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Abstract

Human rights investigations often entail triaging large
volumes of open source images and video in order to find
moments that are relevant to a given investigation and war-
rant further inspection. Searching for instances of tear gas
usage online manually is laborious and time-consuming. In
this paper, we study various object detection models for
their potential use in the discovery and identification of
tear gas canisters for human rights monitors. CNN based
object detection typically requires large volumes of train-
ing data, and prior to our work, an appropriate dataset of
tear gas canisters did not exist. We benchmark methods
for training object detectors using limited labelled data: we
fine-tune different object detection models on the limited la-
belled data and compare performance to a few shot detector
and augmentation strategies using synthetic data. We pro-
vide a dataset for evaluating and training tear gas canister
detectors and indicate how such detectors can be deployed
in real-world contexts for investigating human rights viola-
tions. Our experiments show that various techniques can
improve results, including fine-tuning state of the art detec-
tors, using few shot detectors, and including synthetic data
as part of the training set.

1. Introduction

Human rights investigations often entail triaging large
volumes of open source images and video in order to find
moments that are relevant to a given investigation and war-
rant further inspection. Searching for instances of tear gas
usage online manually is laborious and time-consuming.
Techniques that automate either the discovery, the identi-
fication, or the archiving of online material is thus hugely
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beneficial for human rights monitors. One heuristic that can
identify possible instances where tear gas is or has recently
been use is to detect the presence of tear gas canisters as
they appear within images. Automatic detector can be ap-
plied either directly to images available online, or to videos
by first converting them to a series of frames and then ap-
plying the detector to each frame.

Convolutional neural networks (CNNs) have been suc-
cessfully used for object detection, but it typically requires
large volumes of annotated training data. A large annotated
dataset of tear gas canisters currently does not exist. Our
goal is thus to train detectors that generalize well to real-
world cases given the limited available training data for tear
gas canisters.

To that end, our first contribution is a dataset of tear gas
canisters consisting of a small number of real images de-
picting tear gas canisters. We have curated this dataset to
cover as wide a range of scenes and settings as was possible
using images in the wild.

Our second contribution consists in the exploration of
data augmentation methods to produce additional training
examples of tear gas canisters. In [21], the authors improved
the performance of a canister detector by training with real
and synthetic data. In our work, we adopt this approach,
and build upon it by testing classifiers for a wider range of
tear gas canister types using synthetic data. Our third con-
tribution is to investigate the performance of standard pre-
trained object detectors that are fine-tuned on our dataset of
both synthetic and/or real tear gas canisters. We show that
weights learned from other real life images do help for the
detection of tear gas canisters. In our fourth contribution,
we try to address the limited data issue through the use of
fewshot learning, that is the problem of learning from few
labeled training examples. We specifically apply the few
shot learning method via reweighting features by [20].

Finally, we carry out ablation studies to investigate the
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impact of different classes on the dataset. Specifically, we
examine how useful real images are compared to synthetic
images. In the case of the few-shot detector, we also inves-
tigate the use of images containing objects that are similar
in appearance to tear gas canisters but are in fact not tear
gas canisters.

Our experiments show that fine-tuned state of the art de-
tectors perform as well as the few shot detector, and in-
cluding synthetic data can improve results for certain detec-
tors. Additionally, fine-tuning the few-shot detector benefits
from including classes for canister-like objects.

2. Related Work

2.1. Object Detection

Object detection is the task of localizing and classifying
objects of interest within an image. Concretely, an object
detection model would take as input an image and output
the coordinates of bounding boxes for each object of interest
as well as the category or class that each object belongs to.

Prior to deep learning, an object detection pipeline con-
sisted of identifying regions within an image to consider,
extracting relevant features using techniques such as SIFT
[26] and Haar [41], and then feeding these features into a
decision algorithm such as SVMs [9] and Deformable Parts
Models [14]. While models that used this pipeline were able
to detect a variety of objects, they were limited by the rich-
ness of the features. These features didn’t generalize well
to different settings and backgrounds from the domain they
were developed in. Additionally, features well suited for
localization may not have worked as well for classification
so a combination of features might have been required to
achieve good results.

