
Active Learning for Improved Semi-Supervised Semantic Segmentation in
Satellite Images

Shasvat Desai *

Orbital Insight
shasvat.desai@orbitalinsight.com

Debasmita Ghose *

Yale University
debasmita.ghose@yale.edu

Abstract

Remote sensing data is crucial for applications ranging
from monitoring forest fires and deforestation to tracking
urbanization. Most of these tasks require dense pixel-level
annotations for the model to parse visual information from
limited labeled data available for these satellite images.
Due to the dearth of high-quality labeled training data in
this domain, there is a need to focus on semi-supervised
techniques. These techniques generate pseudo-labels from
a small set of labeled examples which are used to augment
the labeled training set. This makes it necessary to have
a highly representative and diverse labeled training set.
Therefore, we propose to use an active learning-based sam-
pling strategy to select a highly representative set of labeled
training data. We demonstrate our proposed method’s ef-
fectiveness on two existing semantic segmentation datasets
containing satellite images: UC Merced Land Use Clas-
sification Dataset and DeepGlobe Land Cover Classifica-
tion Dataset. We report a 27% improvement in mIoU with
as little as 2% labeled data using active learning sampling
strategies over randomly sampling the small set of labeled
training data.

1. Introduction
Semantic segmentation has found vast applications in the

domain of remote sensing, including but not limited to envi-
ronmental monitoring [60, 62], land use classification, and
change detection [11, 27, 4, 12, 18, 51]. The largest barrier
to applying these segmentation techniques is the availability
of representative labeled data across different geographies
and terrains. Each pixel in a satellite image can represent a
large area on the ground, thus requiring domain knowledge
and experience to annotate pixel-level labels. This makes it
significantly expensive in terms of cost and time to collect a
large set of pixel-wise labels [23]. To alleviate this problem,
recent work in the computer vision community has explored
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Figure 1: a) An image from the UC Merced Land Use Clas-
sification Dataset [59], b) Ground Truth of the same im-
age provided by the DLSRD dataset [46], c) Baseline semi-
supervised semantic segmentation model trained with 2%
labeled data, d) Output of our active learning based semi-
supervised semantic segmentation model trained with 2%
labeled data.

using fewer pixel-wise labels along with information from
unlabeled images in a semi-supervised fashion [17, 31, 48].
However, these small sets of images that are labeled pixel-
wise are chosen randomly from a dataset [17, 31]. This
might bias the semi-supervised network towards a particu-
lar set of classes, degrading its performance. Therefore, we
propose to use active learning to select a representative set
of labeled examples for semi-supervised semantic segmen-
tation for land cover classification.

This work is the first to explore a semi-supervised ap-
proach to semantic segmentation in satellite images to the
best of our knowledge. We use a conditional GAN [30]
based on Mittal et al. [31] which takes in a small number of
labeled examples and a large unlabeled pool of data. This
conditional GAN generates pseudo-labels based on limited
labeled examples to augment the labeled pool. This makes
it essential to have a diverse set of labeled training data.
Thus, we propose to use active learning to select a highly
representative set of labeled training samples.
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Active learning aims to select the most informative and
representative data instances for labeling from an unlabeled
data pool based on some information measure. We sam-
ple a subset of the images and their corresponding labels at
random from a dataset, which serves as our labeled training
set for the conditional GAN. We do the sampling again us-
ing an active learning-based sampling strategy which would
provide a more diverse set of training data and show a per-
formance improvement even when only very few training
samples are available. With as little as 2% labeled data,
we report an improvement of up to 27% in mIoU over ran-
dom sampling. We demonstrate our proposed method’s ef-
ficacy on two existing semantic segmentation datasets con-
taining satellite images: UC Merced Land Use Classifica-
tion Dataset [46, 59], and DeepGlobe Land Cover Classifi-
cation Dataset [9].

Active learning for semantic segmentation [28, 56]
yields patches of the given input image that are most in-
formative. However, in this work, we require an active
learning-based sampling strategy that gives us the set of
most informative images from the given dataset. To achieve
this, we propose using active learning for image classifica-
tion to select entire images from the given dataset, which are
the most informative. We then query and obtain dense-pixel
level annotations only for the actively selected samples, giv-
ing us our diverse labeled training data for semi-supervised
semantic segmentation.

