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Abstract

Bayesian learning with Gaussian processes demonstrates
encouraging regression and classification performances in
solving computer vision tasks. However, Bayesian methods
on 3D manifold-valued vision data, such as meshes and point
clouds, are seldom studied. One of the primary challenges
is how to effectively and efficiently aggregate geometric fea-
tures from the irregular inputs. In this paper, we propose a
hierarchical Bayesian learning model to address this chal-
lenge. We initially introduce a kernel with the properties
of geometry-awareness and intra-kernel convolution. This
enables geometrically reasonable inferences on manifolds
without using any specific hand-crafted feature descriptors.
Then, we use a Gaussian process regression to organize the
inputs and finally implement a hierarchical Bayesian net-
work for the feature aggregation. Furthermore, we incorpo-
rate the feature learning of neural networks with the feature
aggregation of Bayesian models to investigate the feasibility
of jointly learning on manifolds. Experimental results not
only show that our method outperforms existing Bayesian
methods on manifolds but also demonstrate the prospect of
coupling neural networks with Bayesian networks.

1. Introduction

Three-dimensional data on Riemannian manifolds, such
as triangle meshes and point clouds as shown in Figure 1,
is widely used to describe the shape information in object
understanding, scene understanding, and many other vision
tasks. Extracting and aggregating geometric features is con-
sidered the key to leveraging the intrinsic shape informa-
tion of this type of data [8]. Recently, the Gaussian pro-
cess (GP) based Bayesian learning emerges to be a study
hotspot [56, 4, 20]. Theoretically, it has been proven that a
single fully connected neural network (NN) layer with an in-
finity width is essentially a GP [38]. Further, this equivalence
is extended to deep fully connected NNs and hierarchically
connected GPs [24, 32]. Practically, encouraging results
have been demonstrated in various applications [6]. In this
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Figure 1. Examples of manifold-valued data. (a) Triangle meshes
of two human poses. Meshes are rendered by normalized mean cur-
vatures by MeshLab [10]. ROIs are marked by red circles; (b) Point
clouds of different objects from McGill 3D shape benchmark [50].
Salient points based on GP regression are marked by red spheres.

work, we focus on developing GP-based Bayesian learning
methods for solving vision tasks on manifolds. Specifically,
we concentrate on two fundamental aspects: GP kernel de-
sign and Bayesian learning framework on manifolds.

Since the property of a zero-mean GP is largely deter-
mined by its kernel function [45], a primary goal is to de-
velop an expressive kernel. Essentially, we aim at integrating
two important characteristics into a shallow kernel structure:
geometry-awareness and intra-kernel convolution.

Geometry-awareness stresses the capability of learning
geometric features in the prior knowledge so that the pos-
terior inference respects the representative regions of a 3D
shape [21]. For example, when distinguishing different hu-
man poses, red circled regions of interest (ROIs) in Fig-
ure 1(a) are expected to be numerically highlighted because
their regional features are more geometrically significant.
The current strategy of achieving geometry-awareness is
to directly add geometric feature descriptors to the kernel
design [22, 19]. However, this strategy heavily relies on
computing specific hand-crafted features, which potentially
impedes the generality to broader types of applications. We
propose a paradigm shift where only the point coordinates
are needed. It enables our kernel to be geometry-aware on
all commonly-used types of manifold-valued data.
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Intra-kernel convolution introduces the convolutional fil-
tering to the kernel construction so that the GP inference has
a powerful feature aggregation ability [56]. This characteris-
tic has been widely studied to increase the expressiveness of
GPs [57, 15]. Most of the previous work uses the additive
patch-wised computational structure to explicitly mimic the
mechanism of convolutional NNs (CNNs) [14, 56]. But this
approach is not feasible for manifold-valued data because of
its off-the-grid structure. As one attempt, the graph convolu-
tional GP (GCGP) in [57] used local coordinates to adjust
the inputs to a uniform on-the-grid style. However, some
drawbacks, such as the huge computational cost and the strict
requirement on the input size, are noticed. Alternatively, we
propose an implicit intra-kernel convolution. Mathemati-
cally, we rigorously show that the convolutional filtering can
be delicately embedded into the kernel definition.

