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Abstract

Player detection lays the foundation for many applica-
tions in the field of sports analytics including player recog-
nition, player tracking, and activity detection. In this work,
we study player detection in continuous long shot broad-
cast videos. Broadcast match videos are easy to obtain, and
detection on these videos is much more challenging. We
propose a transductive approach for player detection that
treats it as a domain adaptation problem. We show that
instance-level domain labels are significant for sufficient
adaptation in the case of soccer broadcast videos. An ef-
ficient multi-model greedy labelling scheme based on visual
features is proposed to annotate domain labels on bounding
box predictions made by our inductive model. We use reli-
able instances from the inductive model inferences to train
a transductive copy of the model. We create and release a
fully annotated player detection dataset comprising soccer
broadcast videos from the FIFA 2018 World Cup matches
to evaluate our method. Our method shows significant im-
provements in player detection to the baseline and existing
state-of-the-art methods on our dataset. We show, on aver-
age, a 16 point improvement in mAP for soccer broadcast
videos by annotating domain labels for around a 100 sam-
ples per video.

1. Introduction

Analysis of sports broadcast videos is an exciting and
relatively unexplored area of research in computer vision
and media understanding. Tasks such as event detection,
activity recognition, player tracking, and team analysis are
helpful applications to understand and analyze a game.
These downstream task require player detection as their pri-
mary basis or as supplementary information [8, 19, 11].
Transductive approaches for player detection are interesting
because of the large inter-match variability in soccer videos.
Models trained on one match, tend to perform poorly on
other matches, showing significant domain-shift between

(d) Audience members

(c) Referees

Figure 1: Domain-noise present in soccer broadcast videos. De-
tections are correct for the person class, however there are many
false positives for the player class. This noise prevents using trans-
ductive or self-supervised approaches for training, without being
removed.

different matches. Some amount of fine-tuning of models is
needed in most cases, however, labelled data for fine-tuning
is rarely available. Other challenges like player occlusion,
pose variations, player truncation, and motion blurring also
exist but can be rectified with sufficient amount of train-
ing data. A transductive approach uses unlabelled target
data for improving detection performance for a given match
which can be easily applied to improve performance in new
matches for which labels are not available.

Existing player detection approaches utilise input from
the camera feed or using a single view of the match for
detection [18, 32, 10, 14] which is not readily available.
Broadcast videos of the matches are a much more accessi-
ble source of unlabelled information. However, there are
many challenges in broadcast video data as compared to
fixed or constrained camera views. Our work addresses
the major problem of domain-noise in broadcast videos, as
shown in Fig 1. We show that instance-level domain labels
are needed in broadcast videos to achieve good performance
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with a transductive approach using unlabelled target data.

A pre-trained inductive model is used to get an initial
set of bounding boxes for a video. The bounding boxes are
clustered using visual information extracted from a person
re-identification model. A novel multi-model greedy clus-
tering approach is introduced to assign instance level do-
main labels to the bounding boxes collectively. We then
use reliable instances from our initial proposals to update
model parameters of a transductive copy of our detection
model and show a significant improvement in player de-
tection performance. We achieve, on average, an 16 point
performance improvement in mAP by annotating around a
100 samples with domain labels per video. We also find a
lack of publicly available datasets for continuous long shot
broadcast videos. Therefore, to evaluate the performance of
our approach, we create and release a fully annotated player
detection dataset comprising of broadcast videos from the
FIFA 2018 World Cup matches. This dataset also serves
as useful supplementary information for other downstream
tasks in sports analysis.

The main contributions of the paper are as follows: (i)
we propose a novel transductive approach to player detec-
tion which achieves significant performance improvements
using only a few domain labelled samples; (ii) we intro-
duce an approach to collectively assign domain labels at
the instance-level, which is necessary for target data such
as broadcast videos that contain a lot of domain-noise; (iii)
we create and release a fully annotated dataset consisting of
soccer broadcast videos to evaluate the task of player detec-
tion.

