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Abstract

Learning to identify similar products in the e-commerce
domain has widespread applications such as ensuring con-
sistent grouping of the products in the catalog, avoiding
duplicates in the search results, etc. Here, we address the
problem of learning product similarity for highly challenging
real-world data from the Amazon catalog. We define it as
a metric learning problem, where similar products are pro-
jected close to each other and dissimilar ones are projected
further apart. To this end, we propose a scalable end-to-end
multimodal framework for product representation learning in
a weakly supervised setting using raw data from the catalog.
This includes product images as well as textual attributes like
product title and category information. The model uses the
image as the primary source of information, while the title
helps the model focus on relevant regions in the image by
ignoring the background clutter. To validate our approach,
we created multimodal datasets covering three broad prod-
uct categories, where we achieve up to 10% improvement
in precision compared to state-of-the-art multimodal bench-
mark. Along with this, we also incorporate several effective
heuristics for training data generation, which further com-
plements the overall training. Additionally, we demonstrate
that incorporating the product title makes the model scale
effectively across multiple product categories.

1. Introduction

E-commerce catalog houses not only a rich selection of
products but also a great deal of variations within a partic-
ular type of product. In order to allow customers make an
informed choice specific to their needs, in many e-commerce
catalog similar items are grouped together as a variation
in a single detail page. These items are the same primary
base product but vary across specific themes. Examples of
such themes are size and color for shoes, volume and fra-
grance for detergents and capacity for hard drives. Taking
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an example of a t-shirt that is exactly the same in every way,
except it comes in 8 colours and 5 sizes, it results in 40
different items. Variation listings (a.k.a. variations) allow
to group and display different varieties of the same t-shirt
on a single detail page which lead to a good shopping ex-
perience. Many e-commerce sites configure variations as
a parent-child structure. The parent-item is a non-buyable
entity which identifies the whole variation listing. In this
regard, the parent-item serves as a proxy for the base product
identifier. The child-items represent the actual physical items
that can be purchased. For our discussion, we will use the
term item and child-item interchangeably.

While variations have lots of benefits, creating incorrect
variations leads to customer confusion and frustration. The
two major catalog quality defects associated with variations
are 1) Duplicate Variation (DV) and 2) Inconsistent Variation
(IV). Ideally, a variation listing should contain a single base
product with all of the different available options i.e, w.r.t.
color, style, size, etc., displayed in a single detail page. In
DV, items of the same base product are split across multiple
variation listings, resulting in customers unable to explore
all the product options in a single detail page. It also causes
duplicate products appearing in the search results, which is
not a desirable customer experience. A variation listing is
inconsistent when more than one type of product is grouped
together within a single variation. A few examples are dis-
played in figure 1. Such cases create a confusing customer
experience as customers cannot be sure of the identity of the
product they are buying. Further, it can lead to bad buying
decisions as the product content, and customer reviews get
shared between unrelated products. It is therefore important
to ensure consistent and comprehensive groupings of items
on the detail page.

It is clear that the fundamental requirement in order to de-
tect variation defects is to be able to compare different items
and identify whether they are the same or different products.
This problem proves to be a challenging task primarily due
to a large number of products, their high heterogeneity, lack
of labeled data and varying levels of data quality. One simple
solution to this is to leverage the universal product identifiers
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Figure 1: Examples of variations from Amazon catalog. Top-left: a normal variation listing, top-right: an inconsistent variation listing
(incorrect item highlighted in the figure), bottom-row: an example of duplicate variations (two separate detail pages for the same product).

such as GTIN, UPC, EAN, etc., or similar attributes like
model-number or model-name. However, the solution based
on these attributes is not scalable, either due to sparsely avail-
able data or incorrect inputs. Information which are most
reliably available in the catalog includes the product image,
title and description. In this paper, we propose a scalable
end-to-end multimodal approach to learning similarity be-
tween catalog items. We formulate it as a metric learning
problem where the similarity between two items is reflected
by the distance between their vector representations.