In this paper, we propose a hierarchical Bayesian model
for manifold-valued tasks. The core is a kernel derived from
a stochastic partial differential equation (SPDE) that general-
izes a real physical process called periodic potential diffusion
process. Two observations explaining why we choose this
particular physical process are discussed in Sec. 4.1. Math-
ematically, we prove that the kernel implicitly integrates
both the mean curvature flow, which is an effective geomet-
ric feature descriptor in R

3, and a convolutional filtering.
For tackling the irregular input dimensionality, we firstly
use a GP-based salient point selection algorithm to obtain a
uniform and light input, then, feeding it to the Bayesian net-
work. Additionally, because the input of a Bayesian model
on manifolds is the geometric features and NNs are strong
in learning expressive features, we explore the potential of
incorporating NNs with hierarchical Bayesian methods to
leverage the strengths of both methods. Our contributions
are summarized into three-folds:
(1) A kernel with both geometry-awareness and intra-kernel
convolution properties. No hand-crafted feature is needed
for involving geometric properties. The method is feasible
to all commonly-used manifold-valued data;
(2) A Bayesian network for manifold-valued tasks, including
a salient point selection module that non-linearly reduces the
data dimensionality and organizes the irregular inputs;
(3) An exploration on NN+Bayesian approaches to lever-
age both the feature learning ability of NNs and the feature
aggregation ability of the Bayesian methods.

Both empirical and numerical experimental results verify
the effectiveness of our methods. We hope this work not only
makes contributions to the Bayesian learning methods on
manifolds but also sheds new light on integrating different
learning mechanisms to maximize their learning power.

2. Related Work

Kernel design is always an important topic in GP-based
Bayesian learning studies. Our initial thought originated

from the problem addressed by Stein in [53] that the infinite
differentiability of a Gaussian kernel led to an unrealistic
match with the physical processes. Later, Stein proposed
the well-known Matérn kernel family as a generalization
of the Gaussian radial basis functions (RBF) to solve this
problem. An intriguing idea is: why not derive a kernel
function directly from the expression of a physical process?
In this way, the kernel will intrinsically come with a real
physical rationale. This idea was further strengthened by
Särkkä’s statement [47, 51] that any SPDE was a potential
kernel. Given the fact that many physical processes are
generalized by SPDEs, it is intuitive to combine the above
two opinions together as a trustful theoretical foundation of
kernel development [36]. For example, the Matérn kernel is
actually the solution of a linear fractional SPDE [12, 48, 27].

However, classical kernels mainly dealt with data in
the Euclidean space and considered less on the Rieman-
nian manifolds. One solution was using Riemannian metric
and space mapping techniques to achieve the domain trans-
form [18, 37]. But clearly, this approach was not feasible
to the data like volumetric meshes and point clouds. Al-
ternatively, wrapping geometric features into kernels was
proven to be effective [42, 9, 35, 21, 19]. For example, the
weighted GP (W-GP) [22] yielded reasonable inferences af-
ter weighing the RBF kernel with the mean curvature and
Gaussian curvature; the morphometric GP [19] used wave
kernel signature metric and demonstrated good performances
on 3-dimensional manifolds. These methods used explicit ge-
ometric expressions, which often relied on specific simplicial
complex. Conversely, we implement an implicit geometric
expression which is only sensitive to the distance lag.

Bayesian learning architecture is also an emerging
topic. Additive GP [14] directly enabled the convolutional
GP (CGP) [56]. We also use additive structure in our ker-
nel design. The aforementioned GCGP is an implemen-
tation of CGP on graphs. It adjusted the irregular inputs
by referring to the method used in graph convolutional net-
works (GCNs). Instead, we use a manifold learning strategy
to organize the inputs. The studies of sparse variational
GP and posterior estimation facilitated the development of
deep GP (DGP) [13, 49, 28, 4]. In our hierarchical Bayesian
model, we follow the framework of DGPs and use the doubly
stochastic variational inference method [46].

3. Preliminaries

Some notations are defined here. Given a manifold-valued
data M = (V, E ,F) 2 Rd with a vertex set V of size |V|, an
edge set E of size |E| and a face set F of size |F|. E and F

can be empty. A distance lag between vertex v 2 V and its
neighborhood v

0 is denoted as kvk = kv � v
0
k
2. Define a

GP, GP (m,K), as a random process where the joint distribu-
tion of a finite collection of observations Y = {y1, ..., yn} of
samples X = {x1, ..., xn} follows a multivariate Gaussian
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distribution: p(Y |X) ⇠ N (m,K), where m is the mean
function and K is the covariance function or kernel. The
dimension of the kernel matrix K is denoted by subscripts.