Finally, we propose this method for sample selection to
act as a guiding process for large-scale dataset creation, re-
quiring the collection of dense pixel-level annotations. It
would require significantly less cost and effort to obtain
coarse image-level labels for the images and then use our
proposed methodology to sample informative images la-
beled at pixel-level using image-classification-based active
learning. The code has been made publicly available*.

Our key contributions are summarized as follows:

• We use pool-based active learning sampling strate-
gies to intelligently select labeled examples and im-
prove performance for a GAN-based semi-supervised
semantic segmentation network for satellite images.

• We demonstrate the applicability of the proposed
method for selecting an optimal subset of data in-
stances for which pixel-level annotations should be ob-
tained.

2. Background and Related Work
2.1. Active Learning

Active Learning is a technique that uses a learning algo-
rithm which learns to select samples from an unlabeled pool
of data for which the labels should be queried.

*https://github.com/immuno121/ALS4GAN

Scenarios for Active Learning: Active Learning is typi-
cally employed in the following settings: [43]. Membership
Query Synthesis [44] is a setting where the learner generates
an instance from an underlying distribution. Stream-based
Selective Sampling [1] queries each unlabeled instance one
at a time based on some information measure. The last sce-
nario Pool-based sampling, used in this paper, assumes a
large pool of unlabeled data and draws instances from the
pool according to some information measure.
Query Strategies: There are several query strategies in the
pool-based sampling strategies to select samples for which
we need to query labels.

The margin sampling strategy [2, 39] selects the instance
that has the smallest difference between the first and second
most probable labels.

xM = argmax
x

[Pθ(ŷ2|x)− Pθ(ŷ1|x)] (1)

Intuitively, instances with small margins are more ambigu-
ous and knowing the true label should help the model dis-
criminate more effectively.

The third and the most common strategy is Entropy-
based sampling [24, 25].

x∗
H = argmax

x
−
∑

yPθ(y|x) log(Pθ(y|x)) (2)

where y ranges over all possible labels of x. Entropy is a
measure of a variable’s average information content. So in-
tuitively, this method selects samples by ranking them based
on their information content.
Applications: Active learning techniques have found nu-
merous applications in medical imaging [16, 19, 29, 45, 47]
and remote sensing [20, 26, 38, 50, 54, 55] communi-
ties because obtaining labeled data in those domains have
been particularly challenging [35, 42]. Some recent work
have used deep learning techniques for active learning-
based image classification [37, 45], semantic segmentation
[28, 56, 58] and object detection [40]. However, to the best
of our knowledge, this is the first work that uses a deep ac-
tive learning-based image classifier to select labeled exam-
ples for a semi-supervised semantic segmentation network.

2.2. Semi-Supervised Semantic Segmentation

Most of the existing semi-supervised semantic seg-
mentation techniques either use consistency regularization
strategies [7, 13, 32, 33, 34] or generative model to aug-
ment pseudo-labels to existing labeled data pool [17, 48] or
some combination of the two [31].
Consistency Regularization-based strategies: The core
idea in consistency regularization is that predictions for un-
labeled data should be invariant to perturbations. Some
recent work has pointed out the difficulty in perform-
ing consistency regularization for semi-supervised seman-
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tic segmentation because it violates the cluster assump-
tion [13, 34]. Some other work [6, 13, 21] use data aug-
mentation techniques like CutMix [61] and ClassMix [33],
which composite new images by mixing two original im-
ages. They hypothesize that this would enforce consistency
over highly varied mixed samples while respecting the orig-
inal images’ semantic boundaries.
GAN-based strategies: Souly et al. [48] was the first work
to perform semi-supervised semantic segmentation using a
GAN. They employ the generator to generate realistic visual
data that forced the discriminator to learn better features for
more accurate pixel classification. However, these gener-
ated images were not sufficiently close to the real images
since it is challenging to generate realistic-looking images
from pixel-wise maps.

To overcome the drawback of poorly generated images,
Hung et al. [17] propose a conditional GAN. The generator
is a standard semantic segmentation network that takes in
images and their ground truth maps. The discriminator is
a fully convolutional network (FCN) that takes the ground
truth, and the segmentation map predicted by the generator
and aims to distinguish between the two. Thus, it is difficult
for the discriminator to determine if the pixels belong to the
real or the fake distribution by looking at one pixel at a time
without context.