With the remarkable success from state of the art convo-
lutional neural networks, many different applications have
been developed leveraging image similarity such as recom-
mendation, classification and search. However, the defini-
tion of similarity is very tightly coupled to their specific
applications and may not be readily transferable to another
application. Although the similar problem of fine-grained
image recognition is quite extensively explored in academia,
we extend the body of work to real world product catalog
data for exact item matching without need for any explicit
labels.

The main contributions of this paper are summarized as
follows: 1) We present a scalable end-to-end multimodal
framework for item similarity learning in a weakly super-
vised setting and discuss some of their important applications
in the e-commerce domain, 2) The framework utilizes the
product image and title to better generalize across multi-
ple product categories, 3) We also propose a novel multi-
modal architecture for fine-grained image similarity task
using transformer as an attention module, 4) We present
several heuristics for training batch generation leveraging

metadata from the item detail page.
The remaining of the paper is organized as follows: in the

next section, we present some of the related works. Section
3 explains our approach in detail, followed by experimental
results in section 4. We conclude with a summary and an
outlook on future work.

2. Related Work
There is a lot of literature on product similarity matching

with a majority of the approaches directed towards fashion
images. These approaches have evolved from relying on
traditional computer vision features [2, 3] to deep metric
learning approaches with CNN-based features. Hadsell et
al. [9] uses contrastive loss based on pair sampling in CNN
to learn image similarity metric. Schroff et al. [16] success-
fully apply triplet loss to facial recognition tasks, which are
highly similar to product similarity matching tasks. Studies
have shown that visual attention is also adequate in many
computer vision problems. Earlier work address this prob-
lem through learning discriminative features by localizing
distinct regions of the image [26, 11]. However, these
approaches need a labeled map for the localization of the dis-
tinctive regions and hence, is expensive and time-consuming.
More recent contributions apply visual soft-attention tech-
niques and achieved promising results. The attention is either
applied spatially or channelwise. Wang et al. [23] propose
to learn channel attention implemented by a fully convolu-
tional network while Ak et al. [1] leverages activation maps
to calculate attention map based on attribute classification
results. These approaches primarily used only image based
features for providing attention and solving the problem at
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hand. In e-commerce websites, there is a lot of textual infor-
mation available apart from the image on the retail product
page. These textual features like title, product category can
be used to guide the attention in the images. In [6], Dong
et al. use attribute aware spatial and channel attention to be
able to locate relevant regions of interest for fine-grained
fashion similarity. Li et al. [12] uses product image and
metadata such as outfit popularity, title & category available
on the fashion oriented websites to compose and score the
fashion outfits automatically. Lin et al. [14] uses the product
category information and present a scalable framework for
guiding embeddings into different subspaces based on the
category. [19], [5] and [13] takes multimodal approach for
search, classification and retrieval.

3. Proposed Method
Formally, given an item a, let Pa denote its parent-item

and Ua denote the base product identifier for the item. Ide-
ally, Pa and Ua should have exact one-to-one mapping for
all the items in the catalog. Our goal is to learn a represen-
tation, f(a) such that: d(f(a1), f(a2)) < d(f(a1), f(a3))
where, Ua1

= Ua2
̸= Ua3

for some distance measure, d
and items a1, a2, and a3. Now, optimizing the model with
respect to Ua is difficult since it is generally unknown and
figuring it out manually is costly. So instead, we take Pa

as our ground truth labels and train the model in a weakly
supervised fashion. Note that, using this notation, given two
items a1 and a2, we can define, 1) DV as: Ua1

= Ua2
&

Pa1
̸= Pa2

and 2) IV as: Ua1
̸= Ua2

& Pa1
= Pa2

.
Next, we describe the various components of our frame-

work for effectively learning the item representation using
its image and title as the input. We first describe our model
architecture which is inspired by [7]. In that paper, the author
uses a fixed set of attributes to identify smaller regions-of-
interest (RoI) in the image for learning attribute-specific
embeddings. In this paper, we repurpose parts of the same
architecture, while our main interest is to leverage the rich in-
formation which are present in the item title to mainly reduce
the effect of background clutter in the image by focusing
on the relevant regions. Further, we apply self-attention and
introduce specific post-processing to detect larger RoIs from
the input image and apply shallow layers to extract fine-
grained features from the image [22]. Towards the end, we
discuss some challenges and present few practical strategies
associated with learning item embeddings on large-scaled
unlabelled datasets and experiment with different loss func-
tions and mining strategies.