3.1. Periodic Potential Diffusion Process

Our kernel derivation originates from the periodic poten-
tial diffusion process. It is a special case of the reaction
diffusion process. A reaction diffusion process T (v, t) is the
solution to a reaction diffusion equation [17, 54]:

@T (v, t)

@t
= ↵�T (v, t) + F (v, t), t � 0 (1)

where � is the Laplace operator, constant ↵ is 1. The initial
condition is 0. F is the reaction function that defines the
property of the energy source [16]. Given a certain F , there
exists a corresponding physical scenario [54, 39]. The reac-
tion function F can be expressed as the multiplication of a
Dirac delta function at location v and a temporal function
h(t): F = h(t)�(v � v

0). By defining the Green’s function
of Laplace operator under the Dirichlet boundary condition
as G(v, v0, t) [2], T is equal to:

T (v, v0, t) =

Z t

0
G(v, v0, t� s)h(s)ds (2)

Reminding that the Green’s function in an Rd diffusion
problem has the standard form: G = e�v2/4t

(4⇡t)d/2
. When h(t) is

periodic: h(t) = cos(!t), Eq. (2) is further derived as:

T =

Z t

0
cos(!(t� s))

e
�v2/4s

(4⇡t)d/2
ds (3)

Eq. (3) is called the periodic potential diffusion process,
which is the theoretical foundation of our kernel.

3.2. Gaussian Process Regression

A GP regression (GPR) aims at learning a multivariate
distribution that fits with the training data and predicts the
observation yn+1 when a testing sample xn+1 arrives [45].
The Bayes’ theorem is used to transform the prior knowledge
to posterior inference in the learning process. As known,
every finite marginal distribution of a GP still follows a
multivariate Gaussian distribution. Therefore, the predictive
distribution N (m0

,K
0) can be uniquely determined by the

standard rules for conditioning Gaussian distributions:

m
0
(n+1)⇥1 = K

T
n⇥(n+1)K

�1
n⇥nYn⇥1 (4)

K
0
(n+1)⇥(n+1) = K(n+1)⇥(n+1)�K

T
n⇥(n+1)K

�1
n⇥nKn⇥(n+1)

(5)

Kn⇥(n+1) = K
T
(n+1)⇥n =

0

B@
K(x1, x1) · · · K(x1, xn), K(x1, xn+1)

...
...

K(xn, x1) · · · K(xn, xn), K(xn, xn+1)

1

CA
(6)

K(n+1)⇥(n+1) =0

BBB@

K(x1, x1) · · · K(x1, xn), K(x1, xn+1)
...

...
K(xn, x1) · · · K(xn, xn), K(xn, xn+1)

K(xn+1, x1) · · · K(xn+1, xn), K(xn+1, xn+1)

1

CCCA

(7)
When new samples are continuously given, the GP is recur-
sively updated. Later, we adopt the framework of GPR in a
salient point selection algorithm. Each salient point is taken
as a sample. We update the saliency map after adding the
previous selection into the prior and then select the next one
until a certain number of salient points are collected.

3.3. Deep Gaussian Processes with Doubly Stochas-

tic Variational Inference

A DGP is a deep belief network that hierarchically con-
catenates multiple Gaussian process latent variable models
together (GP-LVMs) [13]. It mimics the composition of
restricted Boltzmann machines (RBMs) in NNs. The sparse
variational inference is usually used in GPR to estimate the
posterior and avoid the cubic complexity [49]. Suppose M

inducing points Z = {z1, ..., zM}(M ⌧ N) are selected,
the complexity is decreased to O(M2

N) in a single GPR.
For a DGP, the doubly stochastic variational inference is
often applied to estimate the posterior [46, 4]. Specifically,
the sparse variational inference is used to simplify the cor-
relations within layers and keep the correlations between
layers unchanged. In a DGP with L layers, the prior is
recursively defined on a series of vector-valued stochastic
functions F = {F

1
, ..., F

L
}. The i

th row of F l is denoted
as f l

i . Function values at inducing points Z are U . Each sin-
gle function has an independent Gaussian prior and inducing
points. A joint density of a DGP can be expressed as:

p(Y, {F l
, U

l
}
L
l=1) =

NY

i=1

p(yi|f
L
i )

| {z }
likelihood

LY

l=1

p(F l
|U

l;F l�1
, Z

l�1)p(U l;Zl�1)

| {z }
prior

(8)

According to the theories of variational inference, a factor-
ized form of the posterior joint density is defined as [46]:

q({f l
, U

l
}
L
l=1) =

LY

l=1

p(f l
|f

l�1
, U

l
, Z

l)q(U l) (9)

where q(U l) is a Gaussian with mean function m
l and co-

variance function S
l for layer l. Eq. (9) indicates that the

prediction of the l
th layer, f l, depends on the previous pre-

diction f
l�1 and the inducing points of the current layer.