Mittal et al. [31] propose to replace the FCN-based
discriminator with an image-wise discriminator that deter-
mines if the image belongs to the real or the fake distribu-
tion, which is a relatively easy task. Additionally, they pro-
pose to use a supervised multi-label classification branch
[52] which decides on the classes present in the image
and thus aids the segmentation network to make globally
consistent decisions. During evaluation, they fuse the two
branches to alleviate both low-level and high-level artifacts
that often occur when working in a low-data regime. In this
work, we use the s4GAN branch of the network presented
by Mittal et al. [31] and propose to select a more optimal
set of labeled examples to improve the performance of the
network over a random selection of labeled examples.

3. Our Method
We propose to use active learning techniques to select a

small informative subset of labeled data that would help the
semi-supervised semantic segmentation model learn more
effectively with a representative pool of labeled data. The
proposed framework is demonstrated in Figure 2. It should
be noted that for any given image, our method assumes the
ability to gain access to its corresponding image and pixel-
level annotations.

3.1. Active Learning for Image Classification

Algorithm 1 describes how active learning was used to
select the most informative and diverse set of labeled sam-

Algorithm 1: Active Learning for Labeled Sample
Selection

Input:
Labeled ratio R and unlabeled pool of data XN

Output:
Informative samples and their image-level labels
(XL,Y I

L )
Define:
learner ← Neural network based image classifier
oracle← source of labels

1 Number of data points to sample: XNL
← R ∗XN

2 Size of initial labeled pool for learner:
init size← ⌈αinit ∗XNL

⌉
3 Initial labeled pool for active learner:(Xinit, Yinit)
4 Train the active learner: learner(Xinit, Yinit)
5 Unlabeled pool: Xpool ← XN −Xinit

6 XL ← {}, Y I
L ← {}

7 Number of samples to query in each iteration :
NQ = βQ ∗ init size

while n(XL) ≤ XNL
do

Query Step:
Inference on unlabeled pool using learner:

8 prediction scores = learner(Xpool)
Select top-Q most informative instances (NQ):

9 XQ = sampling strategy(prediction scores)
10 YQ = oracle(XQ)
11 Xpool = Xpool −XQ

12 XL = XL

⋃
XQ

13 Y I
L = Y I

L

⋃
YQ

Teach Step:
Retrain the learner with updated labeled pool:

14 learner(XL, Y
I
L )

15 end
16 return XL, Y

I
L

ples for semi-supervised semantic segmentation. We use
active image classification and sample images using pool-
based sampling strategies [43] as described in Section 2.1.
Algorithm 1 is used as an offline process to sample infor-
mative samples and it accepts two inputs: labeled ratio R,
and an unlabeled pool of data, XN . The labeled ratio R,
determines the number of labeled samples used to train the
semi-supervised model. The labeled ratio R, used in this
paper for each dataset, can be found in Table 1.

Initialization: The active learner is initialized with
init size number of image-level labels (line 3), which is
a function of the number of labeled samples to be returned.
We define the parameter αinit ∈ (0, 1] (line 2) to control
the size of the initial labeled pool of the active learner. αinit

helps in determining the optimal size of the labeled pool that
the active learner should be initialized with for every labeled

555



Figure 2: Proposed Framework: 1) The active learning module expects an unlabeled pool of data as its input. It is an image
classification network that returns samples XL selected based on some information measure determined by the sampling
strategy used for the active learner. 2) A get label operation is performed to obtain pixel-level labels corresponding to images
returned by the active learning module. 3) A conditional GAN is then trained where the generator module is a semantic
segmentation network and expects the labeled images returned by the active learning module, XL, the corresponding pixel-
wise labels for these samples Y P

L , along with the remaining unlabeled images XU . It outputs a segmentation mask. 4) The
discriminator expects the predicted segmentation masks from the generator along with the pixel-wise ground truth labels Y P

L ,
and outputs a prediction confidence score. 5) prediction masks with a score greater than the predefined confidence threshold
τ are selected and treated as pseudo-labels to train the GAN and are augmented to the labeled pool as shown by the ”+” sign
on the bottom left corner.