Convolutional neural networks (CNNs) [23] were able to
overcome several of these limitations. Like all deep learn-
ing techniques, these models could learn a feature represen-
tation that generalized across a range of image backgrounds.
The ability to stack multiple layers also meant that a rich
hierarchy of features could be learned. Furthermore, CNNs
could be set up to optimize solving multiple sub-tasks si-
multaneously so a single network and a single set of features
could be utilized for both localization and classification.

Within the domain of CNNs for object detection, there
are two main frameworks. The first is the region proposal
based framework including models such as Faster R-CNN
[34]. Region proposal methods follow this pipeline roughly:
generate regions of interest from an image, extract features
for these regions, and predict bounding box coordinate and
class confidence scores for objects of interest within each
region. Models of this family have good performance with
regards to localization and classification. However, the dif-
ferent parts of the pipeline in these models can contribute to
a large training and inference overhead. The second frame-

work is the single-shot detector framework. Models within
this framework go directly from pixels to bounding boxes
and include works such as YOLO [31] and DSOD [35].
While there are slight variations, models within this family
work by starting with a set of anchor boxes and then regress
deviations to these boxes such that the resulting boxes en-
compass objects of interest. In parallel to this, the model
also assigns class confidence scores to each of these boxes
with a special ’background’ class for boxes that do not con-
tain any objects of interest. As there are fewer moving parts
in the pipelines of these models, they tend to be faster to
train and run inference with.

For a more detailed review of deep learning based object
detectors, we refer the reader to [43].

2.2. Few Shot Object Detection

Few-shot learning refers to learning from just a few train-
ing examples. One approach is to train a recurrent model
[29] to take in the dataset sequentially and then process
new inputs from the task. The meta-learner uses gradi-
ent descent, whereas the learner simply rolls out the re-
current network. Another approach concerns metric learn-
ing, where a learner compares datapoints in a learned metric
space in which learning is particularly efficient. This met-
ric space can be learned using VAEs as in DARLA [17],
using Siamese networks [22], or neural networks with ex-
ternal memories [40]. Another approach treats model adap-
tation as optimization [29, 15]. MAML [15] encourages a
global model to learn a representation that can quickly be
adapted to a new task via few gradient steps and training
examples. During adaptation, the parameters of the model
are close to the optimal parameters for a new task. More re-
cent work that specifically focus on few-shot object detec-
tion learns the matching metric between image pairs based
on the Faster R-CNN framework equipped with an atten-
tion RPN and a multi-relation detector trained using a con-
trastive training strategy [13]. Our paper uses a different ap-
proach that utilizes a meta feature learner and a reweighting
module within a one-stage detection architecture, to quickly
adapt to novel classes [20]. The feature learner extracts
meta features that are generalizable to detect novel object
classes, using training data from base classes with sufficient
samples.

3. Dataset
We present a new dataset of images containing tear gas

canisters to encourage the deployment of computer vision
classifiers in the aim to help human rights investigations and
monitoring at large. The dataset is publicly available here.

3.1. Image Collections

The dataset comprises four different collections of im-
ages:
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1. Images that contain one or more canisters, or part of
canisters of type Triple Chaser, and of type 34-60mm.
These images are collected from publicly available
sources, such as news articles and publicly accessible
videos. The canisters vary in shape, view angle, size,
colors, and states (used or unused canisters). The im-
ages represent various scenes in which a canister can
appear in: scenes of street violence, protests, bombed
areas, abandoned or torn buildings, natural landscapes
(where used canisters are left behind, or disposed).

2. Images that contain objects that are not tear gas canis-
ters but resemble them. These objects are bottles, bins,
cans and other metallic and cylindrical objects.

3. Images that contain scenes in which canisters have ap-
peared in, but that do not contain canisters or objects
that resemble canisters.