By marginalising the approximation q(U l) from each layer,
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the i
th factorized variational posterior of the final layer is

the integral of all paths (f1
i , ..., f

L
i ) through the Gaussian

distributions defined by parameters ml, and S
l:

q(fL
i ) =

Z L�1Y

l=1

q(f l
i |m

l
, S

l; f l�1
i , Z

l�1)df l
i (10)

The objective function is the doubly stochastic evidence
lower bound (ELBO):

L =
NX

i=1

Eq(fL
i )[logp(yi|f

L
i )]�

LX

l=1

KL(q(U l)||p(U l))

(11)

where KL is the Kullback–Leibler divergence. The ELBO
has the complexity O(M2

N(D1 + ...+D
L)) to compute,

D
l is the size of the l

th layer. The variational expection
likelihood E in Eq. 11 is computed using the Monte Carlo
approximation. Please refer to [46] for more details.

4. Methods

4.1. Geometry-Aware Convolutional Kernel

In this section, we start by briefly explaining what moti-
vates us to choose the periodic potential diffusion process as
the theoretical basis. Then, we provide two implementations
of the kernel for different applications. Furthermore, we
introduce our theoretical analysis about the property of the
kernel. In the end, a hierarchical Bayesian model is defined.

The idea of using periodic potential diffusion process
comes from two observations:
The first observation is that the integral Laplace transform
of function f(t) = t

d�1
e
� 1

4at in Rd in Eq. (12) (which is a
special upper incomplete gamma function, a is a constant)
has several similar terms with the Matérn kernel in Eq. (13):

Z 1

0
t
d�1

e
� 1

4ate
�st

dt = 2


(
1

4
a)

1
2 s

� 1
2

�d
Kd(a

1
2 s

1
2 )

(12)

C(⌧) =
�
2

�(d)2d�1
(2
p

d⌧)dKd(2
p

d⌧) (13)

Both equations have modified Bessel function of the second
kind Kd, and the rest parts are functions with the same di-
mension order d. This indicates the possibility of deriving a
kernel from Eq. (12).
The second observation is that the Green’s function of
Laplace-Beltrami operator � in the 3D diffusion problem be-
longs to the family of td�1

e
� 1

4at, d = 3. Bochner’s theorem
states that a stationary kernel K is positive definite in Rd

if it is the Fourier transform of a positive bounded measure
function [5]. Taking Eq. (3) as the real part of the Fourier
transform (decomposing the exponential term with Euler’s

formula), it is already a stationary kernel function regarding
the temporal variable t. If the spatial part is also proven to
be positive semi-definite (PSD), then the periodic potential
diffusion process T is a valid kernel function.

Summarizing these two observations and incorporating
the background in Sec. 3.1, our goal is to derive a close-
form expression from Eq. (3) and prove that this expression
is PSD regarding its spatial variable v. Unfortunately, the
integral in Eq. (3) has no explicit solution according to [47].

Alternatively, we apply the same approximation strategy
in [20] to estimate the Eq. (3) as the combination of a cosine
Fourier transformf̂c(!) and a sine Fourier transformf̂s(!):

T =

cos(!t)

Z t

0
cos(!s)G(s)ds+ sin(!t)

Z t

0
sin(!s)G(s)ds

⇡ cos(!t)f̂c(!) + sin(!t)f̂s(!)
(14)

By solving this approximated form, we have the closed-
form periodic potential diffusion process:

T =
1

4⇡
e
�kvk
p

1
2!cos(kvk

r
1

2
! + !t) (15)

For simplicity, we define a frequency term � =
q

1
2! and a

phase term � = !t. � and ! are hyper-parameters that are
determined by regular parameter tuning methods. Remind-
ing that the diffusion process is dynamic, we can express it
as the accumulation of values at N time slots. Therefore, the
final kernel definition is expressed as an additive kernel [14]:

K(kvk ,�,�) =
1

4⇡

NX

n=1

e
��nkvkcos(�n kvk+ �n) (16)

For regression tasks, the implementation in Eq. (16) is suf-
ficient. But for better fitting with a hierarchical Bayesian
model, we further introduce an implementation by taking the
kernel as an ARD covariance function [23]. An individual
length-scale parameter ↵ is added for each input dimension
which determines the relevancy of the input to the task:

K(kvk ,�,�,↵) =
1

4⇡

NX

n=1

e
��n

kvk
↵n cos(�n

kvk

↵n
+ �n)

(17)
GPs defined with Eq. (16) or Eq. (17) can be taken as the
mixture of GPs. Previous studies show that the mixture of
Gaussian has a universal approximation ability in fitting with
continuous distributions [55, 40].