3.1. Model Architecture

Consider an item a : (I, T ) with image I and title T (for
simplicity, we will use a in place of (I, T ) to denote the
combined image and title input). In our approach, we take
the image as the primary source of product information,

while the title helps the model focus on relevant regions
in the product image. Our architecture, displayed in figure
2, extracts features from the image with both global view
(global features fg(a)) and local view (local features fl(a)).
The global features are generated from the whole image,
whereas the local features are produced using the extracted
region-of-interest from the original image. These features
are then combined at the end to produce the final embedding
of the item a.

The global branch fg consists of an image feature extrac-
tion module which uses a convnet architecture along with
self-attention[21] to convert the input image, I into a feature
map, Ig. A spatial attention map is then computed by com-
bining Ig and title features, Ft. Then a title attentive feature
vector is computed by taking the weighted sum of Ig with
the attention map. This feature vector is then passed through
a channel attention module to produce the global feature
fg(a). The spatial attention weights computed earlier are
also used to crop a part of the input image after resizing it
to the original input dimension, after applying specific post-
processing operations. The cropped image is then passed
through the local branch resulting in the local feature fl(a).
Both of these branches are nearly identical and consists of
an image feature extractor, spatial attention module and a
channel attention module. The steps involved are visualized
in Figure 4. Both global and local branches are trained using
the procedure described in Sec 3.2.

A. Global Branch

The global branch serves two main purposes. First it is used
to capture global features from the entire image. Second it is
also used to crop out a relevant region or RoI from the input
image which is then fed to the local branch. Here we describe
in detail the components of the global branch. It consists of
feature extraction modules for both image and title, a spatial
attention module, and a channel attention module.

Feature Extraction Module Image: For image features ex-
traction, Ig we use a modified version of the Deeprank archi-
tecture [22]. The original Deeprank architecture comprises
of a VGG net along with two shallow convolution branches
in parallel for fine-grained feature extraction. In our modi-
fied version, we replace the VGG with ResNet-50. We also
add spatial self-attention on top of the Deeprank outputs. It
enhances the features at each spatial location by adding the
global context. Next we describe the self-attention module.

Self-Attention module: Let Rg ∈ Rw×h×c be the feature
map from the last convolution layer of ResNet-50, where
w = 7, h = 7, c = 2048 are the width, height and the num-
ber of channels in the feature map respectively. Similarly, let
S1 ∈ Rw×h×96 and S2 ∈ Rw×h×192 be the outputs from the
two shallow branches. These vertical slices at each spatial
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Figure 2: Proposed Network Architecture

location maps to different overlapping regions in the image
and is limited by their respective receptive field. We apply
self-attention on Rg , S1 and S2. It facilitates the spatial atten-
tion module to evaluate the relevance of each spatial regions
in the context of the whole image. To apply self-attention,
we flatten the output tensors along width and height axis
resulting in feature matrix X = [x1,x2, . . . ,xm]

T , where
m = wh. Each xi is a feature vector of dimension c in case
of Rg whereas it is 96 and 192 in case of S1 and S2 respec-
tively. X is split into - query: Q = XWq, key: K = XWk

and value: V = XWv, where Wq,Wk,Wv ∈ Rc×da with
da representing the depth of features in the attention mech-
anism. Final feature map after applying self attention on
ResNet output Rg is calculated as [21]:

ARg = softmax(
QKT

√
da

)V (1)

where ARg denotes the final feature map from the ResNet50
output. Similarly, final feature maps from S1 and S2 is calcu-
lated using their respective query, key and values. All three
features - ARg , AS1 and AS2 are then stacked, reshaped and
concatenated with convolutional features to get Ig, which
acts as the final image feature map of the global branch of
dimension 7× 7× 2920.