4. Synthetic images of canisters, to augment the training
set, given the limited amount of real images with canis-
ters we have labelled. These synthetic images recreate
the visual contexts in which the object of interest have
been previously documented [21], and are generated
with Unity [3] and Unreal Engine [27]. The 3D model
of the Triple Chaser is inserted into a scene that ran-
domly varies the render camera’s position, as well as
modifying settings such as exposure, focal length, and
depth of field, between frames. After rendering each
frame, post-effects such as LUTs for color correction,
variations in the film grain, and different vignettes are
applied [21].

Examples of these images can been seen in Figure 1.

Split Nb. Subset Subset Nb.

Training 1434
Triple Chaser 219
Canister-like Objects 16
Synthetic Triple Chaser 1199

Validation 125 Triple Chaser 45
Canister-like Objects 80

Testing 268 37-40mm Canisters 165
No Canisters 103

Table 1: Summary of data splits.

3.2. Dataset Format

When annotating the locations of target canisters, we fol-
lowed the PASCAL VOC [12] format, and the format for
YOLO [32] based detectors.

The PNG masks for image segmentation and the corre-
sponding bitmap objects are available through Supervise.ly

[1], which we used for labelling our data, but are currently
not available in this current version of the dataset.

4. Methods

4.1. YOLOv5

One of the object detection models we consider is
YOLOv5 [38]. YOLO models [32] frame object detection
as a regression problem and are trained end-to-end, which
make them fast to train and run inference with, while pro-
viding competitive performance. The main contribution of
YOLOv5 is to port YOLO from the Darknet neural network
framework [30] to PyTorch [28], which allows for the use
of 16 bit floating point computations instead of 32 bits, sig-
nificantly reducing inference time.

YOLO has three main components: a backbone network
that generates image features at different granularity, a neck
that mixes and combines these different features, and a head
that consumes these mixed features to predict boxes and
classes. The loss consists of a combination of generalized
intersection over union (GIoU), a class loss, and an object
loss. Of note, a bottleneck based on the Cross Stage Par-
tial Network (CSPNet) [42] is used for the backbone of
YOLOv5. CSPNet is designed to minimize the amount
of duplicated gradient computations observed in networks
based on DenseNets [19]. This allows for faster training
times and models can be made smaller with less impact to
performance.

The family of YOLO models treats detection as a re-
gression problem. Specifically, each anchor box has an x
and y coordinate, a width and a height. The model predicts
how much change is required to each of these attributes so
that the box encompasses an object of interest if there is
one close to the anchor box. In this implementation, the
anchor boxes are learned initially based on the distribution
of boxes in the training dataset using k-means and genetic
learning algorithms. This is helpful for our use case as tear
gas canisters have a limited range of appearances. By us-
ing anchor boxes that are more suited to the dimensions of
tear gas canisters, the model can learn more quickly how to
predict correct bounding boxes for tear gas canisters.

Aside from the use of CSPNet and learned anchor boxes,
YOLOv5 also utilizes certain data augmentation techniques
that are useful for our application. The most noteworthy
data augmentation is the mosaic data augmentation, first
introduced in YOLOv4 [8]. For this augmentation tech-
nique, four different images are combined into a single one
by tiling them using different ratios. Similarly to random
cropping, this helps the network better deal with issues of
occlusion which is beneficial for our application as a lot
of tear gas canisters are often occluded. Additionally, this
data augmentation method also combines objects of differ-
ent classes into a single image. This is useful for us as real
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Figure 1: Example images from the dataset. In the top row, two images on the left that contain one on more canisters. The
other two images contain objects that look like canisters but are not canisters. On the bottom row, the images on the left do
no contain any objects that look like canisters. The remaining images are synthetic images of canisters.

world images may sometimes contain a variety of tear gas
canisters. Finally, by tiling different images together, the
background of the image becomes more varied. This could
be viewed as a form of domain randomisation which previ-
ous work [21] has shown helps for this application.

