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Figure 1: Provided with a single RGB photo (left) of a known scene, we reconstruct the photo in 3D space in the form of a
human mesh and point clouds in a single global coordinate. With this intermediate representation, we then use a deep neural
network to re-render the scene from a novel view.

Abstract

We present a novel framework for performing novel-view
synthesis on human tourist photos. Given a tourist photo
from a known scene, we reconstruct the photo in 3D space
through modeling the human and the background indepen-
dently. We generate a deep buffer from a novel viewpoint
of the reconstruction and utilize a deep network to translate
the buffer into a photo-realistic rendering of the novel view.
We additionally present a method to relight the renderings,
allowing for relighting of both human and background to
match either the provided input image or any other. The
key contributions of our paper are: 1) a framework for per-
forming novel view synthesis on human tourist photos, 2)
an appearance transfer method for relighting of humans to
match synthesized backgrounds, and 3) a method for esti-
mating lighting properties from a single human photo. We
demonstrate the proposed framework on photos from two
different scenes of various tourists.

1. Introduction

Imagine you have a photo of yourself where everything
is perfect except the camera angle. Perhaps the photogra-
pher cut off the top of the attraction you were standing in

front of, or you wished the photo had a wider field-of-view.
The best course of action to correct this would be to re-
take the photo immediately after looking at the outcomes,
but this is not always possible, especially for touristic loca-
tions, which are often the photos that you care about a lot.
Moreover, in situations where there is no “second try”, for
example when your baby walks for the first time, a re-take
is not an option.

With the advent of machine learning, recent works have
allowed novel-view re-rendering to be a possibility to re-
solve this difficulty. Recent works, such as Neural Ren-
dering in the Wild [15] allow the scene to be re-rendered
from different cameras. However, they fall short of human
rendering leaving room for research in achieving such edits
to your everyday photo. Multiplane Imagery (MPI) [11] is
another method that could be used for this purpose—they
split the view into multiple parallel layers of depth to ap-
proximate the parallax. While decent for small viewpoint
changes, these methods are not suitable for large camera
motion, such as the one shown in Figure. 1.

To overcome the limitations of existing methods, we pro-
pose a novel framework for the novel-view synthesis of hu-
man tourist photos. Specifically, we propose to model the
human and the background separately, where the human
is modeled via meshes, and the background via 3D point
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clouds. We then combine the two representations together
in a novel view to create a deep buffer. This deep buffer is
then translated into a realistic rendering of the novel view
through a deep network. In order for the rendering to be
similar to the original input image, we also utilize the deep
features of the original image in the neural rendering pro-
cess.

In addition to the novel view, we show that our frame-
work can be used to render images of people in different
backgrounds, and with different illumination settings. For
these renderings to look realistic, it is critical that the light-
ing is well taken care of. Hence, we further propose to uti-
lize spherical harmonics, as in [12], and introduce how it
can be utilized in our neural rendering framework.

To summarize, our contribution is threefold:

• we propose a framework for performing novel view
synthesis on human tourist photos;

• we create a method for relighting humans, to match the
lighting of synthesized backgrounds;

• we expand on existing lighting estimation work, to
show that a simple spherical harmonics estimator is
sufficient to provide enhanced lighting coherence.

2. Related Work
Scene Reconstruction / Novel View Synthesis: The abil-
ity to synthesize new views of a scene from limited input
data is a large area of research in computer vision. Structure
from Motion [20] and Multi-View Stereo [21] can be used
to reconstruct a sparse point cloud of a scene. The work
of Photo Tourism [23] showed how these techniques could
be performed on unstructured collections of photographs.
Image-based rendering [3][1] methods are able to synthe-
size new views through the warping of images into 3D ge-
ometry, however rely on dense captures of the scene. Multi-
plane Images [11] allow view synthesis from a single view
by applying depth estimation to slice the input image into
multiple planes which are projected away from the camera.
However, the movement of the camera is limited due to the
need to inpaint [9] areas and the 2-dimensional nature of the
planes revealing themselves.
Neural Rendering: Over the past few years, there has
been extensive research into using Neural Rendering for
novel view synthesis, with several recent approaches em-
ploying volume rendering methods. Neural Radiance Fields
(NeRF) [16] utilizes a multi-layer perceptron (MLP) to
model radiance fields, allowing for photo-realistic render-
ings of novel viewpoints and consistent reconstruction even
with large camera motions. NeRF in the Wild [13] applies
this method to complex scenes using unstructured collec-
tions of in-the-wild photographs. Other approaches rely on