ratio, R. A low value of αinit would result in the active
learner being initialized with a tiny pool of data not pro-
viding sufficient information about the data distribution. In
contrast, a large value of αinit might bias the active learner
toward a particular set of initial samples, which might lead
to under-sampling of a particular class. Intuitively, setting
αinit to 1 would make to outcome close to being equivalent
to random sampling. We found this approach to perform
better than having a fixed initial labeled pool size, irrespec-
tive of the labeled ratio, R. The learner is then trained
with this initial labeled pool (line 4). Once the initial la-
beled samples are selected for the active learner, they are
removed from the unlabeled pool (line 5). We sample data
instances and their labels by performing the query and teach
steps in an interleaved fashion.
Query Step: We run inference using the trained learner
on the entire unlabeled pool (line 8) and obtain the model’s
confidence scores for each sample in that pool. Then us-
ing some uncertainty measure based on the active learning
strategy used, the oracle queries image-level labels for top-
Q uncertain samples, NQ. For instance, if entropy-based
sampling [24, 25] is used, then the oracle will return labels
for samples with the highest entropy measure. The optimal
number of data instances NQ, queried from the oracle in

every iteration is a function of the initial labeled pool size
init size and another parameter, βQ ∈ (0, 1] (line 7). We
define βQ to determine the number of iterations for which
the active learner will be trained. It is crucial for the active
learner’s performance because a small value of βQ will add
only a small number of labels in each iteration, resulting
in a negligible weight update of the active learner. In con-
trast, a large value of βQ will cause a massive update in the
learner’s weights at every step. It will also reduce the total
number of steps the learning algorithm will take to reach its
target XNL

. This will leave little room for the learner to
learn from its mistakes in each iteration, directly impacting
the quality labels produced. Once the labels for NQ number
of samples are queried from oracle, the images and their
corresponding labels are added to the result set, XL and Y I

L

(lines 12, 13).
Teach Step: In this step, the learner is trained with the
updated labeled pool of samples obtained from the query
step (line 14). The image classification network’s capacity
for the learner is also crucial in determining the quality
of the selected samples. Any network with low capacity
tends to underfit, while any network with a higher capac-
ity than required could overfit and detrimentally affect the
downstream task’s performance.
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Labeled Ratio(R) 2% 5% 12.5% 100%
UC Merced[59] 34 85 211 1680
DeepGlobe[9] 12 32 80 642

Table 1: Number of Labeled Examples per Labeled Ratio
in the UC Merced and DeepGlobe datasets

3.2. Semi-Supervised Semantic Segmentation

We use the s4GAN network proposed by Mittal et al.
[31] for performing semi-supervised semantic segmentation
using a small number of pixel-wise labeled examples along
with a pool of unlabeled examples. This is a conditional
GAN-based technique where the generator G is a segmen-
tation network. The generator takes in all the labeled and
unlabeled images, along with the ground truth masks. The
discriminator D takes the predicted segmentation map and
the available ground truth masks concatenated with their re-
spective images. The network attempts to match the real
and the predicted segmentation maps’ distribution through
adversarial training.
Notation:
xP
L , y

P
L : image with their pixel-wise labels

xP
U : image with no pixel-wise ground-truth labels

3.2.1 Segmentation Network (Generator)

The segmentation network S is trained with loss LS , which
is a combination of three losses: the standard cross-entropy
loss, the feature matching loss, and the self-training loss.
Cross Entropy Loss: Standard supervised pixel-wise cross
entropy loss term evaluated only for the labeled samples xp

L

is shown is Equation 3.

Lce = −
∑

yPL · log(S(xP
L )) (3)

Feature-Matching Loss: The feature matching loss Lfm

[41] aims to minimize the mean discrepancy between the
feature statistics of the predicted, S(xP

U ) and the ground
truth segmentation maps, yPL as shown in Equation 4. This
loss uses both labeled and unlabeled training examples.