4.2. RetinaNet

RetinaNet is a popular single-stage detector that demon-
strates comparable accuracy to two-stage detectors without
sacrificing the fast inference speed characteristic of other
single-stage detectors [24]. Prior to RetinaNet, the accu-
racy of single-shot detectors trailed behind the accuracy
of two-stage detectors for many tasks. It has been shown
that single-stage detectors suffer from extreme foreground-
background class imbalance during training resulting in
easily classified negatives making up the majority of the
loss. This background-foreground imbalance during train-
ing has been identified as the main factor contributing to-
wards lower accuracy of single-stage detectors. This ob-
servation is addressed within RetinaNet primarily through
a novel loss function termed ’focal loss’ that focuses train-
ing on sparse hard examples. Focal loss therefore mitigates
the contribution of the vastly greater number of easy nega-
tive samples from overwhelming the detector during train-
ing leading to improvements in accuracy.

RetinaNet is a simple detector comprised of a ResNet-
FPN backbone network and two parallel subnetworks for
classification and bounding box regression. The feature
pyramid network (FPN) is an important architectural design
choice as it allows for multi-scale object classification.

4.3. Faster R-CNN

Faster RCNN is a popular two-stage detector and was
the first end-to-end trainable, near-realtime deep learning
detector [25]. Faster RCNN significantly improves the in-
ference speed of Fast RCNN by replacing the costly region
proposal algorithm used to generate object location propos-

als with a region proposal network, a small CNN that en-
ables almost cost-free proposal generation. The architecture
is comprised of an RPN and Fast R-CNN within a single
network.

4.4. Few-Shot Detector

Another approach to deal with lack of training data is
meta-learning, an increasingly popular solution for the task
of few shot learning. Meta-learning algorithms train a
learner, which is a parameterized function that maps labeled
training sets to classifiers [10]. Meta-learners are trained by
sampling a collection of learning tasks in a few-shot set-
ting from base classes with lots of available training data
[40, 16, 37]. The model is optimized to perform well over
these few shot tasks so it is able to tackle the recognition of
unseen or novel classes from few training examples.

We specifically apply the few shot learning method via
reweighting features by [20]. In this work, meta features
are extracted from a meta feature learner D. The back-
bone of YOLOv2 [33] with its anchor settings is used for
implementing the meta feature extractor and the detection
prediction module P . The extracted features are general-
izable and are used to detect objects from both novel and
base classes. The meta learner uses few support examples
to identify features that are important and discriminative for
detecting novel classes.

A reweighting module M provides a global vector for
each class, which indicates the importance or relevance of
the meta features for detecting the corresponding objects.
The meta features are adapted to be suitable for the novel
object detection by reweighting them using the feature vec-
tors [20]. A detection prediction layer then predicts the
classes scores and the coordinates for the detection bound-
ing boxes using the adapted meta-features.

Formally, given an input query image I, meta features
F ∈ Rw×h×m are extracted by D with F = D(I). The
reweighting model M takes as input a given support image
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Ii and its associated bounding box annotation, and target
class to detect, denoted as Mi for class i, i = 1, ..., N ; and
outputs class-specific reweighting coefficients wi. Class-
specific features Fi for novel class i are then obtained by:

Fi = F
⊗

wi, i = 1, ..., N (1)

where
⊗

denotes channel-wise multiplication, imple-
mented through 1 × 1 depth-wise convolution. The pre-
diction module P outputs an objectness score o, bounding
box location offsets (x, y, h, w), and a classification score
ci for each of the predefined anchors:

{oi, xi, yi, hi, wi, ci} = P(Fi), i = 1, ..., N. (2)

All three modules, the meta features, the reweighting,
and the prediction modules are trained end to end, with
abundant training images from bases classes in a first stage,
then with k training images from novel and base classes,
where k is typically a small number (1 to 10), though in this
paper, we experiment with a larger k as well.

5. Experiments
5.1. Experimental Setup

For YOLOv5, we use an existing PyTorch implemen-
tation of YOLOv5[38]. This repository provides differ-
ent model sizes offering a trade-off between inference
speed and accuracy. For our work, we consider the small,
medium, and large models. The differences between these
models are listed in the original repository [38]. For our
experiments, we use checkpoints of models that were pre-
viously trained on the 2017 COCO dataset. All YOLOv5
models are fine-tuned with a batch size of 16 for 50 epochs.
The best checkpoint is chosen based on the validation loss.
We experiment with fine-tuning all three model sizes on
both synthetic images and real images. All three model
sizes are trained on the training subset with real images of
canisters. In addition, we experiment with fine-tuning the
best performing model with regards to mAP synthetic im-
ages only, and on real images only.