image translation networks to re-render traditionally ren-
dered reconstructed scenes, such as dense point clouds.
Neural Rerendering in the Wild [15] takes in as input a
deep buffer containing a rendered point cloud, a semantic
mask, and a latent appearance vector and produces a realis-
tic rerendering of the provided point cloud, with the ability
to vary appearance such as season and time of day.

Human Synthesis: Many techniques have been proposed
to synthesize imagery of humans from alternate views. Per-
son image synthesis works [26][14] use Generative Adver-
sarial Networks (GANs) [5] to repose humans, by taking in
an input image of a human and a target pose. Unfortunately,
these methods fail to preserve identity when the input data
is too dissimilar to the training data. Recent works [18]
have employed Neural Radiance Fields [16] to reconstruct
a human scene from numerous input images. Human Dig-
itization works, such as PIFu [19], present methods for re-
constructing textured meshes from single image inputs, al-
lowing for the rendering of the model from alternate views.

Lighting Estimation: Light probes are a common form
of representing real-world lighting in computer graphics.
Traditionally, a set of cameras are used at a location to
capture the lighting information, forming an active light
probe. Deep Outdoor Illumination Estimation [8] shows
how a CNN can estimate high-dynamic-range illumination
from a single image. Learning Lightprobes [12] presents a
method for estimating light probes to allow for lighting in
mixed reality applications. Learning Lightprobes employs a
series of CNN’s to learn the lighting of a single object from
independent angles, representing the lighting as spherical
harmonics [6]. Relighting Humans [10] presents methods
for accurately relighting humans provided, through the use
of a CNN to infer light transport and albedo maps, from a
single image.

3. Methodology
Due to the tendency of existing neural rendering methods

to segment transient objects such as humans in the training
data in order to discourage their rendering and the artifacts
that come with them, these methods tend to perform poorly
when required to render humans. Our method addresses
this by separating the task of human and scene rendering
into two sections, each handled by an independent set of
networks. This allows for photo-realistic rendering of both
human and scene simultaneously, with minimal artifacts.

3.1. Framework

Figure 2 shows the overall framework of the method.
Our framework comprises three main components: a) Hu-
man Digitization and Localization, b) a Traditional Ren-
derer and c) a Neural Renderer. For Human Digitization and
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Figure 2: Overview of our method. Given a photo, person detection, segmentation, depth estimation, and mesh generation is
performed using off-the-shelf algorithms. The generated mesh is textured and combined with a scene point cloud. The point
cloud mesh combination can then be rendered from novel views into an aligned deep buffer (consisting of depth, color and
semantic labeling). An appearance vector is generated from the Appearance Encoder Ea using the input image as input. The
Neural Renderer R takes a combined input of the appearance vector and the deep buffer, producing the photo-realistic output.

localization, we use a combination of pre-trained off-the-
shelf models for person segmentation, mesh reconstruction,
and depth estimation. For Neural Rendering, we expand
on the framework presented in Neural Rerendering in the
Wild [15] to allow for human pass-through rendering and
human appearance transfer. We use traditional rendering
techniques to combine the previously modeled human and
background and generate a deferred-shading deep buffer in-
put for the Neural Renderer.

