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Abstract

Reconstructing high-quality 3D objects from sparse,
partial observations from a single view is of crucial impor-
tance for various applications in computer vision, robotics,
and graphics. While recent neural implicit modeling meth-
ods show promising results on synthetic or dense data, they
perform poorly on sparse and noisy real-world data. We
discover that the limitations of a popular neural implicit
model are due to lack of robust shape priors and lack of
proper regularization. In this work, we demonstrate high-
quality in-the-wild shape reconstruction using: (i) a deep
encoder as a robust-initializer of the shape latent-code; (ii)
regularized test-time optimization of the latent-code; (iii)
a deep discriminator as a learned high-dimensional shape
prior; (iv) a novel curriculum learning strategy that al-
lows the model to learn shape priors on synthetic data and
smoothly transfer them to sparse real world data. Our
approach better captures the global structure, performs
well on occluded and sparse observations, and registers
well with the ground-truth shape. We demonstrate superior
performance over state-of-the-art 3D object reconstruction
methods on two real-world datasets.

1. Introduction
Consider the street view image and the partial LiDAR

scan in Fig. 1. As humans, we can effortlessly identify
the complete vehicle in the scene and have a rough grasp
of its 3D geometry. This is because human visual systems
have accumulated hours of observations that help us de-
velop mental models for these objects [24, 23]. While we
may have never seen this particular car before, we know
that cars shall be symmetric, they shall lie on the ground,
and sedans shall have similar shapes and sizes. We can thus
exploit these knowledge to infer the 3D structure of any ob-
ject, given its sparse observations. The goal of this work is
to equip computational visual machines with similar capa-
bilities. One recently emerging class of such works is neural
implicit shape modeling [34, 30, 31, 44, 45]. Neural im-
plicit shape modeling involves reasoning about the surface
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Figure 1: 3D Object Reconstruction in the Wild. Our
model takes as input a single LiDAR sweep and/or a RGB
image, and outputs a high-quality 3D shape.

of a 3D shape as the level-set of a function (represented us-
ing a neural network) [42], for example: an inside-outside
function or a signed-distance function. In this work, we
exploit the neural implicit shape representation for recon-
structing high-quality real-world objects.

Existing neural implicit reconstruction methods oper-
ate by learning a low-dimensional mapping for the cor-
responding high-dimensional 3D shape. Such a low-
dimensional mapping is usually represented as a 1D (or
multi-dimensional) latent-code, which is implicitly decoded
back to the 3D shape. Previous approaches usually take one
of two routes to generate the low-dimensional latent-code:
(i) learn a direct mapping from observations to the latent-
code, or (ii) model this problem as a structured optimiza-
tion task and incorporate human knowledge into the model.
Specifically, former methods capitalize on machine learn-
ing algorithms to directly learn the statistical priors from
data. While they are more robust to noise in the observation,
the decoded high-dimensional 3D shapes are not guaranteed
to match with the input observations. Additionally, many
feed-forward methods [30, 8] are learned with ground-truth
(GT) supervision from synthetic data, which is often un-
available for real-world data. This leads to poor general-
ization performance on unseen real-world partial inputs. In
contrast, optimization based approaches [34, 28] can pro-
duce coherent shape representations by incorporating the
observations into carefully designed objective functions.
In practice, however, designing the optimization objective
function is cumbersome and hand-crafted priors alone can-
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Fig. 2: Challenges of DeepSDF
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Figure 2: Challenges of DeepSDF. (i) Instability: while the input observation remains intact, different initializations may
lead to distinct 3D reconstructions. See the red arrows. (ii) Low-fidelity: the model may easily overfit to the noise in the data,
and fail to capture the global structure of the input observation. Here, the output shape is a hybrid of a van and a truck.

not include all possible phenomena. Despite hand-crafted
regularization, optimization-based methods struggle with
noise and can generate unusual artifacts. These limitations
are more pronounced when reconstructing accurate and
high-quality 3D shapes from real-world observations, be-
cause of potential noises, occlusions, and environment vari-
ability present in the real-world data.