The next goal is to prove that Eq. (16) is PSD regarding its
spatial variable. Eq. (16) is the composition of two functions:
e
��kvk and cos(� kvk+ �). It is acknowledged that the ex-

ponential function and the cosine function are PSD regarding
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Figure 2. Demonstration of salient point selection on a human pose
model. The meshes are rendered by normalized uncertainty scores
at each iteration. (a) The progress of selecting the first four salient
points. Salient points are remarked by red spheres. Noticing the
color change before and after the selection in two zoom-in regions.
(b) The first 30 salient points. The high uncertainty score regions
are still centralized in ROIs after selecting the 30th salient point.

variable v. According to the composition property of a PSD
function, the result of positive real function/constant times a
PSD function is still PSD [3]. So, Eq. (16) is spatially PSD.
Eq. (16) can be taken as a compositional kernel. Eq. (1)
indicates a family of kernels. This opinion is generalized as:

Theorem 1. A real-valued function T (v, t) on Rd is a
spatial-temporal kernel function if it is a linear/non-linear
diffusion process: @T

@t = ↵�T + P (t)�(v), where ↵ is a
positive constant, P (t) is a periodic function, �(v) is the
Dirac delta function, and � is the Laplace operator.

Proof. The proof is provided in Supplementary.

The kernel implemented in Eq. (16) or Eq. (17) is named
as the geometry-aware convolutional (GAC) kernel. The
GAC kernel satisfies the two characteristics discussed in
Introduction, which are summarized as two lemmas:

Lemma 1. The GAC Kernel embeds the mean curvature
flow in R3, which enables it to be geometry-aware.

Lemma 2. The GAC Kernel embeds a convolution filtering
within the kernel structure, called intra-kernel convolution.

Proof. The proofs are provided in the Supplementary.

We validate the proposed GAC kernel in two different
studies. The first one is to use it in a regular GPR model.
An unsupervised salient point selection algorithm will be
introduced. This implementation fully utilizes geometry-
awareness property. The second one is to adopt it in a
Bayesian network layer. Hierarchical deep Bayesian learn-
ing models will be discussed. The feature aggregation will
benefit from the nice intra-kernel convolution property.

4.2. Unsupervised Salient Point Selection

GP regression (GPR) is widely used in spatial inference
known as the “Kriging” method [45, 21]. Being inspired
by the landmarking in face recognition [58], we use a GPR-
based unsupervised salient point selection to process the

irregular inputs. This method is essentially a manifold learn-
ing technique [30, 34, 44]. Therefore, applying our method
also achieves nonlinear data dimensionality reduction. One
advantage of GPR is the availability of uncertainty estima-
tion [45]. We leverage this advantage and define the saliency
score as the variance-based uncertainty [61]. By iteratively
selecting new salient points and adding previously selected
points to the prior, we successively collect a set of salient
points. A geometry-aware kernel guarantees the salient
points are significant to represent the original massive data.
This strategy has been successfully applied in [34, 21, 19].

Suppose a set of  salient points is denoted as ṽ =
{ṽ

1
, ..., ṽ


}. Define � =

p
0.2⇡n, n = [1, ..., Nfre]. �

equals to a Nfre-length vector by dividing [0, ⇡
2 ] into Nfre

equal line-spaces. A multi-frequency multi-phase GAC
kernel (MMK) is defined in a weighted squared form:
MMK = K ⇥ W ⇥ K (K is symmetric). The weight
W is a diagonal matrix with the sum of absolute values
of each row in GAC kernel K as the diagonal entries:
W (v) =

P
|K(v, ·)|. The saliency score ⌃M of vi dur-

ing selecting the (+ 1)th salient point is defined as:

⌃+1
M (vi) = K(vi, vi)�K(vi, ṽ

)K�1
ṽ,ṽK

T (vi, ṽ
)
(18)

K(vi, ṽ
) =

0

B@
K(vi, ṽ1)

...
K(vi, ṽ)

1

CA

⇥1

(19)

Kṽ,ṽ =

0

B@
K(ṽ1, ṽ1) · · · K(ṽ1, ṽ)

...
...

K(ṽ, ṽ1) · · · K(ṽ, ṽ)

1

CA

⇥

(20)

Only the point with the highest uncertainty score is selected
as the salient point: ṽ := argmaxv⌃. The first salient point
is the vertex with the maximum variance in MMK. From
Eq. (18)-(20) we can see that a newly-selected salient point
will be added to the prior knowledge and the next saliency
score is determined by the previous selections. The whole
process follows a GPR framework. The algorithm is sum-
marized in Algorithm 1. Figure 1(b) shows examples of
selecting salient points on point clouds. Figure. 4 demon-
strates salient points on triangle meshes. Further evaluation
results are available in Experiments.