3.2. Human Digitization and Localization

In this component, we aimed to solve the problem of re-
constructing the mesh of a person and estimating their rela-
tive position to the camera so that they could later be placed
back into the scene with correct scales. To locate all hu-
mans in the input image, the Mask R-CNN [7] network was
used. We found that the semantic segmentation from this
network was overly smoothed, resulting in poorly shaped
reconstructed human meshes. To improve the segmentation,
we use Mask R-CNN solely as person detection and use the
output of this network to feed the DeepLab [2] semantic im-
age segmentation network trained on ADE20K [25]. This
was found to produce crisp segmentation, without noise and
over smoothing, compared to using each of the networks in-
dependently. To reconstruct the human mesh, we use the
PIFu [19] Network with pre-trained weights.

To estimate the distance between the human and the
camera, we employ the MonoDepth2 [4] monocular depth

estimation network. Due to lack of linearity in the estimated
distances and the need to align the depth estimation coordi-
nate system to the pre-existing point cloud scene coordinate
system, we learned a scaling by comparing the predicted
depth of buildings in the scene to a true depth generated by
COLMAP [22][21][20]. We apply Image Registration [17]
through COLMAP to estimate the intrinsic and extrinsic of
the cameras. Combining the extrinsic camera properties,
the predicted depth, and the human pixel offset: the human
mesh can be projected into the scene away from the camera
and be correctly placed and scaled in the 3D scene coordi-
nate space.

3.3. Deep Buffer Generation

We utilize OpenGL [24] to generate an aligned deferred-
shading deep buffer, containing pixel albedo, depth map,
and binary segmentation map. During this stage we
project the segmented human pixel information back onto
the reconstructed mesh, to improve the texture quality of
the mesh. Additionally in this stage, a number of pre-
processing steps can be performed, such as normalizing
the human pixels, or applying any directional spherical
harmonic lighting. For directional lighting estimation and
application, provided with an appearance reference image
containing a human, we estimate the lighting coefficients
for that human through the use of the Lighting Estimation
network. This lighting is then applied onto the mesh in the
rendering stage. Finally we render the point cloud together
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with the generated human mesh, to produce a single pixel
albedo layer. We produce the depth map by performing a
separate rendering pass on just the point cloud, altering the
color values of each point to reflect the distance from the
camera.

3.4. Neural Renderer

We utilize a deep network Neural Renderer to transfer
the deep buffer into realistic output images. Our Neural
Renderer is built on top of that of Neural Rerendering in
the Wilds (NRiW). Similar to that of NRiW we generate an
aligned dataset of reference, color, depth, and segmentation
images. The segmentation map which was introduced in
NRiW, aimed to reduce neural artifacts from transient ob-
jects, such as humans and other non-permanent objects, be-
ing learned into the scene. Due to the inability to synthesize
a segmentation map from novel views, we train our network
on a binary human and non-human segmentation map. This
allows our network to distinguish the human pixels, which
need to be passed through the network, from the point cloud
which needs to be transferred into a photo-realistic repre-
sentation. We found that the use of a binary segmentation
map still managed to eliminate much of the neural artifacts
from transient objects.

To train the network to pass-through the human pixels
from the input data, during training we transfer human pix-
els from the reference image directly into the correspond-
ing rendered image. During this process, we normalize the
transferred pixels by subtracting the average color intensi-
ties of each human. Through this we aim to eliminate the
lighting characteristics on each human, allowing the net-
work to learn to relight the humans to match the reference
image based on the corresponding appearance vector.

We generate a deferred-shading deep buffer, containing
pixel albedo, the depth map, and binary segmentation map.
We render the point cloud together with the generated hu-
man mesh, to produce the pixel albedo layer. Addition-
ally, in the rendering, we normalize and randomly drop
the human pixels. We randomly drop transferred pixels,
to encourage the network to learn missing data, in order
to be able to improve the quality of rendering when low-
resolution human data is provided from the Human Digiti-
zation component.