Feature Extraction Module Title: A typical title from an

ecommerce detail page may look like this: Emery Fab-
ric Shower Curtain, 70"X70", Colorful Floral Geometric
Printed Design. It generally includes information such as
the type of product and brand, and often also includes some
additional information like size, color, style, model number,
etc. In the above example, Shower Curtain is the type of
product, Emery is the style, and 70"X70" is the size. We
hypothesize that the information from the title would help
the model focus on relevant parts of the image. Each of
these tokens does not contribute equally in identifying im-
portant regions in the image. In order to effectively make
use of the information present in the title, we represent the
title using self-attentive embedding [15]. To generate these
embeddings, we first pre-process it by lowercasing all the
words, removing non alphabetic characters, and then tok-
enize it using the FastText[8] dictionary. A 300 dimension
embedding is then extracted for each token in the sentence
from the dictionary. Next, we pass the sequence through a
BiLSTM layer which produces a sequence of hidden states,
H = [H1, H2, . . . Hn]. The hidden states are then dotted
with a weight vector, wt to obtain a set of attention weights
corresponding to each token. The LSTM hidden states are
then averaged with these weights to get the final embedding
of the title, Ft.

Ft = Hsoftmax(HTwt) (2)
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Spatial Attention Module: The spatial attention module
combines the image and title features to identify the relevant
regions in the image. As an example, suppose there is an
image of a bedroom containing a bed, chair, table, etc. and
the title contains the word chair in it. To extract useful
feaures, we would want the model to emphasize more on
the chair while ignoring the other objects in view. Given the
image and title representations, Ig and Ft respectively, we
obtain title attentive spatially weighted image features Is. To
compute Is, we first project Ig to the same dimensionality as
Ft using 1x1 convolutions. Then attention weights (αs →
7×7) are computed by applying Hadamard product between
the transformed image and title features followed by softmax
to normalize the weights. The final spatially attended image
feature Is is given by

Is =

h×w∑
j

αs
j(Ig)j (3)

Channel Attention Module: The channel attention module
helps filter out dimensions in the spatially attended image
features, Is which are not relevant for item comparison. For
e.g., the color token, Red in the title - ’Torque - Dalton 6
Seater L Shape Corner Sofa for Living Room (Right Side,
Red)’, can help locate a red coloured sofa in the image. Once
located, we don’t want to retain color specific features in
the final representation. For this, the title feature, Ft is first
projected to a new dimension using a fully connected layer.
This transformed feature vector and the spatially attended im-
age features, Is are then concatenated and fed into two fully
connected layers to produce the channel attention weights
αc, having the same dimensions as that of Is. To get the
final output (Ic), Hadamard product is computed between Is
and αc.

After getting the output (Ic) from the channel attention
module, we employ a fully connected layer on Ic to generate
the final title (T ) attentive global feature of the image I →
fg(I, T ):

fg(I, T ) = fg(a) = WIc + b (4)

where W co×c is the transformation matrix, c is the size of
Ic, co is the output dimensionality and b is the bias term and
a is the item.

B. Local Branch

The local branch uses the cropped RoI, from the original
image, to look at the item more closely to extract more
relevant features. In order to identify the RoI, the attention
map, αs computed earlier is first resized to the original
input size (224x224). It is then binarized using a threshold
to obtain a binary map. Connected component analysis is
applied on the binarized map to filter out the spurious regions

from the map. A bounding box is then extracted from this
binary map to produce the cropped region (RoI) from the
input image. This cropped region is padded with black pixels
to produce a square image of size 112x112, which acts as
input image to the local branch. This input image is passed
through the ResNet-50 block instead of the Deeprank based
architecture used in the global branch. Rest of the details
(feature extraction for title, spatial attention and channel
attention) are similar to that of the global branch giving us
the final title (T ) attentive local feature of the image I →
fl(I, T ) or fl(a).

3.2. Training and Batch Sampling

Given an item a : (I, T ), with image I and the title
T , let fg(a) ∈ Rd and fl(a) ∈ Rd be the d dimensional
feature embeddings returned by the global and local branch
respectively. Let us consider two items, a1 and a2. Now,
since we are considering parent-item as the ground truth
label, if Pa1

= Pa2
, we want to have global features, (fg(a1)

and fg(a2)) as well as local features, (fl(a1) and fl(a2))
closer together. However, if Pa1 ̸= Pa2 , we would want to
have these embeddings further apart from each other.