In this work, we address the shortcomings of the prior
works by highlighting the key components necessary for
reconstructing high-quality 3D shapes in the wild. In or-
der to reconstruct high-fidelity shapes from sparse and noisy
real-world observations, it is necessary for the proposed ap-
proach to leverage (1) strong shape priors to extract the true
3D shape from input observations and be (2) robust to the
variable noise in the input. To satisfy these properties, we
begin with using the deep encoder network (adopted from
feed-forward approaches[30, 8]) as a robust initializer of the
shape latent-code. To guarantee that the predicted latent-
code is faithful to the input observations, we further incor-
porate the test-time optimization of the latent-code[34] into
our shape reconstruction method. However, we still have
not addressed the hand-crafted objective function limita-
tion. While it is necessary to carefully design an objective
function for effective training and inference of the shape re-
construction system, the overall process is cumbersome and
hand-designed. Moreover, test-time optimization is gener-
ally susceptible to noise in the observations. To overcome
these limitations, we introduce a learned shape prior into
our objective function, which serves as a high-dimensional
structural shape regularizer. We do so by taking inspira-
tion from the recent GAN inversion theory for 2D image
generation [58, 19] and incorporate a 3D shape discrimina-
tor network into our approach. The discriminator judges the
“naturalness” of the reconstructed shape both during train-
ing and test time. Finally, to effectively train our full model
we introduce an adversarial curriculum learning strategy.
This allows us to effectively learn several shape priors from
synthetic data, and generalize them to real-world data.

We evaluated our approach for 3D vehicle reconstruc-
tion in the wild on two challenging self-driving datasets.
We compare against state-of-the-art models on three tasks:
LiDAR-based shape completion, image-based shape recon-

struction and image + LiDAR shape completion. Our re-
sults show superior performance in terms of both recon-
struction accuracy and visual quality. Overall, we tackled
the less-explored task of high-fidelity reconstruction of di-
verse real-world vehicles. We showcased significant im-
provement compared to prior works, thanks to the learned
robust shape priors, the curriculum learning strategy used to
extract them and the regularized optimization strategy.

2. Related Work

Feed Forward Shape Completion: Deep feed-forward
approaches encode images or depth sensor data into la-
tent representations, which are subsequently decoded into
complete meshes or point clouds. Early works used voxel-
grid based representations [11, 21] which had lossy reso-
lution and memory constraints. Other works instead lever-
aged point clouds directly to create latent codes [36, 37, 18]
for point cloud completion or mesh construction, using a
variety of decoder architectures [55, 56, 27, 48, 51], en-
hanced intermediate representations [52, 17], and GAN-
based loss functions [41]. While successful on synthetic
datasets [5] or dense 3D scans [9], prior works [56, 52, 18]
have had limited success on real world noisy datasets such
as KITTI [15]. Other works [16, 10] directly perform
mesh prediction from images and 3D data. Recent works
[8, 35, 30, 39, 53, 40, 49, 33] represent shapes using neural
implicit functions and have shown promising results on syn-
thetic datasets [5, 1] or dense scans [4], but few have shown
large-scale results on real data [18]. [46, 32] adapted feed-
forward networks trained on synthetic data to real data by
training an encoder that transforms partial point clouds to
latent codes that match the observations. Concurrently, [2]
showcased the importance of hierarchical priors (local and
global shape priors) in generalizing to (unseen) real-world
shapes. However, to our knowledge, most previous works
applied to real sparse data generate shapes that are often
amorphous, overly smooth, or restricted to small vehicles.

Optimization-based Shape Completion: Another line
of work frames shape completion as an optimization prob-
lem, where the objective is to ensure the predicted shape
is consistent with real sensor observations. Such works re-
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Figure 3: Method Overview: Given raw sensory data, our method first exploits a deep encoder to predict a robust initializa-
tion for the shape code. The latent shape-code is then optimized through the auto-decoder framework using a data-consistency
energy term (Edata) and a discriminator-induced high-dimensional shape regularization term (Edis).

quire strong shape priors, as the real-world observations are
quite sparse, noisy, and have large holes. [13, 14, 50, 25]
represent the shape prior as a PCA embedding of the vol-
umetric signed distance fields, and optimize the shape and
pose given sensor data. While showing promising perfor-
mance on pose estimation and object tracking, the recov-
ered shapes are coarse due to low dimensional linear em-
beddings, and generally represent sedans or smaller vehi-
cles only. Recent works encode shape priors via neural im-
plicit representations, and perform optimization supervised
by input 3D observations [34, 12], with some using differ-
entiable rendering [28, 22, 26]. While [34, 28, 22] opti-
mized the low-dimensional latent-code, [26, 12, 54] directly
optimized the neural network weights per object. Most
of these works require dense supervision from the whole
3D space (GT occupancy or signed distance values) dur-
ing training, preventing them from training on sparse real-
world data. Thus, these works have focused only on syn-
thetic shape completion. [57] have explored this approach
for auto-labeling, but do not focus on shape quality.