3.5. Lighting Estimation

The work of Learned Lighprobes [12] presents a method
for estimation of spherical harmonic lighting coefficients
for a fixed model from a fixed angle. We expand upon this
work to allow for spherical harmonic lighting estimation on
any human independent of angle, from a single image.

To achieve this we designed a dataset of images of hu-
mans with known lighting characteristics. We generated a
dataset consisting of 200 photos of individual humans, de-

signed to cover a diverse spectrum of clothes, race, and gen-
der. Each of the 200 images and the corresponding masks,
generated using DeepLab [2] Semantic Image Segmenta-
tion, were used as input data into the PIFu [19] network,
producing corresponding meshes. We relight each of the
meshes using spherical harmonic lighting methods [6], to
produce a dataset of humans with known lighting proper-
ties. We found fixing 15 coefficients in a binary state (low
and high) able to represent a high level of illumination res-
olution in a limited amount of data. For each model, one-
tenth of the 215 different coefficient combinations were ran-
domly sampled and rendered, resulting in a dataset T con-
taining 655,000 images.

We trained our CNN using T as training data and the
known lighting as reference for the loss function. Our CNN
is implemented on top of that of Learned Lightprobes [12],
taking in an image of a human and outputting 15 estimated
coefficients. We found the loss function of mean squared
error across the coefficients to perform poorly, due to dif-
ferences in coefficients not correlating with differences in
illumination. To solve this we utilize a sample-based loss
function, where both the true illumination and the estimated
illumination are projected onto spheres and the MSE across
the two spheres becomes the loss. We found sampling at
500 points on each sphere to provide an accurate represen-
tation of the differences in illumination. We pre-computed
a matrix representing each of the points on the sphere and
their spherical harmonic amplitudes associated with the an-
gle of the normal, allowing for the loss to be calculated us-
ing only a single matrix multiplication for each sphere. Dur-
ing train time, the 500 (points) x 15 (coefficients) matrix of
constants would be loaded into memory and used in the loss
function of each operation.

4. Experiments

4.1. Dataset

We trained our method on two datasets reconstructed
with COLMAP [22] from public images, Trevi Fountain
(3006 images) and the Brandenburg Gate (1363 images),
chosen for covering a wide range of appearances, the com-
position of the scenes, and occluding transient objects. A
separate model is trained for each dataset. We create an
aligned dataset by rendering the reconstruction twice for
each reference image. Similar to Neural Rerendering in
the Wild, we render an output corresponding to a 512x512
center crop of the reference image. However, we found
that this by itself performed poorly when wide-angled un-
cropped images were evaluated on this method. To alleviate
this we render an additional wide-angle output for each ref-
erence image and downsample the reference image instead
of cropping. This allows us to cover a much greater range
of focal lengths in training from the same size dataset. We
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Figure 3: Examples of image reconstruction and novel view rendering using our framework. Our method can render highly
realistic images from a wide viewing angles and maintain the lighting condition.

Table 1: Average error on the validation set using
VGG/perceptual loss (lower is better), L1 loss (lower is bet-
ter), and PSNR (higher is better).

VGG L1 PSNR

0.484 41.54 12.38

form the validation set by randomly selecting 100 images
per dataset.

For evaluation, as our framework requires full human
bodies for the Human Reconstruction and Localization, we
create a novel dataset of images from the original datasets
which meet this requirement.

4.2. Reconstruction Metrics

To report image reconstruction errors in the validation
set we used perceptual loss, L1 loss, and PSNR. We com-
pare the ground truth input image, to the rendered view from
the same camera angle. Due to the novel nature of our work
and the input requirements of our framework, our work is
not directly comparable with other works in the area, so we
have reported quantitative results independently. The met-
rics can be seen in Table 1.