4.3. Hierarchical Bayesian Model on Manifolds

We define a GAC-GP layer with the GAC kernel and
follow the framework of DGPs to construct a hierarchical
Bayesian learning model by stacking up multiple GP layers.
Thanks to the intra-kernel convolution property, the GAC-
GP layer has a good feature aggregation ability. In a pure
hierarchical Bayesian learning model on manifolds, a com-
putational pipeline is shown in Figure. 3. The first step is to
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Algorithm 1. Unsupervised Salient Point Selection
procedure GPR(M,). Manifold M,  salient points

N  KNN or Fast Marching . calculate N nearest
neighbors of each point

MMK = K ⇥W ⇥K  Kernel construction
Ṽ  ? . initialize landmarks set Ṽ as empty
while k   do

if k=1 then

⌃M(vi) max(diag(MMK))
else

⌃M(vi) . calculate the uncertainty score
end if

ṽ
k
 argmax⌃M

k  k + 1
end while

return Ṽ =
�
ṽ
1
, ..., ṽ


 

end procedure

process the input. Assume  salient points are selected by
Algorithm 1. The feature on each salient point fṽ is a vector
of length l. For shape i, we link all features of salient points
in the order of their selections: fi = {fṽ1 ...fṽ}. Noting
that all shapes here belong to the same dataset and all salient
points are selected with the same parameter setting in Algo-
rithm 1. Otherwise, point-to-point registration is needed to
concatenate features. Suppose H shapes are used, the input
X is an H ⇥ ( ⇥ l) matrix. We compose a sequence of
layers that map the input xi to its label yi in a hierarchical
Bayesian model for classifications:

xi = f
0

| {z }
1⇥(⇥l)

GP0
! f

1

|{z}
1⇥S1

! · · ·
GPL�1
! f

L

|{z}
1⇥C

softmax
! yi|{z}

Ci

(21)

The output of hidden layer l is a vector of the size 1 ⇥ S
l,

where S
l is the layer size. This is similar to the relationship

of the input channel and output channel in a NN. When the
batch processing is applied, the output of each hidden layer
has dimension B ⇥ S

l, B is the batch size. A final layer is
appended with a softmax multi-class likelihood. The output
vector has the dimension 1⇥ C, where C is the number of
classes. Each entry stands for the probability belonging to a
certain class. Arbitrary numbers of GP layers can be added
as hidden layers. We use the doubly stochastic variational
inference approach to estimate the posterior [46]. The opti-
mization process is to maximize the ELBO in Eq. (11). The
K-means method is used to choose inducing points.

Because the input of the Bayesian model is the point-
wise features on manifolds, and NNs are strong in feature
learning, we are inspired to further explore the potential
of NN+Bayesian methods. Such a mixed model can take
advantage of both the feature learning ability of NNs and
the feature aggregation ability of Bayesian models. We

𝐹𝑒𝑎ݎݑݐ𝑒 𝐷𝑖𝑚𝑒݊ݏ𝑖݊

𝑁
𝑚ݑ
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ݎ
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𝑎
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(a)

(b)
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Y𝑓ଵ~𝐺𝑃ଵ 𝑓~𝐺𝑃

Softmax

Feature vector

0 1

𝑓~𝐺𝑃

Figure 3. Pipeline of human pose retrieval. (a) Point-wise feature
computation and salient point selection. The mesh is rendered by
normalized mean curvatures. (b) Shape feature preparation. (c)
Hierarchical Bayesian learning model for feature aggregation and
inference. A softmax likelihood function is used at the last layer.

generally follow the pipeline in deep kernel learning [60].
The input format is determined by the NN part. The output
of NNs is the shape feature. The feature is then fed into a
Bayesian model, and the following processing is the same
as the pure Bayesian method. The negative marginal log-
likelihood (MLL) is used as the loss function.

5. Experiments

We evaluate our methods with three experiments. Our
method is noted as GAC-GP. Applications are implemented
in Pytorch and GPytorch with GPU acceleration [23].

5.1. Unsupervised Salient Point Selection

In the first experiment, the task is to select salient points
on manifolds. The purpose is to evaluate the geometry-
awareness of the GAC-GP and its stability in continuous
regressions. Additionally, we compare the computational
efficiency by recording the average running time. When
defining MMK, we use the fast marching algorithm to
compute geodesic distances and only select k = 200 nearest
neighboring points for each vertex. Nfre is set as 5.

Three datasets are used [7]: (i) “Mandibular molars”, or
“molar”, contains 116 teeth shapes; (ii) “First metatarsals”,
or “metatarsal”, contains 57 shapes; and (iii) Distal radii con-
tains 45 shapes. All shapes are triangle meshes with around
5000 vertices. Examples of each dataset are illustrated in Fig-
ure 4(a)-(c). The ROIs of such data are usually the marginal
ridges, teeth crowns, and outline contours where the geo-
metric features are rich [7, 11]. Therefore, the meshes in
Figure. 4(a)-(c), are rendered by the normalized mean cur-
vature as the ground-truth [26, 25]. The salient points are
expected to evenly distribute in yellow regions.