Lfm = ||E(yP
L ,xP

L )∼Dl
D(xP

L ⊕ yPL )−

E(xP
U )∼Du

D(xP
U ⊕ S(xP

U ))|| (4)

Self-Training Loss: This loss is used for only unlabeled
data. This loss aims to pick the best outputs of the segmen-
tation network (i.e., those outputs that could fool the dis-
criminator) that do not have a corresponding ground truth
mask and reuse them for supervised training. Intuitively,
it pushes the segmentation network to produce predictions

that the discriminator cannot distinguish from real. The dis-
criminator’s output is a score between 0 and 1, denoting
the discriminator’s confidence that the predicted segmenta-
tion mask is real. The predicted segmentation mask with a
score greater than the predefined confidence threshold τ , is
selected and treated as a pseudo-label to train the GAN.

Equation 5 describes the self-training loss.

Lst =

{
−
∑

y* · log(S(xP
U )) if D(xP

U ) ≥ τ

0 otherwise
(5)

y* = pseudo pixel-wise labels which are the predictions of
the segmentation network
Finally, the objective function for the generator is given by
Equation 6.

LS = Lce + λfmLfm + λstLst (6)

where, λfm > 0 and λst > 0 are the weighting parameters
for the feature matching and the self-training losses.

3.2.2 Discriminator

The discriminator is trained to distinguish between the real
labeled examples and the fake segmentation masks gener-
ated by the network concatenated with the corresponding
input images. It is trained using the original GAN loss pro-
posed by Goodfellow et al. [14] as shown in Equation 7.

LD = E(yP
L ,xP

L )∼Dl
logD(xP

L ⊕ yPL )+

E(xP
U )∼Du

log(1−D(xP
U ⊕ S(xP

U )) (7)

3.3. Labeled Example Selection for Semi-
Supervised Semantic Segmentation using Ac-
tive Learning

To obtain labeled samples for a semi-supervised seman-
tic segmentation network, the proposed framework uses
the active learning module from Algorithm 1 defined as
Active Sampler in Algorithm 2 and shown in Figure 2.
The active learning module expects an unlabeled pool of
data (XN ) and the labeled ratio R as its input. It returns
samples XNL

(line 4), which are selected based on some
information measure determined by the sampling strategy
used for the active learner. The active learning module is
called only once to select informative data instances for the
semi-supervised model. In the get label stage, we obtain
pixel-level labels corresponding to only those images re-
turned by the Active Sampler to serve as the initial la-
beled training data for the semi-supervised segmentation
module. This enables the semi-supervised semantic seg-
mentation network to learn with a representative labeled set
instead of a random subset of the data.
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The conditional GAN described in Section 3.2 is then
trained, where the generator module is a semantic segmen-
tation network and expects the labeled images returned by
the active learning module XNL

, the corresponding pixel-
wise labels for these samples Y P

NL
, along with the remain-

ing unlabeled images, XNU
. The output of the generator

network is a segmentation mask. The discriminator expects
the predicted masks along with the pixel-wise ground truth
labels Y P

NL
, and outputs a probability score between 0 and

1, denoting its confidence in the predicted mask being real
and belonging to the ground truth. If this confidence score
is greater than the predefined confidence threshold τ , then
it implies the generator has successfully predicted a mask
that appears real to the discriminator. Hence, this predic-
tion is augmented to the ground-truth, Y P

NL
(line 14) and

used as a pseudo-label, and the GAN is trained with this
updated dataset. These pseudo-labels contribute to the self-
training loss detailed in Section 3.2.1. The generator and
the discriminator are trained adversarially until a stopping
criterion is satisfied.

Algorithm 2: Semi-Supervised semantic segmen-
tation using samples obtained from the Active
Learner

Input:
Labeled Ratio, R and unlabeled pool, XN

Define:
Active Sampler ← Active Learning module

1 τ ← Confidence Threshold
2 G← Generator network of conditional GAN
3 D ← Discriminator network of conditional GAN
4 Active sampler from Algorithm 1:

XNL
, = Active Sampler(R,XN )

5 Get Label: Obtain pixel-wise labels for the images
returned by the active sampler:
Y P
NL

= get label(XNL
)

6 Images without pixel-wise labels:
XNU

← XN −XNL

Semi-Supervised Semantic Segmentation:
while i < iterations do

7 pseudo label = {}
8 for (xNL

, xNU
, yPNL

) in (XNL
, XNU

, Y P
NL

) do
9 mask = G(xNL

, xNU
, yPNL

)