Faster R-CNN and RetinaNet are implemented in Py-
Torch within [39] and trained with ResNet-50FPN back-
bone networks. When fine-tuning models, images are re-
shaped such that the larger dimension is equal to 1000 pix-
els whilst maintaining aspect ratio. Suitable learning rates
are set uniquely for each training run and chosen through
conducting a learning rate range test as described in [36].
The test involves conducting a mock training run for several
epochs during which the learning rate is increased linearly
from low to high. Analysing how loss varies with learning
rate throughout training allows for a learning rate to be es-
timated that could result in a large initial decrease in loss

without training diverging. This test is implemented within
a learning rate finder method in the fastai library which is
used to train both models [18]. Models are fine tuned for
10 epochs with a batch size of 6 on a single NVIDIA Qua-
tro P5000. Fine tuning involves training the randomly ini-
tialised layers for one epoch and then unfreezing the re-
maining layers and training all layers for the remaining
epochs.

For the few shot detector via feature reweighting, we use
the PyTorch implementation by the original authors [20].
We use the same base model checkpoint which was trained
on the VOC 2007 [12] and the VOC 2012 [11] datasets.
For the base model, we use the same 15 object categories
from COCO used in [20]. We treat the object label for can-
isters as a novel class. The fewshot finetuning is done us-
ing a batch size of 20, for 20 epochs, on one GTX 1080.
We also experiment settings where we finetune the detector
on canister-like object classes ”bin”, ”can” and ”cylinder”
which are treated as novel classes.

5.2. Performance Metrics

To evaluate object detectors on tear-gas canisters, we
report mAP50 which reflects precision and recall on the
bounding box level for a given evaluation set. However,
in production, we are only interesting in flagging frames
within a video which might contain a tear-gas canister. It is
enough for the detector to detect one of many tear gas can-
isters in a given image, regardless of whether the bound-
ing box is accurate or not. To reflect this, we report two
additional performance measures on an image level: re-
call to measure the number of missed frames which contain
tear gas canisters, and reduction to measure the number of
frames which are wrongly flagged as having a tear gas can-
ister. It is more important to avoid missing true positives
over false positives so we combine both reduction and re-
call with a F2 score as follows:

recall = tp/(tp + fn) (3)
reduction = tn/(tn + fp) (4)

Fβ = (1 + β2) · reduction · recall
(β2 · reduction) + recall

, β = 2 (5)

We finetune hyperparameters based on mAP for the val-
idation set and we set the decision thresholds based on the
best F2 score obtained on the validation set.

6. Results
Results for all experiments carried for this paper are

summarised in Table 2 for the validation set and Table 3
for the test set.

For both the validation and the test sets, we did not ob-
serve a significant improvement in mAP and F2 when us-
ing synthetic data for finetuning models compared to the
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Method Real Nb. Synthetic Nb. ”Similar” mAP Recall Reduction F2 Score
fewshot 219 N Y 18.28 0.7609 0.2785 0.5651
fewshot 219 N N 23.04 0.6304 0.4625 0.5878
fewshot 219 219 Y 24.76 0.7609 0.4 0.6446
fewshot 219 219 N 14.38 0.6739 0.3625 0.5751
fewshot 10 N Y 12.98 0.7174 0.4068 0.6223
fewshot 10 N N 10.66 0.75 0.3239 0.5938
fewshot 10 10 Y 21.42 0.75 0.5286 0.692
fewshot 10 10 N 17.15 0.6591 0.4675 0.6092

yolov5-small 219 1199 N 16.12 0.619 0.524 0.597
yolov5-medium 219 1199 N 17.16 0.595 0.512 0.576
yolov5-large 219 1199 N 19.21 0.548 0.524 0.543
yolov5-large 219 N N 20.16 0.690 0.369 0.588
yolov5-large 0 1199 N 15.76 0.810 0.429 0.687

faster r-cnn 219 N N 40.91 0.870 0.215 0.537
faster r-cnn 219 1199 N 50.39 0.913 0.133 0.377
faster r-cnn 0 1199 N 50.73 0.913 0.2 0.533

retinanet 219 N N 47.61 0.587 0.6 0.590
retinanet 219 1199 N 51.38 0.717 0.4 0.620
retinanet 0 1199 N 55.56 0.739 0.5 0.675

