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Abstract

Modern deep learning super-resolution approaches have
achieved remarkable performance where the low-resolution
(LR) input is a degraded high-resolution (HR) image by
a fixed known kernel i.e. kernel-specific super-resolution
(SR). However, real images often vary in their degradation
kernels, thus a single kernel-specific SR approach does not
often produce accurate HR results. Recently, degradation-
aware networks are introduced to generate blind SR results
for unknown kernel conditions. They can restore images
for multiple blur kernels. However, they have to compro-
mise in quality compared to their kernel-specific counter-
parts. To address this issue, we propose a novel blind
SR method called Mixture of Experts Super-Resolution
(MoESR), which uses different experts for different degrada-
tion kernels. A broad space of degradation kernels is cov-
ered by kernel-specific SR networks (experts). We present
an accurate kernel prediction method (gating mechanism)
by evaluating the sharpness of images generated by ex-
perts. Based on the predicted kernel, our most suited ex-
pert network is selected for the input image. Finally, we
fine-tune the selected network on the test image itself to
leverage the advantage of internal learning. Our experi-
mental results on standard synthetic datasets and real im-
ages demonstrate that MoESR outperforms state-of-the-art
methods both quantitatively and qualitatively. Especially
for the challenging ×4 SR task, our PSNR improvement of
0.93 dB on the DIV2KRK dataset is substantial 1.

1. Introduction
Single image super-resolution (SISR) techniques recon-

struct a high-resolution (HR) image from their degraded
low-resolution (LR) counterpart. This degradation occurs
due to camera sensors imperfections, sub-optimal acquisi-
tion (e.g. unpleasant light or camera shake) and image pro-
cessing routines. Due to the large space of possible degra-
dations, SISR is an ill-posed problem. It has a broad vari-

1Codes and datasets are available at https://github.com/
memad73/MoESR

ety of applications, e.g. surveillance [23], medical imaging
[32], microscopy [10] and so on.

The use of Convolutional Neural Networks (CNNs) in
SISR has improved the state-of-the-art considerably. Many
previous works [8, 17, 19, 30, 37, 7, 21] assume a fixed im-
age degradation kernel (usually bicubic). These methods
train a CNN on a large dataset of HR and LR images gen-
erated with this predefined kernel. However, these earlier
methods perform poorly on realistic images since the real
degradation process is complicated and varies from image
to image. Recently, a few methods have been proposed to
solve blind SR i.e. the degradation kernel is unknown. They
usually estimate the degradation kernel and recover the HR
image from only a single LR input.

Some blind SR methods train a single degradation-
aware network (for multiple kernels) on external datasets
[12, 14, 6]. However, their performance is inferior to a
specialized network trained with a single kernel. In addi-
tion, these methods do not benefit from internal statistics of
the test image. On the other hand, there are self-supervised
methods [2, 9, 16], which train a small network at test time
on the input image. There are two main drawbacks for these
methods: they have longer run-time and there is limited in-
formation to learn from a single image.

To use the best aspects of specialized solutions and self-
supervised methods, we propose Mixture of Experts Super-
Resolution (MoESR), which uses different experts for dif-
ferent degradation kernels. For every input image, we pre-
dict the degradation kernel and super-resolve the LR image
using the best suited kernel-specific expert. To predict the
degradation kernel, we introduce an Image Sharpness Eval-
uator (ISE) and a Kernel Estimation Network (KEN). ISE
evaluates the sharpness of the images generated by the ex-
perts. These evaluations are used by KEN to estimate the
kernel and select the best pretrained expert network. Fi-
nally, the selected network is fine-tuned on the test image
to leverage the advantage of internal learning. Our experi-
mental results demonstrate that MoESR outperforms state-
of-the-art blind SR methods quantitatively and qualitatively.
Our contributions can be summarized as follows:

• A novel kernel-aware mixture of experts approach for
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blind SR based on external and internal learning of
kernel-specific expert networks (MoESR).

• A new and accurate kernel estimation method by
evaluating the sharpness of images generated by the
kernel-specific experts.

• We evaluate our method both on synthetic and real im-
ages and show that MoESR outperforms state-of-the-
art blind SR methods in terms of quantitative metrics
(PSNR/SSIM) and visual quality.

