensation
and brightness adjustment, respectively.

Table 4: Analysis on the MAHN architecture. Hall. and
Refine. denote the hallucination branch and the refinement
branch, respectively.

Methods
PSNRT SSIMT PSNRL SSIMLCoarse Fine

Hall. Refine.
✓ 41.58 0.9871 38.30 0.9786
✓ ✓ 44.17 0.9911 41.96 0.9869
✓ ✓ ✓ 44.48 0.9917 42.45 0.9880

one-stage coarse network, even only with the hallucination
branch. The proposed architecture including both the re-
finement branch and the hallucination branch produces the

2957



Table 5: Analysis on the soft adaptive contextual attention.
a adjusts the softness of the saturation mask M . The pro-
posed method adopts a = 3.

Methods a PSNRT SSIMT PSNRL SSIML

hard attention 43.47 0.9905 41.70 0.9863

soft attention
0.5 43.61 0.9909 41.68 0.9868
1 44.52 0.9915 42.34 0.9870
3 44.48 0.9917 42.45 0.9880
5 43.45 0.9906 41.32 0.9861

H
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e

Hard a = 1 a = 3 a = 5

Figure 6: Visual comparisons for different choices of the
softness parameter a of the saturation mask M . The pro-
posed method adopts a = 3.

best results. It can be observed that the proposed coarse-
to-fine architecture is effective and the hallucination branch
greatly contributes to the HDR reconstruction process by
performing explicit restoration for the saturated parts.
Adaptive contextual attention We compensate for satu-
ration using the soft adaptive contextual attention in the
MAHN. To generate the saturation mask M representing
the saturation level with values in range [0, 1], we use a
sigmoid function: sigmoid(x) = 1/(1 + e−ax), where
a is a parameter that controls the steepness. We can ad-
just the softness of the saturation mask M by changing the
parameter a. As a increases, the resulting mask becomes
closer to a hard (binary) mask as shown in Fig. 6. When
a is small, the mask becomes too soft to clearly identify
the saturated regions which need to be restored. On the
other hand, when a is too big, the value should be almost
0 or 1, thus it is difficult to reconstruct smooth and natu-
ral images. Table 5 shows the results with different soft-
ness parameter a. The best performances are achieved with
the modest softness a = 3. We also compare the pro-
posed soft adaptive attention with hard attention which is
similar to the original contextual attention. The hard at-
tention method generates the saturation mask by threshold-

LDRs Our result LDR patches

Yan

[47]

Prabhakar

[38]

Ours Yan

[47]

Prabhakar

[38]

Ours

Figure 7: Qualitative comparisons on the image from Sen
et al.’s [42] dataset.

ing the coarse HDR image Hcoarse with a threshold of τ :
M(x, y) = 1[Hcoarse(x, y) ≥ τ ], where (x, y) denotes a
pixel location and 1 is an indicator function. τ is set as 0.9
empirically. We observe that the soft adaptive contextual
attention enables sample-specific mask generation and hal-
lucination, which leads to detailed HDR image generation.

5. Conclusion
We have proposed an end-to-end HDR imaging CNN,

which takes multi-exposure inputs with dynamic motions
and generates ghost-free HDR images with some halluci-
nations in washed-out regions. For this, we have intro-
duced the BAN which adjusts the brightness of the refer-
ence feature using adaptive convolutions so that the well-
aligned multi-exposure features are generated. Then, the
bracketed features are integrated into a clean HDR image
with supervision on the saturated regions. We have also
proposed the MAHN, which reconstructs details in the sat-
urated areas by aggregating valid content from the unsat-
urated regions. Experiments show that the proposed sys-
tem delivers high-quality HDR results even in the presence
of severe saturation and large displacement. Our code is
available at https://github.com/haesoochung/
hdri-saturation-compensation.
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