Latent Space Optimization: Optimizing network
weights or latent codes at test time has been quite popular
for several tasks [3, 7, 58, 34]. CodeSLAM [3] optimizes
geometric and motion codes during inference time for
VisualSLAM, Chen et al. [7] optimizes geometric and
appearance codes at inference time for pose estimation.
Recently, latent code optimization has been explored in
the field of GAN inversion [58, 43, 19] for 2D image
generation. In this work, we take inspiration from the
theory of GAN inversion and apply it to the task of high-
fidelity 3D reconstruction. Another work related to ours
is [20], which performs latent code optimization for point
cloud completion and uses a GAN to ensure the optimized
latent code is in the generator’s manifold. However, they
demonstrated their approach on a controlled synthetic data
environment and didn’t showcase any generalization to
unseen data. Moreover, unlike our discriminator, their
discriminator acts on a low-dimensional space. By directly
passing the high-dimensional 3D shape to the discriminator,
we allow the gradients to directly backpropagate from the

reconstructed shape to the latent-code and are thus able to
guide the optimization to generate realistic shapes.

3. Background
The goal of 3D object shape reconstruction is to recover

3D geometry of an object given sensor observations (e.g:
point cloud, images, etc). In this work, we parameterize
a 3D shape implicitly using a signed-distance function, i.e.
given a 3D point x, we model the function f(x) = s, where
|s| equals the distance of point x from the surface, and
sign(s) represents inside / outside status of point x w.r.t.
the 3D object. We then represent shape reconstruction as:

fθ(x, gφ(o)) = s,

where function g encodes the input observations o into
some latent representation. θ and φ are the parameters of
the functions f and g respectively. To extract the final mesh,
one can query the SDF values for a grid of points in the vol-
ume and then perform marching cubes [29].

Recent neural implicit modeling methods [34, 30, 8]
generate high-fidelity shapes on synthetic or dense datasets.
However, their shape quality degrades significantly on
sparse and noisy real-world datasets. Towards our goal of
reconstructing high quality shapes on real-world data, we
first carefully analyze two standard approaches which prior
works follow and highlight their limitations.

3.1. Feed-forward Approaches

Feed-forward networks [30, 8] formulate the above
shape reconstruction task as an encoder-decoder task. The
goal of the encoder (gφ) is to extract discriminative latent
cues, z, from input observations (o), and the role of the de-
coder (fθ) is to map a 3D point (conditioned on the encoded
latent features z) to its corresponding signed-distance value.

During training, the encoder and decoder are jointly op-
timized with the GT signed distance field as supervision.
The GT is basically a set of (x, s) pairs, where the 3D
points span over the whole volume (generally a normalized
cube, enclosing the GT object). By generalizing the encoder
over the training instances, feed-forward approaches make
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Image LiDAR GT GRNet ONet OursDeepSDF

Figure 4: LiDAR Completion on NorthAmerica: Compared to baselines, our approach: (Row 1) captures the global
structure, (Row 2) performs well in occluded scenarios, (Row 3) registers well with both input and GT points, (Row 4)
maintains finer details (see cavity at the back of the car). Check supp. for additional comparisons (such as with Oursno-finetune).

the encoder robust to input noise. However, this can cause
over-smooth shapes at test-time, which are not realistic and
do not register well with the observations (See ONet[30] re-
sults in Fig. 4). Low-quality shape predictions and artifacts
are particularly pronounced for out-of-distribution inputs.

3.2. Neural Optimization Approaches

This line of neural implicit reconstruction works [34, 28,
12, 44, 46] focuses on combining the representation power
of neural networks with structured optimization. One ex-
ample is DeepSDF [34], which proposed an “auto-decoder”
based optimization approach. Instead of inferring the la-
tent code from observations (z = gφ(o)), the auto-decoder
framework directly optimizes the latent code, such that the
predicted shape registers with the input observations.