2. Related work
2.1. Degradation-aware SR networks

These methods develop a single SR network for multi-
ple degradations. In addition to the LR image, they take
an estimated blur kernel as auxiliary information. A rep-
resentative degradation-aware SR method is SRMD [36].
By using dimensionality stretching it concatenates degrada-
tion information (blur kernel and noise) with the LR image
which is used by a non-blind SR network. The work of Gu
et al. [12] use an Iterative Kernel Correction (IKC) method
for blur kernel estimation. The estimated kernel is used in
their Spatial Feature Transform (SFT) layers that combines
degradation information and the LR input. A similar ap-
proach is presented by Cornillère et al. [6]. They train a
kernel discriminator to detect errors in the generated SR im-
age. Their approach searches a blur kernel that minimizes
these errors. Huang et al. [14] propose a Deep Alternat-
ing Network (DAN) that can predict the blur kernel and
SR image using an unfolded end-to-end trainable model. In
this model, a chain of Restorer and Estimator modules are
stacked alternately, which each module restores the SR im-
age or estimates the blur kernel based on the output of previ-
ous module. The main drawback of degradation-aware net-
works is that combining kernel information and LR image
is not efficient since they are naturally in different domains,
thus their performance is inferior to a network trained for
a specific kernel. In addition, they only rely on external
learning while the internal statistics of the input image can
be beneficial.

2.2. Self-supervised methods

Natural image priors such as the recurrence of small
patches in a single image can be beneficial for both ker-
nel estimation [22] and image reconstruction [11]. Self-
supervised methods exploit this recurrence by training a
network on patches of the LR input. ZSSR [25] trains from
scratch on example patches from the input image and a
downscaled version. KernelGAN [2] proposes kernel es-
timation based on internal learning by a Generative Ad-
versarial Network (GAN). To jointly learn blur kernel and
LR-to-HR mapping, DualSR [9] and DBPI [16] develop a

dual-path architecture consisting of a downsampler, which
learns the blur kernel; and an SR network. DualSR intro-
duces a masked interpolation loss to effectively remove ar-
tifacts in the output image. Self-supervised methods suffer
from insufficient training data and slow inference speed. To
overcome these issues, MZSR [27] leverages meta-transfer
learning to find an initial point that quickly adapts to the
test image conditions. Although MZSR is fast, the perfor-
mance drops significantly when the estimated blur kernel is
slightly different from the ground-truth kernel.

2.3. Domain translation-based methods

These methods employ adversarial learning for the trans-
lation to HR domain by using only unpaired datasets of im-
ages. CinCGAN [33] and the improved version MCinC-
GAN [38] employ a two-step approach for real-world SR.
They map a realistic LR input into a noise-free LR space,
next the intermediate image is upsampled with a pretrained
SR network. Umer et al. [29] propose SRResCGAN which
uses adversarial training to learn the degradation settings of
real-world images. They use pixel-wise supervision to train
a network in the HR domain. Unlike degradation-aware and
self-supervised methods, this category trains on a collection
of real-world images with a similar degradation kernel. In
practice, this real-world dataset is not always available. In
addition, the performance of these methods usually is in-
ferior to supervised methods. Chen et al. [5] reviews the
existing real-world SR methods in more detail.

2.4. Mixture of Experts

Mixture of Experts (MoE) divides the problem space
over multiple expert networks, where each expert handles
a subset of the whole space. MoE is firstly introduced by
[15]. Non-blind SR methods like [35, 20] use MoE to im-
prove the overall quality of their model. Wang et al. [31]
propose a mixture model of networks for blind SR, which
is capable of clustering SR tasks of different degradation
kernels into a set of groups. They model the degradation
kernel with a latent variable, which is inferred from the in-
put image by an encoder network. In contrast, we predict
the kernel by evaluating the sharpness of upsampled images
generated by the experts. In addition, our method benefits
from internal learning to improve the final result.

3. Proposed method
3.1. Degradation model

The basic model that is used in the literature for blind SR
is as follows:

ILR = (IHR ∗ k) ↓s +n (1)

where ∗ denotes the 2D convolution operation, k is the blur
kernel, ↓s is downsampling with scale s and n represents
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(a) Training scheme for 
Kernel-Specific Networks

(b) Training scheme for Image Sharpness Evaluator (ISE)

(c) Training scheme for Kernel Estimation Network (KEN)
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Figure 1. Block diagram of training different networks in MoESR.

additive noise. We aim to recover a high-resolution image
IHR from a low-resolution one ILR. The noise n can be
reduced by a denoiser before performing super-resolution.
Consequently, blind SR mainly focuses on predicting kernel
k and reconstructing image IHR.