2. Related Works

Player Detection: Most player detection systems rely
on setting up specific equipment beforehand to process the
live match and rarely deal with broadcast videos [1, 29, 20].
Earlier works such as [18, 32, 11] do not utilise modern
deep learning based object detection systems and place con-
straints on the camera view of the input video. Recent works
like [10] utilise a student-teacher training paradigm to learn
a smaller network using an improved teacher network that
learns missed detections on the training data through a blob
detection strategy and human annotations. The results are
based on wide-angle fixed camera views of matches where
the number of false positives is low, and fine-tuned detec-
tors tend to perform well. In [14], the authors use a Feature
Pyramid Network and combine lower level features with
higher spatial and higher level features with a bigger recep-
tive field to train a small network that performs well on the
ISSIA [4] and Soccer Player Detection dataset [17]. The
authors propose a supervised approach for detection and re-
quire annotated training data to be available.

Player Detection Datasets: The ISSIA soccer
dataset [4] consists of 18000 frames annotated with player

and referee bounding boxes. The data includes a single
match seen from 3 different wide-angle camera views. In
contrast, broadcast videos contain multiple shots at differ-
ent zoom levels, camera movements, and shot transitions.
In [17], the authors propose a player detection dataset that
consists of 2019 annotated images recorded by three broad-
cast pan-tilt-zoom (PTZ) cameras. The dataset contains too
few samples to be exhaustive enough to cover all differ-
ent possible scenarios or train modern detection architec-
tures. The SoccerDB dataset [13] consists of 346 clips from
the SoccerNet dataset [7] annotated for player detection us-
ing an automated labelling scheme. The videos are sourced
from broadcast matches but each clip consists of only a few
hundred frames and lacks sufficient shot transitions in the
clips. Since we see a lack of continuous long-shot broad-
cast videos in the publicly available datasets, we create and
release a dataset of our own for evaluation, discussed in de-
tail in Section 5.

Domain Adaptive Object Detection: One of the first
works on domain adaptation for object detection was shown
in [2]; where the authors use domain classifiers and con-
sistency regularization to improve object detection perfor-
mance on the KITTI dataset [6]. In [27], the authors use
distillation loss along with soft labels to perform single-
category detection tasks like face and pedestrian detection.
The soft labels are generated with the help of a tracking al-
gorithm. Only one work has been done using a transductive
approach to detect objects which is shown in [23]. The au-
thors propose a zero-shot learning paradigm using fixed and
dynamic pseudo-labels to train a transductive model that
performs better on the target domain. They also incorporate
semantic information using word vectors to generate the la-
belling. Such additional sources of information to improve
the performance may not be available for broadcast videos.
Most of these works assume that domain labels exist at the
image-level and are the same at the instance-level. How-
ever, this assumption does not hold true for soccer broadcast
videos and is discussed in Section 3. We also demonstrate
how to overcome this problem using a greedy multi-model
collective labelling approach.

3. Domain Noise

We establish a distinction between a person and a player,
in that we only consider the 22 players comprised of the
two teams in a soccer match as valid instances. We observe
poor performance of pre-trained detectors like [24, 25] for
the player class on broadcast videos compared to the perfor-
mance on the person class on large-scale datasets like [16].
This performance gap is due to many false positives, such
as members of the audience, referees, and camera operators
observed in the qualitative analysis of pre-trained detectors
as shown in Fig. 1. These instances serve as domain noise
during the domain adaptation process, specifically for unsu-
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pervised approaches.

We define object detection as learning the joint distri-
bution P(C,B,I). Where C denotes the class label, B
denotes the bounding box and I denotes the input image.
As shown in [2], the joint distribution can be effectively
decomposed as in Eq. 1.

P(C,B,I) = P(C|B,1) P(B,I) (1

The bounding box classifier denoted by P(C|B,I)
is assumed to be consistent across domains and the
domain shift occurs in this case due to the detector rep-
resented by P(B,I), which is further decomposed as
P(B,I) = P(B|I) P(I). To rectify this domain shift, one
must jointly consider image-level and instance-level do-
main adaptation, such that P(I) and P(B|I), respectively,
are consistent across the source and target domain. In the
usual setting, image-level and instance-level adaptation
is done using samples labelled to be from the source or
target domain. Several approaches for domain adaptation
make use of this domain label, specifically, those that use
domain classifiers [2, 21, 5]. In most cases, these domain
labels are annotated at the image-level and are assumed
to hold true for all instances in the image. However, this
assumption does not hold true for soccer broadcast videos,
as shown previously. Without removing invalid instances,
we observe that sufficient image-level adaptation can be
achieved but instance-level adaptation is lacking. This is
true for any real-world data that contains instances mixing
in from multiple domains. We therefore propose an efficient
framework to assign a domain label to each bounding box
instance using a greedy multi-model collective labelling
scheme based on visual features. Our application of this
framework is used for soccer broadcast videos but the
approach can be applied for any real world data where
domain noise is prevalent. For our approach, we train a
transductive model using only valid instances from the
target domain data available by pruning this noise from the
initial predictions made by our inductive model.