During training, the DeepSDF model learns to both de-
code the spatial point x into SDF value s (via the decoder
fθ) and assign a latent code z to each training shape. The
latent code learns to be a compact yet expressive representa-
tion of the 3D shape. Such a training procedure leads to the
decoder emphasizing a category-specific shape prior (by
generalizing over all training instances of a category) and
the latent code encoding an instance-specific shape prior.
During inference, the decoder is kept fixed, and the latent
code (randomly initialized from a normal distribution) is
optimized to minimize the following energy function:

z∗ = argmin
z

Edata(o, fθ(X, z)) + λEreg(z). (1)

where X typically represents a sparse set of input 3D points.

The data term Edata ensures consistency between the esti-
mated 3D shape and the observation, while the regulariza-
tion term Ereg constrains the latent code. The final shape
can be obtained by querying the SDF value (via fθ(x, z∗)).

In practice, for shape completion, DeepSDF requires
GT (x, s) pairs1 The data term is implemented as clamped
L1 distance between estimated SDF value fθ(x, z) and the
corresponding GT SDF value, s. The regularization term
equals `2-norm of the latent code.
Limitations: (1) Instability: The auto-decoder frame-
work can suffer from shape instability w.r.t. different la-
tent code initializations. This is because the optimization
landscape for Eq. 1 is highly non-convex. As shown in
Fig. 2 (i), a minor perturbation in initialization may lead to
completely different local minima and hence the final out-
put. (2) Low-quality: The optimal code is not guaranteed
to generate a high-quality and “natural” shape. This limita-
tion (Fig. 2 (ii)) is due to lack of structural regularization in
the objective. Specifically, the data termEdata(o, fθ(X, z))
in Eq. 1 is typically decomposed into sum of independent
terms per each individual point

∑
x∈XEdata(o, fθ(x, z)).

There is little constraint on the global SDF field — each
data point operates individually. The model can thus eas-
ily overfit to noise it has never seen during training and the
latent code may drop out of manifold during optimization,
leading to artifacts. This issue is particularly severe for real-
world scenarios, where observations are sparse and noisy.

1During inference, DeepSDF not only uses on-surface partial point
cloud (SDF=0), but also non-surface points with known GT SDF values.
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Figure 5: LiDAR Completion on KITTI: Compared to others, our approach maintains high fidelity with input points and
generates finer shape details even with sparse input data. However, when input is significantly sparse, fidelity with GT drops.

4. Method

We now present our method for reconstructing accurate
shapes from real-world observations. To address previous
works’ limitations on real-world datasets, we combine com-
ponents from both feed-forward and neural optimization ap-
proaches. From the feed-forward approaches, we leverage
an encoder to robustly initialize a latent-code, given partial
real world observations. Following neural-optimization, we
utilize the auto-decoder framework to further optimize the
latent-code, ensuring higher shape fidelity. However, the
key challenge for shape reconstruction in the wild is that
given (noisy, sparse) out-of-distribution observations, the
reconstructed shapes no longer remain within the domain
of realistic and naturally-looking shapes. To ensure that
our reconstructed shapes always look realistic and maintain
high-level properties of the shape category, we incorporate
a high-dimensional shape regularizer in form of a discrimi-
nator, at both training and test-time optimization.

Thus, our shape reconstruction pipeline consists of en-
coder, decoder and discriminator as shown in Fig. 3. Fi-
nally, to ensure proper learning of all components, we pro-
pose a novel adversarial curriculum learning strategy. We
now describe in detail our discriminator (Sec. 4.1), mod-
ified test-time optimization procedure (Sec. 4.2), and cur-
riculum learning strategy (Sec. 4.3).

4.1. Discriminator as Shape Prior

Based on the observation that neural optimization based
approaches lack a strong global shape prior, we introduce
a discriminator to induce a learned prior over the predicted
SDF. The discriminator function Dψ (parameterized by ψ)
evaluates the likelihood that the reconstructed shape is “nat-
ural” relative to a set of ground-truth synthetic shapes (e.g.,
ShapeNet). The benefits of a discriminator are two-fold:
(1) During training, it serves as an objective function to im-
prove the encoder through adversarial loss. (2) During in-
ference, it regularizes the optimization process to ensure the
latent code remains in the decoder’s domain. To capture the

overall geometry of the SDF, we randomly sampleN points
from the whole 3D space, query their SDF value, and pass
all of them into the discriminator, which outputs a single
scalar representing the “naturalness” of the shape.