Comparison methods include: (1) RBF kernel GP (RBF,
RBF-GP) [45]. RBF is a classical choice; (2) spectral mix-
ture kernel GP (SM, SpectralMixture, SMK-GP) [59]. SMK-
GP had good performances in many vision tasks. 10 mix-
tures are used; (3) Matérn 3/2 kernel GP (Matérn, Matérn-
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Figure 4. Visualization of salient points. All meshes are rendered by the normalized mean curvature. The ROI is estimated to be the
high-curvature yellow region. The salient points are marked by the red spheres. (a) and (b) illustrate 20, 80, 140 salient points on metatarsal
and distal radii data. The upper row is the results of W-GP [22], the bottom row is ours. (c) illustrates 50 salient points selected by
comparison methods and ours on a molar model. (d) shows 30-120 salient points on two human poses. The saliency transition is visible.
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Figure 5. (a)-(c) The log accumulated AC curve of each dataset. (d) Average running time of selecting one salient point.

GP) [52]. Matérn 1/2 and 5/2 are excluded because of
worse results; (4) mesh saliency (MeshSaliency, MS) [31].
It is a classical saliency detection method; (5) Weighted
GP (Weighted, W-GP) in [22]. W-GP is a state-of-the-art GP
method on manifolds. The same parameter settings are used.

Figure 4(a)-(c) demonstrate salient point selection results.
In (a) and (b), we focus on comparing ours with the W-GP
because it is the only GP kernel method that stresses the
geometry-awareness, and it outperforms all other compari-
son methods. We show 20, 80, and 140 salient points. When
selecting a small number of salient points, both methods
present reasonable results. But the accuracy of W-GP grad-
ually drops with the iterations increasing while GAC-GP
shows a much better stability of geometry-awareness. For
other comparison methods, we give examples of 50 salient
points on one Molar shape in Figure 4(c). Figure. 1(b) shows
some examples of salient points on point clouds.

Numerically, we define an Accumulated Curvature (AC)
value to measure the selection performance: ACN =
log

P
k=1(|GCk| + |MCk|), where GC and MC are nor-

malized Gaussian curvature and mean curvature, and  is
the total number of salient points. Drawing the AC values
with the increased number of salient points forms an AC
curve. Within a dataset, we compute the log average of AC
values to plot an average AC curve. This curve reflects the
geometry-awareness of different selection methods. When
only selecting points with the largest accumulated curvatures

at each iteration and draw the AC curve with these maximum
values, we get a MaxGC+MC AC curve. This curve stands
for the upper bound of saliency selections. The higher and
closer to this MaxGC+MC curve an AC curve is, the better
the geometry-awareness ability a corresponding method has.
The results are plotted in Figure 5(a)-(c). The MaxGC+MC
AC curve is drawn in dashes. Generally, AC curves of GAC-
GP are above all other methods. Both the empirical visu-
alizations and the numerical measurements verify that the
GAC-GP is capable of making geometry-aware inference on
manifolds. More importantly, its geometry-awareness is still
consistent and stable after continuous regressions.

The computational efficiency is measured by averaging
the running time of selecting one salient point, as shown
in Figure 5(d). GPR-based methods gradually slow down
due to the increased prior knowledge as shown in Eq. (18)-
(20). The GAC-GP enjoys strong computational efficiency
considering its superior performance because usually only a
small number of salient points are needed.

5.2. Human Pose Retrieval

In the second experiment, the task is to classify different
human poses modeled by triangle meshes. The first purpose
is to further evaluate the salient point selections by fixing
the Bayesian learning architecture. The second purpose is
to fix the inputs and evaluate different hierarchical Bayesian
learning architectures. The pipeline in Figure. 3 is used.
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Table 1. Results of human pose retrieval with Bayesian models
defined by different kernels and numbers of salient points.

SIWKS RBF-GP W-GP Matern-GP SMK-GP MS GAC-GP
50 0.850 0.898 0.885 0.898 0.866 0.915

100 0.859 0.901 0.886 0.908 0.872 0.921

250 0.862 0.905 0.890 0.912 0.899 0.925

Table 2. Human pose retrieval with different
Bayesian learning architectures.

Method Accuracy

GCGP* 91.2%
1RBF 91.1%
1GAC 92.5%

1GAC(10)+1RBF 92.7%
1GAC(10)+1GAC 93.4%

*(Using self-reproduced code.)