4. Our Approach

An overall picture of the approach we have used in this
work is illustrated in Figure 2. Transductive approaches for
learning have an inductive phase where a pre-trained copy
of the detection model(inductive model) generates predic-
tions. We train a better copy of the model(transductive
model) for a specific domain or task using these initial pre-
dictions. We define reliable bounding boxes as those with
a high confidence level and those identified to belong to the
target domain, i.e., players. To simplify labelling bound-
ing boxes as reliable, we use a greedy multi-model clus-

tering approach to aggregate similar bounding boxes and
label them collectively, reducing the annotation load sig-
nificantly. The predictions identified as reliable from the
inductive phase are used update the parameters of the trans-
ductive model to get better predictions.

4.1. Inductive phase

In the inductive step, we get both the initial predictions
made by our detection system and the visual features we use
to cluster the bounding boxes together. A YOLOv3 [24] de-
tector with spatial pyramid pooling (SPP) [9] that has been
pre-trained on the MS COCO [16] dataset is used as the
inductive model. By are the initial predictions made by in-
ductive model where i is the frame identifier and j is the jth
prediction for that frame, as given by Eq. 2.

{BY} = NMS(f1(X;)) )

f1 represents the forward pass of the model and N M S rep-
resents the Non-Maximal Suppression function [24] used to
get the bounding boxes from the output of the forward pass
of the model.

We use a person re-identification model for obtaining the
visual features for the instance level labelling scheme, the
architecture is illustrated in Figure 3. We found that many
audience members and support staff wear team jerseys in
the broadcast match and therefore descriptors from simpler
image classification networks were not sufficient to distin-
guish between them and the players. The model is a wide
residual network [33] with one convolutional layer and four
residual blocks pre-trained using the MARS dataset [34]
following the method described in [31]. The visual fea-
tures of dimensionality 512 are computed in the output of
the average pool layer of the model. We consider x;; to be
the cropped region from the image for bounding box Bf,j
which is passed through the re-identification model to get
visual features as shown in Eq. 3. Where g(z) is the output
from the average pool layer of the re-identification model.

o g(wiz) 3
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4.2, Identifying reliable predictions

We create a similarity graph between bounding boxes
obtained in the inductive phase. We then use a greedy ap-
proach to perform cluster deletion on the bounding boxes
based on the similarity graph. We finally, obtain a repre-
sentative sample for each cluster and label the cluster as
reliable or unreliable.

4.2.1 Similarity Graph:

Before clustering the bounding boxes, we define a similar-
ity graph G, to create the clusters. Nodes of this graph are
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Figure 2: An overview of the detection pipeline proposed. The inductive phase includes using a pre-trained detection model to obtain
initial bounding box proposals and a re-identification model to obtain visual features. The second stage includes clustering the obtained
bounding boxes and labelling them as reliable or unreliable using a multi-model greedy clustering approach. The transductive phase
includes using reliable bounding boxes to fine-tune the detector parameters to perform better detection.
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Figure 3: Re-identification model architecture used. The model is
a wide residual network [33] consisting of 4 residual blocks.

the bounding boxes obtained in the inductive phase, and the
edges of the graph are generated using a multi-model sim-
ilarity metric. p different unsupervised clustering models
are trained using a random subset of visual features f;;. We
use a combination of the k-means algorithm and Gaussian
Mixture Models [26] with varying clusters, more details in
the supplementary. The models are used to define positive
and negative edges between the nodes. Edges are created
using similarity metrics S(z,2’) and S(x, 2’) where = and
a’ are any two given bounding boxes. S(z,z’) denotes the
number of clustering models that assign the same clusters
to the two given bounding boxes based on their correspond-
ing features in F. Similarly, S (x, ") denotes the number
of models that assign a different clustering to the two given
bounding boxes. We say that two samples have a positive
edge if S(x,z’) > t, where ¢, is a pre-defined threshold.
Two samples have a negative edge if S(x,2’) > t,. Since

we use the same threshold for both cases, we can select ¢,
relative to p such that the two cases are mutually exclusive
and two bounding boxes can have only a positive, negative,
or no edge between them.