4.2. Regularized Optimization for Real-World
Inference

At inference time, given sparse and noisy real-world ob-
servations (o), an encoder predicts a robust initialization for
the shape latent code (z = gφ(o)). Then, to ensure that the
predicted shape aligns well with the observations, we opti-
mize the latent code using the following objective function:

z∗ = argmin
z

Edata(o, fθ(X, z)) + λregEreg(z)

+λdisEdis(fθ(X, z)).
(2)

Our data term, Edata, and latent-code regularization term,
Ereg(z), have the same format as DeepSDF (Eq. 1):

Edata(o, fθ(X, z)) =
∑
x∈X

ρ(s, fθ(x, z))

where s is the actual signed distance value at point x, com-
puted from the observation o. ρ is a robust clamped L1 dis-
tance. The regularization term is the `2-norm of the latent
code (i.e., Ereg(z) = ‖z‖22). The additional discrimina-
tor prior term, Edis(fθ(X, z)) = − logDψ(X, fθ(X, z)),
encodes the belief of the discriminator that the generated
shape is natural. The 3D points (X) used for Edis are sam-
pled from the whole 3D space, while the 3D points for
Edata come directly from the observations.

4.3. Adversarial Curriculum Learning Strategy

Training neural implicit models require large amounts of
dense 3D ground-truth data. While synthetic data provides
this dense supervision and helps the model gain a rich prior
over shapes, real-world in-the-wild data lacks dense GT.
To effectively transfer the model trained on synthetic data
to real-world data, its important to ensure that each com-
ponent encodes complementary rich shape priors. Simply
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Method ACD (mm) ↓ Recall (%) ↑
ONet [30] 22.76 49.56
GRNet [52] 12.70 77.59
SAMP [14] 176.42 65.58
DIST [28] 19.55 71.54
DIST++ [28] 17.29 72.50
DeepSDF [34] 8.34 84.71
Oursno-finetune 7.02 86.48
Oursfinetune 5.93 88.18

Table 1: LiDAR Completion Results on NorthAmerica.

jointly training the full model on synthetic data and directly
applying to real data results in poor performance. We there-
fore introduce a curriculum learning strategy that allows our
model to generalize to real-world data. We split training
into two stages: Stage 1 and Stage 2. In Stage 1, we train
the DeepSDF-based auto-decoder framework on clean and
dense synthetic data. Then, to ensure our approach can han-
dle sparse inputs at test time, in Stage 2 we perform adver-
sarial training of the encoder using sparse synthetic obser-
vations. This additional Stage 2 allows using (dense and
clean) synthetic GT data as strong supervision, while train-
ing the encoder to encode sparse observations.

Stage 1: We first train the decoder over synthetic train-
ing data, in the same manner as DeepSDF. Specifically, we
jointly optimize the decoder weights and latent code to re-
construct the ground truth (GT) signed distances:

min
{zi},θ

Ldec + Lreg

where Ldec = min{zi},θ
∑M
i

∑N
j ρ(si,j , fθ(xi,j , zi)) and

Lreg = λreg‖zi‖22. M is the total number of training shapes
and N is the number of training point samples per shape.
si,j is GT signed distance value for a training point sample
xi,j . ρ refers to clampedL1 distance. Once the decoder (fθ)
is trained, we keep it fixed, preserving its ability to generate
“natural” shapes. The optimized latent codes (z′) and the
predicted signed distance fields (s′ = fθ(x, z

′)) are used as
pseudo-ground-truth (pseudo-GT) in the next stage.

Stage 2: Next, given a synthetic partial point cloud or im-
age observation, we adversarially train an encoder to predict
a shape latent code (z = gφ(o)) in the pre-trained decoder’s
domain. For each synthetic training shape, we want to en-
sure that the predicted signed distance values match well
with GT values (Ldec), and that the encoder-predicted la-
tent code matches the pseudo-GT latent code from Stage
1 (Lz). In addition, we simultaneously train a discrimina-
tor to ensure the predicted signed-distance field matches the
“naturalness” of the pseudo-GT signed distance field from
Stage 1 (Lgan)2. The overall loss function for training is:

2We observed that using Stage 1 predicted SDF (s′) instead of GT SDF
as real samples for GAN loss results in better training and better results.