Literature such as [24, 25, 12] suggests that real-world
image degradation can be approximated with isotropic or
anisotropic Gaussian kernels. We focus on the broader ap-
plicable set of anisotropic kernels that can be considered as
the combination of isotropic and motion blur kernels. An
anisotropic Gaussian kernel is defined by three parameters:
λ1 and λ2 which are the eigenvalues of the kernel and θ
which is the rotation angle. The covariance matrix of the
kernel is calculated as:

Σ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
λ1 0
0 λ2

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(2)

Finally, the blur kernel and the degradation model can be
expressed as:

k = K(ρ) = K(λ1, λ2, θ) (3)
ILR(ρ) = (IHR ∗ K(ρ)) ↓s (4)

where ρ represents the kernel parameters and K is a function
that generates 2D kernel pixels from kernel parameters.

3.2. Optimizing kernel-aware mixture of experts

Instead of training a single network for different blur ker-
nels, a mixture of kernel-specific SR networks (experts) is
used. For every image, the group of experts generates a
batch of different kernel-specific SR images. Our pretrained
Image Sharpness Evaluator (ISE) selects the best SR result.
To interpolate the best kernel configuration between the dis-
crete kernels, a Kernel Estimation Network (KEN) is used
on the ISE outputs.

Kernel-specific experts Each expert network is trained
with different blur kernel parameters. Figure 1 (a) shows
the training procedure for each expert. The expert network
Uρi is trained to upsample images with kernel parameters
ρi. The used loss function is:

Lρi
= ∥Uρi

(ILR(ρi))− IHR∥1 , i ∈ [1,M ] (5)

where M is the number of experts and ILR(ρi) is calculated
with Equation 4. To keep the number of experts limited, we
exploit the symmetries in anisotropic kernels. For example,
by rotating the LR image with 90 degrees, we simulate a 90
degree rotated kernel. Due to rotation and mirror symmetry,
we only require experts for kernels within a rotation angel
θ ∼ (0, π/4). More details are in supplementary material.
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Image Sharpness Evaluator (ISE) In case a wrong blur
kernel is used, the SR result will be either blurry or over-
sharpened. Our ISE module is trained to detect such
blurry or oversharpened regions and predicts errors from
the ground-truth image. Natural image features result in
a low ISE error. The training procedure for ISE is illus-
trated in Figure 1 (b). We build a large set of kernels ρr,
which is uniformly sampled from the supported parameter
space. The kernels are used to generate LR images which
are upsampled by the experts. δρi

(ρr) gives the pixel-wise
squared error of the super-resolved images and the ground-
truth defined as:

δρi
(ρr) = (Uρi

(ILR(ρr))− IHR)
2 (6)

In the end, we only need a total error estimate for the whole
image. For this task, region-based error prediction is more
robust than pixel-based prediction, therefore ISE should
predict the average error in a region. To generate the train-
ing labels we apply average pooling with a large window
size. The loss function can be mathematically represented
as:

LISE =

M∑
i=1

∥ISE(Uρi
(ILR(ρr)))− AP(δρi

(ρr))∥1 (7)

where AP is average pooling operation, e.g. 8x in our ex-
ample.

Kernel Estimation Network (KEN) We apply ISE for all
kernel configurations that can be simulated by our experts.
Naively selecting the kernel with the smallest ISE error
would be sub-optimal since we support a limited number
of configurations. To interpolate the degradation kernel
more accurately, we introduce a Kernel Estimation Network
(KEN). Figure 1 (c) shows the structure used for training
KEN. The input data preparation for the training process
is similar to the training of ISE. However, now the trained
ISE is used to generate mean squared errors. This can be
expressed as:

Ei = MS(ISE(Uρi(ILR(ρr)))) , i ∈ [1,M ] (8)

where MS denotes the mean square operation on ISE output
pixels. The error vector is input to KEN which is trained
with the following loss function:

LKEN = ∥K(KEN(E1, E2, ..., EM ))− K(ρr)∥1 (9)

LKEN is a pixel based loss on the kernel structure, which
gives better accuracy compared to training on kernel param-
eters ρ. Note that, the weights of expert networks and the
ISE module are fixed during training. At test time an in-
put image Iin is upsampled for all kernel combinations by

applying the kernel-specific experts. For each upsampled
image an ISE error is computed as:

Ei = MS(ISE(Uρi(Iin))) , i ∈ [1,M ] (10)

Then we apply KEN to obtain the kernel parameters:

ρ∗ = KEN(E1, E2, ..., EM ) (11)

3.3. Fine-tuning and Image reconstruction

After kernel parameter estimation, we can use the best
kernel-specific expert U∗ to reconstruct the final image. Ex-
pert selection is done by:

U∗ = Uρ′ where ρ′ = argmin
ρ∈{ρ1...ρM}

∥ρ− ρ∗∥1 (12)

The result of selected expert can be further improved by
fine-tuning on the test image. This has two advantages.
Firstly, internal learning can exploit feature recurrence in
the image as suggested by self-supervised methods [25, 9,
16]. Secondly, the estimated parameters ρ∗ will slightly dif-
fer from the parameters ρ′ of the pretrained expert U∗. By
fine-tuning we adjust the selected expert to the parameters
ρ∗.

We use the DualSR [9] pipeline for fine-tuning. Du-
alSR is a dual-path architecture that jointly trains an image-
specific downsampler (degradation kernel) and correspond-
ing upsampler (SR network). We replace the downsampler
with our fixed estimated kernel K(ρ∗) and initialize the up-
sampler with the pretrained expert U∗. The expert network
is fine-tuned using cycle-consistency losses and masked in-
terpolation loss as explained in [9]. We extend the archi-
tecture of DualSR to enable ×4 SR. The detailed ×4 ar-
chitecture is available in the supplementary material section
C. Finally we use the fine-tuned network to upsample the
test image. The effectiveness of fine-tuning is evaluated in
Section 5.2.

4. Experiments
4.1. Implementation details

Network architecture We use 25 specialized expert net-
works with kernel parameters in the range λ1, λ2 ∼ (0.6, 5)
and θ ∼ (0, π/4). However, by rotating and flipping the
LR input, the experts can be used for 85 different kernels.
For each expert, we employ a simple 12-layer convolutional
network with 64 feature maps for each layer. The network
takes the bicubically upsampled image as the input and pre-
dicts the residual of input and ground-truth images. For ×4
SR, we use two similar networks in sequence, each upsam-
ples the image by a scale of 2. We found that this is faster
and gives better accuracy compared to direct ×4 SR. Our
ISE module contains a 6-layer convolutional network with
64 feature maps per layer. The stride of some intermediate
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Method DIV2KRK Flickr2KRK Urban100RK
×2 ×4 ×2 ×4 ×2 ×4

Bicubic 28.73 / 0.8040 25.33 / 0.6795 28.62 / 0.7997 25.27 / 0.6758 23.76 / 0.7017 20.94 / 0.5400
SAN [7] 29.21 / 0.8232 25.67 / 0.6947 29.09 / 0.8167 25.52 / 0.6868 24.32 / 0.7298 21.25 / 0.5611
KernelGAN [2] 30.36 / 0.8669 26.81 / 0.7316 30.62 / 0.8612 26.58 / 0.7227 25.35 / 0.7870 21.91 / 0.5939
DBPI [16] 30.77 / 0.8684 26.86 / 0.7368 31.34 / 0.8866 26.27 / 0.7315 26.23 / 0.8165 22.21 / 0.6234
DualSR [9] 30.92 / 0.8728 - 31.14 / 0.8701 - 25.38 / 0.7865 -
[2]+MZSR [27] 30.61 / 0.8615 26.92 / 0.7366 30.50 / 0.8553 26.69 / 0.7266 25.82 / 0.7995 22.33 / 0.6223
[2]+USRNet [34] 27.94 / 0.8084 23.59 / 0.6736 28.43 / 0.8281 23.77 / 0.6796 22.70 / 0.7016 18.54 / 0.5042
BlindSR [6] 31.36 / 0.8720 - 31.64 / 0.8747 - 26.50 / 0.8110 -
IKC [12] 31.15 / 0.8717 27.38 / 0.7640 31.21 / 0.8688 27.33 / 0.7610 25.67 / 0.7835 23.12 / 0.6612
DAN [14] 32.56 / 0.8997 27.55 / 0.7582 32.73 / 0.8917 27.67 / 0.7575 27.04 / 0.8246 23.23 / 0.6621