4.2.2 Greedy cluster deletion and labelling:

We propose a clustering approach used to cluster the
bounding boxes together based on the similarity graph de-
fined in the previous section. Our approach is inspired
by the Lambda Correlation Clustering (LambdaCC) algo-
rithm proposed in [30] where cluster deletion is defined
as the problem of finding a minimum number of edges in
a graph to be deleted to convert it into a disjoint set of
cliques(clusters). Our approach is a greedy approximation
that optimises the LambdaCC [30] objective function de-
fined as:

min E

( 1J)€E+

Nzij+ Y Ml-zy) @

(i,5)€EE—

Given a connected graph with positive edges (£ 1) and neg-
ative edges (£ ), with ;; as binary distances for the edges.
A high lambda value gives a large penalty if negative edges
are present inside a cluster. This ensures that the clusters
are internally dense and externally sparse.

We define sets F' = {f;;}, B ={B}} and ET and E~
as the positive and negative edges in the similarity graph re-
spectively. Our greedy approximation of LambdaCC [30]
for cluster deletion is defined in Algorithm 1. The algo-
rithm starts by randomly sampling a bounding box from the
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Algorithm 1: Greedy approximation of cluster
deletion approach

Output: A set of clusters C' = {¢;} containing
visually similar bounding boxes
Input: B={BY}, F ={fi;},ET,E ., ts
C' < {} (Initialise an empty set C);
while | B| # 0 do
Randomly sample bounding box b and the
corresponding feature f from B and F;
¢ < {b} (Initialise ¢; with sample b);
forx € B— {b} do
if (z,b) € E* andVz; € ¢|(b,z;) ¢ E~
then
B + B — {z} (Remove z from B);
¢ ¢ U{z} (Add z to ¢;);
end
end
if |c;| > ts then
| C+ CUcq (Addc toC);
end

end
return Set of clustered bounding boxes C = {c;}

inductive set and growing a cluster around the box using
boxes with a positive edge connected to the sampled box.
We ensure that no negative edges are present inside the clus-
ter. This ensures homogeneity in the cluster, making them
dense internally. In the best case scenario, where ¢, = p, the
algorithm runs in linear time as negative edges are ignored.
The trade-off is that a larger number of bounding boxes will
end up in single element clusters and leave fewer reliable
samples for learning in the transductive phase. We also de-
fine a threshold on the cluster size called ¢, this removes
small clusters that mainly contain outliers which may be in-
herently unreliable predictions.

We select the representative sample using the optimisa-
tion mentioned in Eq. 5.

2

r; = min Z acj|—|x )
x Ci

r; is the representative sample for cluster ¢; and x; rep-
resents the visual feature used for clustering the bounding
boxes for every box in ¢;. We proceed to label the obtained
representative bounding box corresponding to the visual
feature r; as reliable or unreliable and propagate the same
label across the entire cluster. We collect all the bound-
ing boxes from the set of reliable clusters C'r and threshold
them based on their prediction confidence with ¢., which
we add to the set By,,, and use as our training data in the
transductive phase.

4.3. Transductive Step

In the transductive step, we create a copy of the induc-
tive model while freezing the backbone, the convolution-
downsampling block and SPP block, and fine-tune the re-
maining layers with reliable samples identified in the pre-
vious stage. We found that re-training both the detection
layers and the convolution upsampling layers of YOLOv3
with SPP yield better performance than training just the de-
tection layers. This helps in the image-level adaptation of
the model as mentioned in Section 3, whereas re-training
the detection layers help in instance-level adaptation. The
backbone of the model has been pre-trained on the Ima-
geNet dataset [3]. We provide training details for this model
in the supplementary. The transductive copy of the model is
used for player detection and evaluated in Section 6.