Loss Function: Minimizing Triplet Loss([10, 17]) and
NTXent Loss([20, 4]) are effective techniques for learning
these representations. Triplet loss works by minimizing
the distance between the anchor (pa) and positive (pp), and
maximizing the distance between anchor and negative (pn)
such that it satisfies the margin constraint α.

Losstriplet = [d(pa, pp)
2 − d(pa, pn)

2 + α] (5)

Triplet loss optimizes a 3-tuple (pa, pp, pn), where it pushes
a single negative sample away from the positives one at a
time. Whereas the NTXent loss, represented by the equa-
tion below optimizes an n-tuple (pa, pp, pn1 , . . . , pn(N−2)

),
where it pushes away multiple negative samples simultane-
ously.

Lossntx(pa, pp) = − log
exp(−d(pa, pp)/τ))∑N

k=1 1k ̸=a exp(−d(pa, pk)/τ)
(6)

Here pa and pp are the positives and share the same label.
All the other k’s in the denominator are negative samples
w.r.t. to a.

Batch Sampling: In this work, anchor and positive are
sampled from the same parent (Ppa = Ppp), and negatives
are sampled from separate parents (Ppa

̸= Ppn
). Randomly

created tuples easily satisfy the loss constraints, and thus
are not very useful for learning. Hence several hard mining
strategies have been proposed in the literature [24]. The
idea of hard mining is to sample only those tuples for train-
ing which are difficult to optimize. As such, these mostly
includes cases where anchor and negatives are sampled from
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similar products. Searching hard triplets (or any n-tuple) in
large datasets is computationally expensive, hence in prac-
tice, these are sampled from within a batch [18]. In practise,
this requires a sufficiently large batch size so as to have
enough contrastive samples for effective learning. This is
especially true in cases where the dataset consists of a large
number of product categories. To ensure faster convergence
with smaller batch, we leverage product details such as item-
brand and item-subcategories to group together items of
similar types to create a batch. We find that this simple ap-
proach results in significant improvement in the performance.
We compare the results of using different types of keywords
for batch creation in Table 5 (Sec. 4.4).

Training: We apply one of these losses (triplet or NTXent
loss) on both the global(Lg) and the local branch(Ll). We
also include an alignment loss(La) between global and local
features, which forces the model to embed the original image
and its localized version consistently. This loss is given
by the distance between the global feature fg(a) and the
local feature fl(a). Following [7], we adopt a two-staged
procedure for training our model. The first phase optimizes
only the global branch using the Lg loss. Once the global
branch stabilizes, both the branches are jointly trained in the
second stage:

L = wgLg + wlLl + waLa (7)

where wg , wl, and wa are the hyperparameters which control
the importance of the different losses.

Inference: During inference, the distance between a pair
of items, a1 and a2, is computed as the weighted sum of the
L2 distances between their global and local features:

d(a1, a2) = λdl2(fg(a1), fg(a2))+(1−λ)dl2(fl(a1), fl(a2))
(8)

Here λ is the hyperparameter to balance the importance of
2 features(global and local), and dl2(p, q) is the L2 distance
between the two feature vectors p and q.

4. Experiments
In this section, we report experimental results testing the

effectiveness of the proposed framework, starting with the
dataset description.

4.1. Datasets

The dataset used in this work is obtained from the Ama-
zon catalog and consists of three product categories. For
training data creation, we fetched random parent-items (fam-
ilies) along with all the child-items from the product detail
page. For each child-item, we extracted the following details
- image, brand, title and, subcategory (subcat). Additionally,
we filter out items with duplicate images using the image-
id so that all the images in the dataset are unique. During

testing, we want to measure how well the model is able to
distinguish between similar and dissimilar items. Therefore,
each test data sample consists of item pairs that can either
be from the same (S) or different (D) product (ref. figure 3).
To create the test data, we randomly paired up items from
across two different families and labelled them manually
by comparing their images. Details of the datasets used are
provided in Table 1.