MoESR w/o FT 32.01 / 0.9002 28.14 / 0.7808 31.67 / 0.8958 28.24 / 0.7800 26.18 / 0.8332 23.60 / 0.6849
MoESR 32.69 / 0.9054 28.48 / 0.7805 32.95 / 0.9056 28.57 / 0.7795 27.29 / 0.8448 23.62 / 0.6766

Table 1. Quantitative results (PSNR / SSIM) of state-of-the-art SR methods on different datasets. The best results are highlighted in red
and the second best results are highlighted in blue.

layers is set to 2 and each pixel of the output has a recep-
tive field of 49. For consistency, the average pooling (AP)
unit in Figure 1 (b) has windows size of 49 and stride of 8.
KEN is a simple 3-layer fully-connected network with 50
features per layer. the input of KEN is normalized to zero
mean and unit variance. For all networks, convolution lay-
ers are followed by ReLU activations. In secion D of the
supplementary material additional experiments on 6 and 49
experts, and furthermore 8 and 16 layer expert configura-
tions are presented.

Training details All networks are trained on 800 images
from the DIV2K [1] dataset. We train with the Adam op-
timizer [18] and the One-Cycle learning rate policy [26].
Firstly, we train expert networks for 3× 104 iterations with
HR patches of 128 × 128. Secondly, the ISE module is
trained for 2×105 iterations with input patches of 128×128.
The maximum learning rate in the one-cycle policy is set to
3×10−4 for expert networks and ISE. Finally, we train KEN
for 105 iterations with a maximum learning rate of 10−3.
The batch size is set to 32 for all mentioned networks. At
test time, we fine-tune the selected expert on the input im-
age. The final results are achieved after 1000 iterations of
fine-tuning with a single batch per iteration and maximum
learning rate of 10−5. We trained all networks on a single
RTX 2080 Ti GPU.

4.2. Evaluation on synthetic datasets

To evaluate the quantitative accuracy of SR methods, we
experiment with the DIV2KRK benchmark introduced by
[2]. It contains 100 validation images from DIV2K [1]
that are degraded with random anisotropic Gaussian ker-
nels. The kernel parameters λ1 and λ2 are uniformly dis-
tributed in [0.6, 5] and θ in [−π, π]. A uniform multiplica-

tive noise (up to 25% of each kernel pixel) is applied to
deviate the kernel from a regular Gaussian. We follow the
same degradation setting to generate Flickr2KRK and Ur-
ban100RK benchmarks from Flickr2K [28] (first 100 im-
ages) and Urban100 [13] datasets.

The PSNR and SSIM values for the Y channel are re-
ported in Table 1. SAN [7] represents the methods trained
with bicubic degradation. Although it provides outstanding
performance on bicubic downsampled images, it does not
perform well on realistic images with complicated degrada-
tion kernels. KernelGAN [2], DBPI [16] and DualSR [9]
are methods that only rely on internal learning. They per-
form better than SAN, but their performance is inferior to
methods like IKC [12] and DAN [14] that are trained on
external data. The main reason is that the information in
a single image is too limited to train an SR network from
scratch. For KernelGAN, we use ZSSR [25] as the SR
method. We also use the kernels estimated by Kernel-
GAN for non-blind SR methods like MZSR [27] and US-
RNet [34]. MZSR starts internal learning from a transfer-
able initial point and provides slightly better performance
than KernelGAN. We observe that, the quality of USRNet
drops significantly when the estimated kernel deviates from
the GT kernel. DAN trains a single large model for multiple
degradations on external datasets. Although it performs bet-
ter than internal learning-based methods, its performance is
inferior to our MoESR method.