5. Dataset

In Section 2, we reviewed the various player detection
datasets available in the literature and their suitability to
evaluate player detection methods in continuous long shot
broadcast videos. Due to the lack of a proper dataset, we
have created a comprehensive player detection dataset to
evaluate our method. We plan to release this dataset to the
public along with this work. Data was collected from the
broadcast videos of three FIFA 2018 World Cup matches.
The videos are continuous, live, unedited broadcasts of the
match telecast to viewers. Annotations for this dataset con-
tain bounding boxes annotated at a per frame level for each
video. We have ensured that the videos contain samples of
at least four different camera views: top-zoomed-in, top-
zoomed-out, bottom-zoomed-in, bottom-zoomed-out, and
instances of transition between these views, as shown in
Fig. 4. The videos comprise matches between 4 different
teams(France, Croatia, Belgium, and England), which en-
sures variability in player appearances and jersey colors.
The dataset consists of 265,625 frame images consisting of
2,115,496 annotated bounding boxes and to the best of our
knowledge is the largest such dataset created. We have cov-
ered a wide range of player positions and orientations with
a large variability of bounding box sizes. There are also
multiple instances of player occlusion and the player being
truncated out of the frame, as shown in Fig. 4.

The dataset was annotated with the help of a pre-trained
YOLOv3 [24] detector along with the DeepSORT [31]
tracking algorithm, followed by manual corrections by hu-
mans. Instances of false positives, namely, detection of ref-
erees, audience members, support staff, and any other non-
players are removed. There are also instances where the
bounding box annotations need to be manually corrected to
fit the player better. We do not ensure that the final corrected
annotations are accurate to evaluate player tracking. Never-
theless, we do provide tracking annotations along with the
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(a) Top camera view

(c) Bottom view with multiple scale

bounding boxes

(e) Player pose(diving)

Figure 4: Annotated sample images from the dataset, showing
different views and scenarios some of which are challenging to

perform detection on.

(b) Bottom moving camera view

(f) Partial occlusion with net

Table 1: Details and statistics of the proposed dataset.

Match FR vs. CR FR vs. BE EN vs. CR
Date 15.07.2018 | 10.07.2018 | 11.07.2018
Broadcaster Fox Sports | Fox Sports | Fox Sports
Resolution 1280x720 | 1280x720 | 1280x720
Length(Frames) 95,176 95,944 74,505
Annotated Frames 86,954 89,268 56,096
Total bounding boxes 747,876 950,802 416,818
Avg. bounding boxes 8.6 10.65 7.43
Deleted bounding boxes 90,679 104,933 593,017

detection annotations. We use the CVAT [28] annotation
tool for annotating the videos and all annotations are stored
in the CVAT annotation format. We provide some useful de-
tails and statistics about the dataset and the videos in Table.
1.

6. Results and Experiments

We compare our detection results with pre-trained super-
vised, fine-tuned and self-supervised approaches for detec-
tion. We use precision, recall, and mAP with IoU=0.5 as
evaluation metrics, as per the standard practice [22]. We
additionally evaluate the performance of our clustering ap-

Table 2: Comparative results on proposed dataset using: pre-
trained general purpose detectors; supervised approaches for
player detection from SoccerDB [13] and FootAndBall [14]; self
supervised approach mentioned in [27] without domain noise re-
moval. Bottom row represent number of samples annotated in the
labelling stage.

FR vs. CR FR vs. BE ENvs. CR
P R mAP | P R mAP | P R mAP
F-RCNN | 046 0.80 038 | 0.63 0.84 054 | 038 079 0.38
YOLOv3 | 042 083 059 | 049 0.85 0.65 | 034 082 054

Method

RNet 0.50 0.79 041 | 062 083 052 | 040 077 040
[13] 059 074 045 | 063 075 048 | 049 0.73 0.40
[14] 075 0.62 047 | 074 0.67 050 | 0.66 053 0.38
[27] 031 0.87 035 | 040 088 051 | 024 086 0.29
Ours 076  0.85 0.79 | 0.89 0.79 0.76 | 0.77 0.78 0.72
105 samples 55 samples 64 samples

proach compared to other simpler methods in removing un-
reliable predictions. We also showcase an interesting ap-
plication of our detector, wherein we use it to generate field
heat-maps using top-view registration of player positions on
the soccer field.

6.1. Baselines

Three widely used detectors, FasterRCNN [25],
YOLOv3 [24] with SPP [9](YOLOv3-SPP), and Reti-
naNet [15], are used as baselines using the person class
to showcase the poor performance due to false positives
in player detection. This showcases the domain shift be-
tween the two objectives and the need for methods to reduce
this. We use pre-trained networks trained on the MS COCO
dataset [16]. Results are reported in Table 2.