Category Train Size Test Size
Same Product Different Product

A 43447 5508 10352
B 57346 7758 13831
C 114295 9645 11407

Table 1: Details of train and test dataset

4.2. Evaluation Metrics

Since every pair in our test set belongs to either the S or
D class, it is a binary classification task. In order to make
the prediction, we compute the distance between the items
in a pair and compare it with a pre-defined threshold. We
use three different metrics for evaluation, PR-AUC, Preci-
sion@Recall=50, Precision@Recall=75.

4.3. Implementation Details

We ran the experiments in PyTorch. The training time is
approximately 20 hours on a single Nvidia V100 GPU with
a batch size of 48. The dimensions of the input image were
kept as 224x224x3 for the global branch while it was fixed to
112x112x3 in the local branch. The title was preprocessed by
lowercasing all the words and removing numbers from the
title. It was then tokenized using the fasttext dictionary. The
modified deeprank backbone network in the global branch
returns a 2336-D feature vector for the image while the
title is represented using 300-D glove embeddings. ResNet-
50 was used as a backbone network in the local branch,
and it returns a 2048-D feature map. Our final embedding
dimension for both global and local feature networks is 1024.
The global branch was first trained for 2000 steps, followed
by the whole network training for 30000 steps. The loss
functions weights wg, wl and wa were kept as 1. λ was
empirically determined and was found to be 0.55.

4.4. Results

First, we test the model’s scalability by comparing the
performance of a single model trained across all three prod-
uct categories vs individual models trained separately on
each category. We hypothesize that since the model uses
title for attention, it will be able to utilize this context by
focussing on the relevant region or features from the image.
The results are shown in Table 2. The first row displays the re-
sults corresponding to separate models trained on individual
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Category A B C
Model type P@50R P@75R AUC P@50R P@75R AUC P@50R P@75R AUC
Individual 91.86 87.48 89.03 92.12 77.93 85.92 91.18 85.31 88.40
Combined 90.47 86.35 87.54 93.76 79.23 85.84 91.01 84.24 87.62

Table 2: Comparison of models trained on individual datasets with the model trained on combined dataset.

datasets (eg. the first 3 columns of the first row (Individual)
show the results corresponding to the model trained only on
category A). The 2nd row (Combined) reports the model’s
performance for the combined training.

We observe a slight degradation (≈ 1% drop in Preci-
sion@75R) on both category A and C as a result of com-
bined training, while performance on the category B remains
the same. This results in improved scalability and will help
reducing model proliferation.

Baseline Comparison: Next, we evaluate our approach
on the combined dataset against ResNet-50, Deeprank and
a recent multimodal approach, [7] in table 3. The first two
baselines take only image as the input, whereas the multi-
modal baseline (row 3) uses both image and product type
keyword as input. For ResNet-50, we took the output from
the final layer as the image feature (2048-D). Compared to
the two image based baselines (rows 1 & 2), we observe
significant improvement with our multimodal approach (row
4). The proposed approach also performs better than the
multimodal baseline on all three product categories.

Ablation Experiments: We perform ablation studies to
show the importance of different components in our pro-
posed framework. In the first experiment, we provided the
attention using subcat instead of using the product title. As
subcat is generally composed of short phrases (such as run-
ning shoes, t-shirts), we averaged fasttext embedding of
those tokens and used it in place of the title embeddings.
The results are reported in the row Proposed (Attn. subcat)
in Table 3. 1-2% drop can be observed in almost all the cases
compared to Proposed (Attn. title). We also conducted ex-

Figure 3: Examples of successful predictions by the model. Left
column: Same products predicted as same. Right column:

Different products predicted as different.