Method ACD (mm) ↓ Recall (%) ↑
ONet [30] 18.10 59.10
GRNet [52] 13.66 78.21
DeepSDF [34] 14.81 79.76
Oursno-finetune 8.60 82.97

Table 2: LiDAR Completion Results on KITTI.

L = Ldec + Lz + Lgan

Ldec measures the clamped L1 distance between the esti-
mated and GT SDF values for each training point sample
(same as Ldec loss in Stage 1). Lz measures the L2 distance
between the encoder-predicted code and the pseudo-GT la-
tent code (Lz = ‖z − z′‖). Additionally, we also enforce
the encoder to embed the input sparse data into a realistic
shape’s latent code (using −∑x∈X log(Dψ(x, fθ(x, z)))
as loss). Lgan is the GAN loss between predicted SDF field
and pseudo-GT SDF field for training the discriminator:

Lgan =
∑
x∈X

log(Dψ(x, fθ(x, z))) + log(1−Dψ(x, s
′))

Such a training procedure disentangles the learning of the
encoder, decoder and discriminator module. Through stage
1, the decoder learns to induce category-specific shape
prior, by generalizing over all instances of the training set.
By keeping the decoder fixed and training the encoder to
generate an instance specific latent code, the encoder learns
to induce instance-specific shape prior, while the discrimi-
nator acts as a high-dimensional structural shape prior.

5. Experimental Details
5.1. Datasets

ShapeNet: We exploit 2364 watertight cars from
ShapeNet [5] as our synthetic training dataset. We follow
DeepSDF [34] to generate the GT SDF samples for the
first stage of training. For stage 2, we simulate image and
sparse point clouds (as input observations) for each object
from five different viewpoints, resulting in a total dataset of
11820 (2364× 5) image-point cloud pairs.
NorthAmerica: We further build a novel, large-scale 3D
vehicle reconstruction dataset using a self-driving platform
that collects data over multiple metropolitan cities in North
America and under various weather conditions and time of
the day. Using the acquired data, we generate a test-set of
935 high-quality instances. Each consists of aggregated Li-
DAR sweeps used as GT shape, partial single LiDAR sweep
and cropped camera image used as input observations.

KITTI: We also generate 209 diverse test-set objects
from 21 sequences of the KITTI tracking dataset [15]. For
each object, we construct a dense ground truth 3D shape by
aggregating multiple LiDAR sweeps using the GT bound-
ing boxes. KITTI dataset is used only during test time for
evaluation. Please refer to supp. for more dataset details.
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Method ACD (mm) ↓ Recall (%) ↑
DIST [28] 62.97 48.82
Ours 8.89 84.32

Table 3: Single Image Reconstruction on NorthAmerica

5.2. Metrics

Unlike their synthetic counterpart, real-world datasets do
not possess complete watertight 3D shapes. We cannot eval-
uate 3D reconstruction metrics like Chamfer Distance, Vol-
umetric IoU [38], normal consistency [38], and robust F-
score [47] on them. We thus adopt asymmetric Chamfer
Distance (ACD) between the GT point cloud and the recon-
structed shape to measure the shape fidelity. ACD is defined
as the sum of squared distance of each ground truth 3D point
to the closest surface point on the reconstructed shape:

ACD(X,Y) =
1

|X|
∑
x∈X

min
y∈Y
‖x− y‖2 .

We also compute the recall of the ground truth points
from the reconstructed shape as a robust alternative:

Recall(X,Y) =
1

|X|
∑
x∈X

[
min
y∈Y
‖x− y‖2 <= t

]
.

We set true-positive threshold t = 0.1 m in the paper. All
the reported metrics are averaged over the test set objects.

5.3. Baselines

We compare against several state-of-the-art 3D object
reconstruction algorithms: (i) feed-forward methods, such
as Occupancy Networks (ONet) [30] and GRNet [52]; (ii)
(deep) optimization based methods, such as linear SAMP
[14], DeepSDF [34], and DIST [28]. DeepSDF samples
off-surface points for SDF optimization to improve robust-
ness. We also augment the original DIST approach with
such sampling procedure, referred to as DIST++.