For DIV2KRK dataset, the PSNR of MoESR is 0.13 dB
and 0.93 dB higher than DAN for scales ×2 and ×4 respec-
tively. This is despite the fact that each expert in MoESR is
much simpler w.r.t. to DAN. It suggests that having sev-
eral small networks, each specialized for a specific kernel,
performs better than a single large network that supports
multiple kernels. This holds even more for ×4 SR where
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GTBicubic KernelGAN [2] DAN [14] MoESRLR IKC [12]

Figure 2. Visual comparison of ×4 SR on synthetic images. Images are from DIV2KRK [2], Flickr2KRK and Urban100RK respectively.

MoESRLR Bicubic KernelGAN [2] IKC [12] DAN [14]SAN [7]

Figure 3. Visual comparison of ×4 SR on real-world images. The first two images are from RealSR [4] and the last image is from Set5 [3].
High quality images are available in the supplementary material.

the LR to HR conversion is more complicated. This conver-
sion especially for multiple kernels is difficult to learn by a
single network. Part of our improved performance is due to
the use of internal learning during fine-tuning. The quality
difference between MoESR and DAN for ×4 Urban100RK
is smaller. This is because the smaller Urban100RK images
contain less information to support internal learning. We
report the MoESR quality without fine-tuning (MoESR w/o
FT), for which it is still able to outperform several state-of-
the-art methods, especially in terms of SSIM. Note that fine-

tuning degradation-aware networks (e.g DAN) at the test
time is time-consuming and impractical due to their com-
plex architecture and large number of network parameters.

Visual comparison of state-of-the-art blind SR methods
is shown in Figure 2. Our MoESR reconstructs the edges
clearly and generates sharper and cleaner images compared
to DAN and IKC. Results generated by the combination of
KernelGAN and ZSSR are over-sharpened and contain se-
vere artifacts.
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Method ×2 ×4

ZSSR [25] 32.44 27.53
DualSR [9] 32.72 -
USRNet [34] 32.23 27.80
DAN [14] 32.55 26.93
MoESR 33.35 28.83

Table 2. PSNR values on DIV2KRK when ground-truth kernels
are given.

4.3. Evaluation on real-world images

To evaluate the generalization of MoESR to real-world
SR, we conduct experiments on real images. As it is men-
tioned by previous work [25, 36, 14], adding a small amount
of Gaussian noise to the LR image during training improves
the performance of SR methods on real images significantly.
We add noise to the downsampled input image during fine-
tuning step. This way, we do not need to retrain the experts
and we can control the intensity of denoising for each image
by adjusting the standard deviation of added noise. In this
experiment, we fixed the standard deviation of noise to 10
for all images.

Figure 3 shows visual comparison of SR methods on real
images. The results generated by KernelGAN are too sharp
and suffer from unpleasant artifacts. The results of IKC
and DAN are cleaner but they are still blurred and contain
some artifacts. However, MoESR generates realistic sharp
images with less artifacts. For example, in the last image
(woman) there are some slight compression artifacts in the
LR image. These artifacts are highlighted by all Kernel-
GAN, IKC and DAN methods. However, MoESR reduces
the artifacts without smoothing the output image. It indi-
cates that MoESR can be adapted to different degradation
settings at the test time.

5. Discussion
5.1. Analysis on estimated kernels

Inaccurate kernel estimation can lead to oversmoothing
or oversharpening of the super-resolved image. To evalu-
ate the accuracy of our kernel estimation, we calculate the
Sum Absolute Error (SAE) between the predicted and GT
kernels. Since the kernels of DAN are compressed by Prin-
ciple Component Analysis (PCA), we firstly convert them
into the original kernel space using transpose of PCA ma-
trix. Figure 4 (a) shows the results on DIV2KRK dataset.
It indicates that for both ×2 and ×4 SR, the error of ker-
nels estimated by MoESR is significantly lower than other
methods. Examples of estimated kernels are shown in Fig-
ure 4 (b). Although KernelGAN and DAN can estimate the
kernels properly for ×2 SR, they tend to fail for ×4 SR.
This explains the large performance gap between MoESR
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Figure 4. Sum Absolute Error (SAE) and visual comparison of
estimated kernels for DIV2KRK.

and other methods for ×4 SR in Table 1.
We also evaluate MoESR in non-blind setting when GT

kernels are provided. To do that, we bypass the kernel es-
timation and only fine-tune the best kernel-specific expert
with GT kernel. For DAN, as suggested in [14], we run only
one forward propagation of Restorer module. The PSNR
results are shown in Table 2. Note that MoESR can further
improve when the GT kernel is provided. The performance
gap versus others for GT kernels suggests that the superi-
ority of MoESR is not only due to better kernel estimation,
but also exploiting internal and external learning.