10 confidence = D(mask, yPNL
)

11 if confidence > τ then
12 pseudo label = pseudo label

⋃
mask

13 end
14 Augment pseudo-labels to ground-truth and

train the Generator model via self-training loss:
Y P
NL

= Y P
NL

⋃
pseudo label

15 end

4. Experiments and Results

4.1. Datasets and Evaluation Metric

UC Merced Land Use Classification Dataset: The UC
Merced Land Use Classification dataset [59] has 2100 RGB
images of size 256x256 pixels and 0.3m spatial resolution,
with image-level annotations for each of the 21 classes. We
use the pixel-level annotations for the UC Merced dataset
made publicly available by Shao et al. [46] which has 17
classes as proposed in [3]. The dataset was randomly split
into training and validation sets with 1680 training images
(80%) and 420 validation images (20%).
DeepGlobe Land Cover Classification Dataset: The
DeepGlobe land cover classification dataset is comprised of
DigitalGlobe Vivid+ images of dimensions 2448x2448 pix-
els and spatial resolution of 0.5 m. There are 803 pixel-wise
annotated training images, each with pixel-wise label cover-
ing seven land cover classes. Since there are no image-level
annotations available for the DeepGlobe dataset, to generate
image-level annotations, we calculate which class contains
the highest number of pixels for every image and assign that
particular coarse class to the image. The dataset was ran-
domly split into training and validation sets with 642 train-
ing images (80%) and 161 validation images (20%).
Evaluation Metric: We use mean Intersection-over-Union
(mIoU) as our evaluation metric.

4.2. Implementation Details

Active Learning for Image Classification We used ResNet
101 and ResNet 50 [15] as our image classification net-
works for the UC Merced and the DeepGlobe Datasets re-
spectively which were trained using the Cross-Entropy loss.
The network was trained using the SGD optimizer with a
base learning rate of 0.001 and momentum of 0.9. We used
a batch size of 4 and trained for 50 epochs after each query.
Through cross-validation, we found the optimal value of
αinit = 0.1 and βQ = 0.5. We implemented the network
using the open-source skorch [53] framework. The differ-
ent active learning query strategies were implemented using
the modAL open-source toolbox [8] and trained on a single
NVIDIA GTX-2080ti GPU.
Semi-Supervised Semantic Segmentation We use a GAN-
based semi-supervised semantic segmentation technique
proposed by Mittal et al. [31]. The generator is comprised
of a segmentation network which in our case is DeepLabv2
[5] trained with a ResNet-101 [15] backbone pretrained
on the ImageNet dataset [10]. The discriminator is a bi-
nary classifier with four convolutional layers with 4x4 ker-
nels with 64, 128, 256, 512 channels each followed by a
Leaky ReLU activation [57] with negative slope of 0.2 and
a dropout layer [49] with dropout probability of 0.5. The
segmentation network in the generator is trained with SGD
optimizer base learning rate of 2.5e-4, momentum of 0.9,
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2%

5%

12.5%

a) Original Image b) Ground Truth c) Baseline d) Our Results

Figure 3: Qualitative Results from the UC Merced Land Use Classification Dataset for different labeled ratios

2%

5%

12.5%

a) Original Image b) Ground Truth c) Baseline d) Our Results

Figure 4: Qualitative Results from the DeepGlobe Land Cover Classification Dataset for different labeled ratios

and a weight decay of 5e-4 as described in [17, 31]. The
image classification network in the discriminator is trained
using the Adam optimizer [22] with a base learning rate of
1e-4. Through cross-validation, we found the optimal loss
weights to be λfm = 0.1 and λst = 1.0 and the optimal
value of τ to be 0.6. For the DeepGlobe dataset, we resize
each image to 320x320 pixels to reduce the training time.

We implemented the network using PyTorch [36] on four
NVIDIA Tesla V100 GPUs.