6. Experimental Results
We now showcase our experimental results. We first

compare our proposed approach against the baselines on the
LiDAR-based 3D shape completion task (Sec. 6.1). Next,
we extend our approach to other sensor modalities (images
(Sec. 6.2) and image + LiDAR combined (Sec. 6.3)). Fi-
nally, we perform an ablation of our approach (Sec. 6.4).

6.1. LiDAR-based Shape Completion

LiDAR-based shape completion refers to the task of re-
constructing a 3D shape, given its partial point-cloud as the
input observation (o). We report LiDAR-based shape re-
construction results on NorthAmerica and KITTI datasets
in Tab. 1 and Tab. 2 respectively. “Oursno-finetune” result was
generated by solely training the proposed approach on the

Method ACD (mm) ↓ Recall (%) ↑
DIST [28] 23.40 71.99
DIST++ [28] 17.52 72.65
Ours 5.36 89.05

Table 4: Image+LiDAR Completion on NorthAmerica.

ShapeNet dataset (as mentioned in Sec. 4.3), followed by
inference-stage optimization. Oursno-finetune approach sig-
nificantly outperforms all the baselines. In particular, we
reduce ACD error by 45% (37%) compared to the best
feed-forward network GRNet and 16% (42%) compared to
the best optimization method DeepSDF on NorthAmerica
(KITTI) dataset. In contrast to NorthAmerica, GRNet per-
forms better than optimization-based DeepSDF on KITTI.
As KITTI point clouds are noisier, this demonstrates the
value of feed-forward approaches being robust. We note
that SAMP has particularly large error on NorthAmerica
dataset due to its difficulty in handling larger objects of
the dataset (such as trucks), as the embedding was trained
mostly with smaller synthetic vehicles. Overall, the im-
provements suggest the effectiveness of our approach com-
pared to feed-forward or optimization-only methods.

Fine-tuning on sparse NorthAmerica dataset: These
improvements demonstrated that the shape regularization
provided by the discriminator makes the encoder and de-
coder more robust for real-world shape reconstruction. En-
couraged by these results, we explored whether we could
further improve performance by fine-tuning our model’s
encoder on sparse real-world data. Specifically, we su-
pervise the encoder to generate a latent code such that
the decoder-predicted SDF values for the input observa-
tion points (sparse on-surface LiDAR points) are 0. We
also ensure that the shape latent-code generated by the
encoder (gφ(o) = z) remains close to the shape latent-
code generated by the pre-trained encoder without any
fine-tuning (ziter-0). This serves as a regularization loss
(Lz

finetune = ‖z− ziter-0‖), preventing the encoder from gen-
erating an out-of-distribution latent-code. We also regu-
larize the reconstructed shape using discriminator-guided
Ldis(− logDψ(X, fθ(X, z))) regularization term.

Here we demonstrate shape completion results
(“Oursfinetune”) obtained by fine-tuning our model’s
encoder on sparse NorthAmerica dataset3. From Tab. 1, we
see that fine-tuning reduces the ACD by 18% (Oursfinetune
vs Oursno-finetune). This showcase the effectiveness of our
learned priors which allow us to fine-tune our model even
using sparse on-surface LiDAR points as weak supervision.
On the other hand, prior (auto-decoder based) optimization
methods like DeepSDF [34] and DIST [28] cannot be
trained or fine-tuned on real data easily. This is because

3For fine-tuning/ training on NorthAmerica, we generate 3100 in-
stances, which are completely different from NorthAmerica test samples.

1906



Syn. Training Stage Test-time Opt. Stage ACD ↓ Recall ↑
Dec. Enc. Disc. Dec. Enc. Disc. (mm) (%)
X X 8.34 84.71
X X X X 7.30 86.21
X X X X X 6.96 86.55
X X X X X 8.26 84.71
X X X X X X 7.02 86.48

Table 5: Ablation study on encoder and discriminator.

(1) real-world data lacks accurate dense supervision,
and (2) DeepSDF and DIST do not have a pre-trained
representation of the latent code for real-world objects.