Table 2: Detection performance (mAP and F2-Score) on the validation set. The validation set include images which have tear
gas canisters, ones which have objects resembling canisters but are not canisters, and ones which do not have any canister
or object resembling canisters. The ”Similar” column indicates whether the detector’s training set includes objects that
resemble tear-gas canisters. Given the low number of images which contain these objects, we only included these classes
during training for some few shot detectors.

same settings without including the synthetic data, and for
Faster R-CNN and RetinaNet, using synthetic data resulted
in worse performance.

For the fewshot detector, the best mAP and F2 scores
are obtained when using 10 images with canisters, 10 syn-
thetic images and images with canister-like objects for fine-
tuning. Slightly lower F2 and higher mAP are obtained
when we use all 219 training images of canisters and 219
synthetic images. Using images with canister-like classes
for fine-tuning the fewshot detector has consistently im-
proved performance for both the validation and the test sets.
This improved performance is attributed to obtaining vec-
tors (during the fewshot fine-tuning stage) which are much
further in the feature space which allows better classifica-
tion and differentiation between canisters and other objects
whether they look like canisters or not.

For YOLOv5, when training on the dataset containing
both real and synthetic images, we notice that mAP in-
creases as the model size increases which is expected since
with an increased model capacity, we would expect better
performance. As the large YOLOv5 model has the best per-
formance, we also use this model to investigate the contri-
bution of the real and synthetic data. For mAP, it appears
that the real data is more important than the synthetic data

as the model trained with just synthetic data has the worst
mAP of the yolov5 models by a large margin. Our experi-
ment with using just the real image dataset shows that even
though the model was fine-tuned on just 219 images, the
weights learned from COCO2017 are suitable for the task
at hand. The F2 scores don’t show as clear a trend with re-
gards to model capacity and data effects. We can attribute
this noise to the fact that the models were optimized for
mAP and not F2. While the mAP results from the YOLOv5
model are not as high as the results from Faster R-CNN and
RetinaNet, they are roughly on par with the fewshot detec-
tor models. Additionally, their more streamlined structure
means that it is faster to run inference with these models
compared to the others.

Faster R-CNN exhibits high mAP and recall across vali-
dation and test sets. Highest mAP on the test set is achieved
through training Faster R-CNN on only real images demon-
strating the generally higher accuracy of two-stage detectors
in comparison to single-stage detectors.

RetinaNet achieves high mAP on both validation and
test sets demonstrating similar mAP to Faster R-CNN. Reti-
naNet achieves highest reduction and second highest mAP
of all models on the test set which could be attributed to the
contribution of focal loss in focusing the training on hard
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Method Real Nb. Synthetic Nb. ”Similar” mAP Recall Reduction F2 Score
fewshot 219 N Y 29.16 0.7484 0.807 0.7594
fewshot 219 N N 62.94 0.6516 0.9035 0.6901
fewshot 219 219 Y 50.84 0.6516 0.7895 0.6752
fewshot 219 219 N 35.96 0.6774 0.6228 0.6657
fewshot 10 N Y 43.72 0.7568 0.6901 0.7424
fewshot 10 N N 50.04 0.7324 0.7679 0.7392
fewshot 10 10 Y 50.81 0.7917 0.7258 0.7776
fewshot 10 10 N 58.85 0.7078 0.8214 0.7279

yolov5-small 219 1199 N 37.04 0.523 0.728 0.554
yolov5-medium 219 1199 N 46.45 0.852 0.605 0.787
yolov5-large 219 1199 N 55.43 0.89 0.588 0.807
yolov5-large 219 N N 55.29 0.606 0.860 0.644
yolov5-large 0 1199 N 13.24 0.587 0.640 0.597

faster r-cnn 219 N N 66.73 0.806 0.816 0.808
faster r-cnn 219 1199 N 55.60 0.852 0.5 0.747
faster r-cnn 0 1199 N 13.22 0.852 0.193 0.506

retinanet 219 N N 66.10 0.516 0.940 0.567
retinanet 219 1199 N 51.48 0.581 0.807 0.615
retinanet 0 1199 N 27.41 0.710 0.482 0.649