4.3. Results and Analysis

Our baseline is a vanilla s4GAN [31] network, where
the labeled data is selected randomly from a given dataset.
We report the mean and standard deviation of mIoUs across
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Labeled Ratio(R) 2% 5% 12.5%
s4GAN [31]
(Baseline)

0.347 ±
0.0077

0.408 ±
0.0035

0.473 ±
0.0080

s4GAN + Entropy
(Ours)

0.398 0.456 0.494

s4GAN + Margin
(Ours)

0.360 0.480 0.546

Table 2: mIoU Scores for the UC Merced Land Use Classi-
fication Dataset [59]

three experiments with different random seeds for robust
evaluation for our baseline method. We compare our ap-
proach of using active learning to select representative la-
beled examples with this baseline. We experiment with
two pool-based query strategies, entropy and margin sam-
pling and demonstrate qualitative and quantitative perfor-
mance improvements on two datasets, DeepGlobe Land
Cover Classification Dataset [9], and UC Merced Land Use
Classification Dataset [46, 59] over the stated baseline. We
evaluated our approach with labeled ratios of 2%, 5%, and
12.5%. The qualitative results in Figures 3 and 4 are shown
for the best out of the two sampling strategies for each la-
beled ratio. Table 1 shows the number of labeled images in
each dataset for different labeled ratios.
UC Merced Land Use Classification Dataset: Table 2
shows a quantitative comparison of our method with the
baseline for the UC Merced Land Use Classification Dataset
[46, 59]. We compare the performance of entropy and mar-
gin sample selection strategies with the baseline and show
significant and consistent performance improvements. Both
the active learning strategies out-perform the baseline by a
significant margin. We report a maximum mIoU improve-
ment of close to 15% with as little as 2% labeled data,
a maximum improvement of about 18% over the baseline
when training with 5% and 12.5% labeled data across the
two active learning strategies.

Figure 3 shows how our proposed method qualitatively
improves over the UC Merced Dataset baseline for different
labeled ratios. Our method predicts a finer coastline with no
false positives, even with only as few as 34 labeled images
which are 2% of labeled data (Row 1 of Figure 3). Simi-
larly, we demonstrate that even when using only 5% (85 im-
ages) of labeled data (Row 2 of Figure 3), our method pre-
dicts the green-looking river that is camouflaging into the
background while the baseline method completely misses it
(Row 2 of Figure 3). This shows the importance of having a
representative pool of labeled data, especially in a low data
regime, as is our case. With 12.5% (211 images) of labeled
data (Row 3 of Figure 3), our method accurately predicts
the complex shape of the airplane (Column d), as opposed
to the baseline (Column c), which was confused between
multiple unrelated classes.

Labeled Ratio(R) 2% 5% 12.5%
s4GAN [31]
(Baseline)

0.403 ±
0.035

0.486 ±
0.018

0.511 ±
0.007

s4GAN + Entropy
(Ours)

0.469 0.513 0.554

s4GAN + Margin
(Ours)

0.511 0.513 0.529

Table 3: mIoU Scores for the DeepGlobe Land Cover Clas-
sification Dataset [9]

DeepGlobe Land Use Classification Dataset: Table
3 shows a quantitative comparison of our method with
the baseline for the DeepGlobe Land Cover Classification
Dataset [9]. We report significant performance improve-
ments over the baseline using both entropy and margin sam-
pling strategies. We report a maximum mIoU improvement
of close to 27% with as little as 2% labeled data, a max-
imum improvement of about 6% over the baseline when
training with 5% labeled data, and an improvement of ap-
proximately 8% with 12.5% labeled data across the two ac-
tive learning strategies.

Figure 4 shows some visualizations from the DeepGlobe
Dataset where it is seen that our method results in fewer
false positives than the baseline.

5. Conclusion

This work proposes a method to leverage active learning-
based sampling techniques to improve performance on the
downstream task of semi-supervised semantic segmentation
for land cover classification in satellite images. We do this
by intelligently selecting samples for which pixel-wise la-
bels should be obtained using coarse image classification-
based active-learning strategies. Our method helps the
semi-supervised semantic segmentation network start with
an optimal set of labeled examples to help it get the right
amount of initial information to learn the suitable represen-
tation. We prototype this method for a GAN-based semi-
supervised semantic segmentation network, where the la-
beled images were selected using pool-based active learning
strategies. We demonstrate the efficacy of our method for
two satellite image datasets, both quantitatively and quali-
tatively, and report sizable performance gains.
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