Qualitative Results: Fig 4 compares Oursfinetune recon-
struction results with the prior works on NorthAmerica
dataset. GRNet generates non-watertight shapes and fails to
recover fine details. ONet produces overly-smooth shapes
at times and doesn’t have high-fidelity to the observations.
DeepSDF maintains high-quality local details for visible
regions, but doesn’t predict the correct shape. Our ap-
proach produces results that are both visually appealing and
have high-fidelity with the observations. Fig 5 compares
Oursno-finetune results with the prior works on KITTI, where
we observe similar trends. However, when input is very
sparse, the reconstruction fails to match with the GT shape.

6.2. Image-based 3D Reconstruction

Our proposed pipeline can be easily extended to recon-
struct shapes using other sensor modalities. Here, instead of
encoding point-clouds, we demonstrate 3D reconstruction
results by encoding a single-view image observation on the
NorthAmerica dataset. Since the synthetic dataset we used
does not have realistic texture maps for the corresponding
3D CAD models, we directly train the image encoder and
discriminator on the real-world dataset. The training pro-
cedure is the same as stage 2 of the proposed curriculum
learning technique (Sec. 4.3), but using an image encoder
and using the real world GT shapes (same as those used
for lidar-based fine-tuning) as supervision. Please check
supp. for detailed training procedure. We compare our
image-reconstruction results with state-of-the-art DIST[28]
approach on the NorthAmerica dataset in Tab. 3. Compared
to DIST, our image-based approach produces significantly
better results (85% reduction in ACD), especially for oc-
cluded regions. Moreover, our image-only method (Tab. 3
last-row) is competitive with or better than all LiDAR com-
pletion baselines (Tab. 1 baselines).

6.3. Image + LiDAR Shape Completion

Our approach is amenable to combining sensor modal-
ities for shape reconstruction without any re-training. We
simply use the two pre-trained encoder modules (point-
cloud encoder and image-encoder) and generate two shape
latent-codes, zinit

img and zinit
LiDAR. Then, inspired by GAN inver-

ACD: 10.32  Recall: 73.72 ACD: 11.68  Recall: 69.02

Image / LiDAR/ GT Encoder Only Encoder + Discriminator

ACD: 2.91  Recall: 94.81ACD: 3.52  Recall: 93.38

Green points: overlaid GT

Figure 6: Analyzing the effectiveness of discriminator
The discriminator improves the fidelity of the reconstructed
shapes, even without any real-world training.

sion [19] and photometric stereo [6], we fuse the two latent
codes at the decoder features level. Please refer to supp. for
more details. As shown in the Tab. 4, our proposed image +
LiDAR shape completion technique performs significantly
better than DIST and DIST++.Moreover, using both LiDAR
and image observations reduces the ACD error by 10% and
40% compared to LiDAR and image only models.

6.4. Analysis

Ablation study on Encoder and Discriminator: We
analyse the significance of the encoder (Enc.) and the dis-
criminator (Disc.) in Tab. 5 and in Fig. 6. To showcase
our “generalizability”, no real-world fine-tuning was per-
formed. Adding both Enc. (row 1 vs. row 2) and Disc. (row
2 vs. row 3) to the reconstruction pipeline helps. Compar-
ing row 3 with row 5 shows that adopting Disc. during opti-
mization slightly affects quantitative performance, possibly
due to noise in real-world aggregated LiDAR GT. However,
row 1 of Fig. 6 demonstrates that Disc. doesn’t hinder gen-
eralization to unseen shapes, rather enhances the visual fi-
delity of the reconstructed shapes (eg: model was trained on
ShapeNet cars and tested on NorthAmerica bus category).

7. Conclusion

In this paper, we present a simple yet effective solution
for 3D object reconstruction in the wild. Unlike previous
approaches that suffer from sparse, partial and potentially
noisy observations, our method can generate accurate, high-
quality 3D shapes from real-world sensory data. The key to
success is to fix the inherent limitations of existing methods:
lack of robust shape priors and lack of proper regularization.
To address these limitations, we highlight the importance of
(i) deep encoder as a robust initializer of the shape latent-
code; (ii) regularized test-time optimization of the latent-
code; (iii) learned high-dimensional shape regularization.
Our proposed curriculum training strategy allows us to ef-
fectively learn disentangled shape priors. We significantly
improve the shape reconstruction quality and achieve state-
of-the-art performance on two real-world datasets.
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