5.2. Analysis on number of fine-tuning iterations

By fine-tuning, we adjust the selected expert network to
the estimated kernel and also leverage the advantage of in-
ternal learning. To evaluate the effectiveness of fine-tuning,
we plot average PSNR on DIV2KRK dataset with respect
to the number of fine-tuning iterations. Figure 5 (a) and (c)
shows that the PSNR firstly increases with higher iterations
and then converges after around 1000 iterations. For ×4 SR
it converges even faster because the LR image is smaller and
there is less information achievable from internal learning.
As shown in Figure 5 (b) and (d), fine-tuning eliminates the
artifacts generated due to inaccurate kernel estimation and
in fact, it makes the model robust to kernel estimation er-
rors. Fine-tuning with 1000 iterations on DIV2KRK brings
an PSNR improvement of 0.68 dB and 0.34 dB for ×2 and
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0 iter 10 iter 100 iter 1000 iter GT

PSNR/SSIM29.57/0.9167 29.65/0.9169 30.68/0.9242 31.64/0.9322

PSNR/SSIM23.93/0.6229 24.36/0.6287 25.25/0.6335 25.42/0.6406

0 iter 10 iter 100 iter 1000 iter GT

(a) PSNR for ×2 SR (b) Results of ×2 SR on img 821 in DIV2KRK with different fine-tuning iterations

(d) Results of ×4 SR on img 859 in DIV2KRK with different fine-tuning iterations(c) PSNR for ×4 SR
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Figure 5. Quantitative and qualitative results with different fine-tuning iterations for ×2 and ×4 SR.
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Figure 6. The average PSNR and running time for ×4 SR on
DIV2KRK. All methods are evaluated on the same platform with
a single RTX 2080 Ti GPU.

×4 SR respectively. If time is a limitation, the number of
iterations can be decreased. For example fine-tuning with
100 iterations gives a PSNR of 32.55 dB and 28.46 dB for
×2 and ×4 SR respectively.

5.3. Limitations

This work mainly focused on SR quality instead of run-
time efficiency. The overall MoESR processing time on
single images from DIV2KRK is about 34 and 44 seconds
for ×2 and ×4 SR respectively. This includes the time
of kernel estimation, fine-tuning (1000 iterations) and fi-
nal image reconstruction. Figure 6 shows the tradeoff be-
tween accuracy and run-time for ×4 SR. MoESR is faster
than self-supervised methods like KernelGAN [2] but it is
slower than degradation-aware networks such as IKC [12]
and DAN [14]. In Section 5.2, we demonstrate that MoESR
can operate without fine-tuning, which decreases the exe-
cution time considerably at the cost of a slight quality loss.

Alternatively, the number of experts could be reduced to
decrease the execution time as suggested in supplementary
material section D.1. We are aware that our method per-
forms sub-optimal when there is substantial noise in the in-
put image. These scenarios require a denoising step.

6. Conclusion
In this paper, we proposed MoESR, a kernel-aware mix-

ture of experts approach for blind SR that exploits both ex-
ternal and internal learning. We employ a group of expert
networks each specialized for a specific kernel. For ev-
ery image, using ISE and KEN modules, the blur kernel
is estimated by evaluating the sharpness of images super-
resolved by experts. To reduce the impact of small differ-
ence between training and test data, the selected expert is
fine-tuned on the test image. Quantitative results and visual
comparison of generated images demonstrate the superior-
ity of MoESR for ×2 and ×4 SR. We also show that our
proposed kernel estimation is far more accurate than other
blind SR methods, especially for ×4 where other methods
struggle to predict a correct kernel. MoESR focuses mainly
on correctly estimating the degradation kernel and there-
fore it scales-up effectively to 4x without feature hallucina-
tion. These properties make MoESR very applicable to the
domains of surveillance, medical imaging and microscopy.
Our future work should evaluate more advanced SR net-
works to improve the SR performance. On the other hand,
a reduction of compute time per image is very desirable.
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