Category A B C
Model type P@50R P@75R AUC P@50R P@75R AUC P@50R P@75R AUC

Baseline ResNet 72.97 61.01 72.63 85.49 66.26 79.63 81.86 69.81 80.43
Baseline Deeprank 83.15 74.55 80.73 88.04 69.16 81.15 83.40 79.47 83.74

Dong et al. [7] 85.07 75.83 82.33 90.13 75.69 83.78 87.32 81.66 85.87
Proposed(Attn title) 90.47 86.35 87.54 93.76 79.23 85.84 91.01 84.24 87.62

Proposed (Attn subcat) 87.93 80.04 84.92 92.85 76.49 84.25 87.16 80.44 85.91
Proposed w/o SA 88.27 83.53 86.25 93.48 77.31 84.37 87.87 82.01 86.28
Proposed w/o CA 89.85 85.28 86.89 93.53 78.48 84.80 88.55 82.34 87.03

Table 3: Comparison with baselines (1st part) and ablation experiments (2nd part)
Abbr. - SA: Self Attention, CA: Channel Attention, Attn: Attention, w/o: without
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Category A B C
Loss/Mining P@50R P@75R AUC P@50R P@75R AUC P@50R P@75R AUC
NTXent All 82.25 76.54 81.94 86.73 75.33 83.08 85.77 78.00 85.28

NTXent EPSHN 90.47 86.35 87.54 93.76 79.23 85.84 91.01 84.24 87.62
Triplet All 86.22 77.44 83.53 89.64 73.68 83.70 85.58 80.09 85.37

Triplet EPSHN 84.76 76.31 82.69 90.48 78.15 84.58 84.81 79.53 84.64

Table 4: Comparison of loss functions and mining strategies

periments to understand the importance of the self-attention
and the channel-attention module described in Sec 3.1 by
dropping the respective modules from the architecture. The
results are reported in the last two rows in Table 3.

We also experimented with different loss functions and
mining strategies. More specifically, we trained our architec-
ture using two different mining techniques - i) All mining
and ii) Easy Positive Semihard Negative mining (EPSHN
[25]) and two different loss functions - i) Triplet Loss and
ii) NTXent loss [20]. The results are reported in the Table 4.
We observe that combination of NTXent loss and EPSHN
mining gives overall the best results. Surprisingly, triplet loss
performs slightly better with All mining strategy compared
to EPSHN mining.

As discussed in section 3.2, we also compare brand, sub-
cat and brand+subcat as grouping keywords for batch cre-
ation. If we do not apply any grouping, then very few batches
have informative tuples, resulting in a longer training dura-
tion. We find that the combination of brand+subcat results
in the batch which is most homogeneous and thus gives the
best results. The averaged results across all three product
categories are reported in the table 5 below.

Keyword Used P@50R P@75R AUC
subcat 66.71 54.10 66.29
brand 80.43 73.89 82.18

brand+subcat 91.75 83.27 87.00

Table 5: Comparison of few keywords for batch creation

Visual Analysis: Visualization of the process of getting
the RoI, starting from the original input image to getting a
cropped RoI from it, are shown in Fig 4. The first image in
each row is the input image to the global branch of the net-
work. After processing by the global branch, as described in
Sec 3.1, we get an attention map highlighting the important
regions in the image. This attention map is then thresholded,
binarized, and resized (2nd image is overlay of resized atten-
tion map on the original image) to get a cropped RoI (3rd
image) from the original image. This cropped RoI is then
passed as an input to the local branch of the network. The
product title is displayed below the images. Also, in figure
3, we visualize few of the predictions by our model.

Original Image Attention Map Cropped RoI

Title: Drop Women Ecru Draped Pleated Cross Front Volume
Sleeve Button Shirt Lisadnyc

Title: Kennington Coffee Table, Black

Title: Walker Edison Bern Classic 2 Glass Door Fireplace TV
Stand for TVs up to 80 Inches, 70 Inch, Birch

Figure 4: Getting cropped RoI using product title

5. Conclusion
In this work, we presented an end-to-end multimodal

framework for learning product similarity, leveraging both
the product image and title. We also talked about some im-
portant applications of learning product similarity in ecom-
merce domain, and highlighted the challenges involved in
training such models on real world unlabelled datasets. We
demonstrated the benefit of incorporating multimodal atten-
tion in terms of improved scalability and performance. We
also observe good improvement (up to 5.2% in AUC) in the
performance compared to multimodal (image + text) state of
the art. Possible future directions of the current work include
incorporating additional details such as product description,
bullet-points and other additional attributes to allow for more
finegrained comparison, and leveraging self-supervised pre-
training to better capture the context between the image and
textual domains.
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