We choose the scaled-invariant wave kernel signature (SI-
WKS) [33, 1] as the feature. When computing the SIWKS,
30 smallest eigenvalues are used. The other parameter set-
tings are the same as those in [1]. Features of 50, 100, and
250 salient points are used. In customizing the Bayesian
model, we use the multitask variational strategy and the soft-
max likelihood in GPytorch. The number of inducing points
is 50. We use Adam as the optimizer with an initial learning
rate of 0.001. After the first 200 epochs, the learning rate
changes to 10�4. We trained for 2000 epochs. The cost
function is the variational ELBO mentioned in Sec 3.3. The
comparison methods are the same as the prior experiment.

The SHREC14 non-rigid 3D human model is used [41].
It contains 400 triangle meshes of 40 human subjects with
10 poses. Each mesh has about 15000 vertices. The dataset
is randomly split into: 90% for training, 5% for validation,
and 5% for testing. For the first purpose, we fix the Bayesian
model to be a one-layer GAC-GP and feed in features from
different methods. Table 1 shows the results. Classification
with the features of all points has an accuracy of 0.910. Tak-
ing this value as a reference, we can draw conclusions that
(1) our strategy of selecting salient points works for distin-
guishing different shapes. When enough salient points are
selected, it is possible to use a small subset to represent the
original data; (2) the geometry-aware selection of GAC-GP
is more distinguishable than other comparison methods. For
the second purpose, we fix the inputs to be GAC-GP salient
features and evaluate different Bayesian learning architec-
tures. Here we use GCGP [57] as a comparison method. The
results are shown in Table. 2. Noting that the code of GCGP
is not available and we use our implementations, so we put a
star mark on GCGP’s result. We can see that the accuracy
is generally increased after adding a GAC layer, supporting
a strong feature aggregation property. Meanwhile, a hierar-
chical concatenation of GAC layers shows a better accuracy

Table 3. Multi-class classifications on ModelNet40.

Method Error rates

PCNN 86.1%
PointNet++ 90.7%

PointNet++ +Normal 91.9%
PCNN+1GAC 87.2%

PointNet++ +1GAC 91.8%

PointNet++ +Normal+1GAC 92.1%
PointNet++ +Normal+2GAC 92.8%
PointNet++ +Normal+3GAC 93.1%

than the single layer structure.

5.3. Point Cloud Classification

In the third experiment, the task is to classify different
point cloud models. Our purpose is to demonstrate the work
of integrating NNs with Bayesian learning. Here, we use the
hierarchical feature learning architecture in PointNet++ [43]
to learn the pointwise feature. We perform multi-class clas-
sification on ModelNet40 which contains 12311 3D CAD
models of 40 categories. Each point cloud has 10000 points.
We use 9843 models for training and 2468 models for test-
ing. In the feature aggregation part, we use one single
GAC-GP layer (ten mixtures). 64 inducing points are used.
The optimizer is Adam and the initial learning rate is 0.04.
The comparison methods include PointNet++, PointNet++
with normal information, and the Pointwise Convolutional
NNs (PCNN) [29]. Table 3 shows that (1) the mechanism of
NN+Bayesian can be jointly trained for tasks on manifolds;
(2) models with Bayesian aggregation layers generally out-
performs the classical multiple fully connected layers in our
tests. We notice that the performance gain of using single
GAC layer shrinks after adding normal information. Our
hypothesis is that the features become more complicated,
and the inference capability of single GAC layer is not pow-
erful enough to well aggregate the new features. By adding
2&3 GAC layers, the improvements increase to 0.9% and
1.2%, respectively. The overall results show that architec-
tures with GAC layers universally perform better than their
original versions, which proves that such a co-design bene-
fits the performance. A reasonable outlook is to investigate
more effective architectures that integrate both methods for
end-to-end tasks on manifolds.

6. Conclusion

In this work, we propose the GAC kernel that carries prop-
erties of geometry-awareness and intra-kernel convolution.
Our methods show strong feature aggregation capability in
various tasks on manifolds. We hope our work may inspire
future Bayesian and NN+Bayesian studies on manifolds.
Acknowledgements This work was funded by grants
R01EY032125 and R21AG065942.
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[47] Simo Särkkä. Linear operators and stochastic partial differen-
tial equations in gaussian process regression. In International
Conference on Artificial Neural Networks, pages 151–158.
Springer, 2011.

[48] Michael Sherman. Spatial statistics and spatio-temporal data:
covariance functions and directional properties. John Wiley
& Sons, 2011.

[49] Rishit Sheth, Yuyang Wang, and Roni Khardon. Sparse varia-
tional inference for generalized gp models. In International
Conference on Machine Learning, pages 1302–1311, 2015.

[50] Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufan-
deh, Sylvain Bouix, and Sven Dickinson. Retrieving articu-
lated 3-d models using medial surfaces. Machine vision and
applications, 19(4):261–275, 2008.

[51] Arno Solin and Simo Särkkä. Hilbert space methods for
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