Table 3: Detection performance (mAP and F2-Score) on the test set. The test set include images of tear gas canisters only.
The ”Similar” column indicates whether the detector’s training set includes objects that resemble tear-gas canisters.

negative examples resulting in fewer false positives.
Faster R-CNN and RetinaNet demonstrate higher recall

and lower reduction when trained on more synthetic data.
To avoid generating large numbers of false positives, a cali-
brated blend of real and synthetic images is required to man-
age the trade-off of improved recall and decayed reduction.

Overall, fine-tuning state of the art object detection mod-
els perform comparatively well to fine-tuning a model with
a fewshot method. It is enough to fine-tune the fewshot de-
tector with as little as 10 images which have tear gas canis-
ters, though results show that including canister-like objects
classes is essential to get competitive results for the fewshot
method. YOLOv5 and RetinaNet on the other hand benefit
from other methods designed for faster convergence when
using small training datasets such as the mosaic data aug-
mentation in YOLOv5 and focal loss in RetinaNet. Results
on the test set are higher than the validation set because of
the presence of images with canister-like objects in the val-
idation set.

7. Use in Human Rights Investigation

Due to the increasingly mediatized nature of protest and
political action in general, a wide range of human rights vi-
olations are caught on camera in some shape or form during
such events. Claims that violations occurred can now be
investigated by way of online media evidence, either ’live’

as the media becomes available online, or after-the-fact if
the material has been archived [5, 7, 6]. In many cases,
however, sifting through the video material manually is in-
feasible due to both its volume and unstructured nature [2].
Algorithmic methods can identify objects that strongly sig-
nify potential violations, such as tear gas canisters. Tear gas
can be misused by police forces in a range of ways, such as
being fired directly at the body or being used excessively in
a confined space, which constitute infringements on civil-
ian rights [4]. Tear gas canisters can therefore be used as a
visual search term that structure video archives to optimize
for the discovery of human rights violations [21]. While this
approach will inevitably not surface footage that captures
other violations, speculatively ordering media archives that
are otherwise unstructured, even suboptimally, is a useful
method that can significantly expedite the discovery of vio-
lations in certain cases.

8. Conclusion

We demonstrate that existing object detection models
can be leveraged for the important work of investigating hu-
man rights violation, specifically the identification of tear
gas canisters. Data for this domain has been lacking and we
address this, beginning with our contribution of a dataset
of real and synthetic tear gas canisters. Through this work,
we also show several ways to overcome a lack of real world
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data when working in a new domain. Specifically, we suc-
cessfully apply data augmentation techniques as well as us-
ing synthetic data. This can then be paired with a pretrained
model for good performance. Furthermore, we investigate
instances with very few examples, tens instead of hundreds,
and show that the use of a few shot detector can provide
good performance here.

For future work, we would like to focus on better incor-
porating metrics such as recall, reduction, and F2 directly
into the optimization process. By aligning what users care
about and the training procedure, our models can be bet-
ter suited to their real world applications. Additionally, we
want to do a more detailed analysis of the impact of syn-
thetic data, focusing on aspects such as scene complexity
and resolution, which can easily be controlled by the ren-
dering engine.

We intend to evaluate the detectors within real-world de-
ployment scenarios and explore how useful they might be
to different actors, such as research organisations, citizen
data scientists and activists. The detectors evaluated in this
paper demonstrate variations in performance and inference
time therefore further work around deployment within a va-
riety of contexts is required to access their efficacy.
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