4.3. Scene Reconstruction

Figure 3 demonstrates the reconstruction of images us-
ing our framework. They show a realistic rendering of two
separate scenes from three unique viewpoints each. In all
output images, neural artifacts can be found in areas where
the point cloud input is sparse. In the figure Brandenberg
Gate Scene (second row) dark neural artifacts can be seen
in the sky, a result of non-human transient objects being
learned into the scene. This can be corrected by using a
three-part segmentation map in the training stage, segment-
ing humans, non-human transient objects such as tempo-
rary barriers and signage, and everything else. During re-
construction a binary human/ non-human segmentation map
can still be used, resulting in transient artifacts not being
rendered. Figure 4 shows how a human can be transferred
from one scene to another, realistically recreating images as
if they were present at the location.

4.4. Appearance Transfer

Figure 5 shows how appearance can be transferred from
a separate image to the output. It demonstrates realistic re-
lighting of the human in the foreground to match the ap-
pearance of the rendered background. The figure shows that
while hue and brightness are transferred, directional light-
ing such as specular is not transferred. This is a result of
uniformly normalizing the human pixels in the input data as
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Figure 4: Example of human transferred from one scene to another. Here a human from the Trevi Fountain Dataset is
transferred into the Brandenburg Gate scene. From left to right: Output from Traditional Renderer, Binary Segmentation
Mask, Framework Output, Appearance Reference Image.

opposed to reconstructing the albedo.

4.5. Lighting Estimation

We evaluate our lighting estimation method by compar-
ing the difference in true illumination intensity to estimated
intensity, through the sampling of intensity when applying
the spherical harmonic lighting to a sphere. Figure 6 shows
the results for lighting estimation. The network is able to
estimate the lower level harmonics of the illumination well,
however struggles to match the high-level details. While
the network is able to estimate lighting behind the human,
it performs far better on lighting in front of the human. The
smoothed nature of the estimated lighting can be attributed
to pre-existing lighting on humans before the known light-
ing was applied. To alleviate this the albedo texture for the

human mesh should be synthesized and during lighting ap-
plication.

4.6. Limitations

We note the following limitations of our framework: (1)
The requirement for a full human body to be present in the
input for mesh reconstruction to work. (2) Inaccuracies in
the segmentation and mesh generation networks, may re-
sult in a person which looks unrealistic. (3) Inaccuracies in-
depth estimation will result in the human mesh being placed
and scaled incorrectly in the scene. (4) A number of differ-
ent neural artifacts may be present in the final render. Phan-
tom objects, such as blurs, may appear where transient ob-
jects have been learned into the scene. Areas that were not
frequent in the training data or where limited point cloud
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Figure 5: Example of appearance transfer from real images. The top row represents the source appearance real image used
as the input to the appearance encoder. The bottom two rows represent the out from the rendering network with appearance
transferred onto two unique views.

Figure 6: Lighting Estimation: Example of applied lighting
intensity (left) against predicted lighting intensity (right).
Note how whilst the overall intensity is not matched, the
model is still able to estimate the pattern of the lighting.

information is provided, such as the ground, fail to render
accurately. This limits the possible views to only those that
focus on material featured in the training data. (5) The re-
quirement for a photo dataset of the location the photo was
taken from, required to generate a point cloud and train the
neural renderer.

5. Conclusion
This paper has presented a method to recreate novel

views of single-person tourist photos. Our method allows
for a wide range of motion away from the original view-
point, while still rendering realistic imagery. We train a
deep network to enable appearance transfer from reference
images to both human foreground and static backgrounds,
allowing for a time of day or season adjustments to novel
renders. Furthermore, we show that our framework can be
used to render images of people in different backgrounds,
and with different illumination settings. Our experimental
results show that the proposed method is able to produce
photo-realistic renders of novel views.

We believe our method presents a wide range of pos-
sibilities, from simply producing novel views to recreat-
ing whole video sequences for CG work. We hope to ex-

pand this work to allow interactive photo-realistic scenes,
through rigging on the human mesh, to allow custom ani-
mations or user control.
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