6.2. Main Results

We observe high detection performance of the transduc-
tive model with around 100 samples per video annotated
with domain labels. We compare our detection results with
two recent works SoccerDB [13] and FootAndBall [14], for
player detection. Both these works use models trained in
a supervised manner on labelled datasets. Results are re-
ported in Table 2. We observe that our method outperforms
models trained in a supervised setting by a significant mar-
gin since it is trained on target data of the specific videos.

We show some interesting qualitative results in Fig-
ure. 5. Images on the left are results generated using
SoccerDB [13], and those on the right are results from our
model. In the first row, we observe that false positives such
as staff wearing the team jersey are not detected. This is
a particularly challenging example since team staff wear
jerseys similar to players, so distinguishing between them
is difficult. In the second row, we observe that no detec-
tions are made in our model since no players are present
in the frame. This shows that the transductive model has
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Figure 5: Qualitative comparison of detection results. Left: Soc-
cerDB [13]. Right: Our proposed method.

unlearned the person class to a sufficient degree and now
focuses only on players. In the third row, we observe that
the model recognizes players in the initial line up. This is
interesting because these detections were not present in the
initial predictions made by the inductive model. This indi-
cates that the transductive model has learnt distinct features
unique to each player and is therefore making better predic-
tions.

6.3. Comparison with self-supervised approaches

We also compare our work with a recent self-supervised
approach that does not utilise instance-level domain labels
while fine-tuning the model parameters, as shown in Table
2. We train a YOLOvV3-SPP detector with the self-training
approach mentioned in [27]. We use DeepSORT [31] track-
ing to generate refined bounding boxes and soft labels, us-
ing distillation loss for training as mentioned in [27]. Since
there were no domain labels at the instance level to isolate
the target domain bounding boxes, the model’s performance
does not improve compared to the baseline. The model also
tries to learn the domain-noise present in the data. This is
highlighted by the fact that recall of the trained model in-
creases while reducing precision, indicating that the model
is making more predictions, but it is also generating more
false positives.

6.4. Comparison with supervised fine-tuning

We also evaluate our detection performance against su-
pervised fine-tuning approaches for detection. We ran-
domly sample a percentage of the ground-truth annotations
and fine-tune a YOLOvV3-SPP model by training the detec-
tion and upsampling convolution layer with this data and

Table 3: Supervised fine-tuning results on YOLOv3[24] with spa-
tial pyramid pooling[9]. The first column shows the percentage of
the ground truth data used for training.
FR vs. CR FR vs. BE EN vs. CR

P R mAP P R mAP P R mAP
10% | 0.69 091 085 | 077 094 089 | 0.65 091 0.83
15% | 071 091 086 | 0.79 094 090 | 0.67 092 084
20% | 073 091 086 | 081 094 090 | 0.69 092 0.85
25% | 074 091 086 | 0.82 094 091 | 0.70 092 085
30% | 0.74 091 0.87 | 0.82 094 091 | 0.71 092 0.86
Ours | 076 085 079 | 0.89 079 076 | 077 0.78 0.72

Data

Table 4: Comparative results of K-Means, Gaussian Mixture
Model(GMM) and our multi-model greedy(MMG) clustering for
identifying reliable predictions
K-Means GMM MMG

TPR FPR | TPR FPR | TPR FPR
FRvs.CR | 097 036 | 097 045 | 056  0.82
FRvs.BE | 099 036 | 096 044 | 075 0.72
ENvs.CR | 078 053 | 079 066 | 074 0.74

Video

testing it on the remaining data. Performance is reported
in Table. 3. We observe that our results are compara-
ble to those generated by the models trained using ground-
truth data while adding only instance-level domain labels to
around a 100 samples. It is also noted that the precision of
our approach is consistently higher, indicating more accu-
rate predictions being made.

6.5. Clustering baselines

We evaluate the performance of our clustering approach
alongside simpler clustering approaches using the visual
descriptor from our re-identification model for identify-
ing reliable predictions. For evaluation, we introduce two
metrics False Positive Removal Ratio(FPR) and True Pos-
itive Retention Ratio(TPR). FPR is the ratio of false pos-
itives removed to total false positives after pruning using
a given clustering method. TPR is the ratio of true pos-
itives retained to total true positives after pruning. High
values of both these metrics are desirable for successfully
identifying reliable predictions. We compare the results
of K-Means, Gaussian Mixture Models(GMM), and our
multi-model greedy(MMG) clustering in Table 4. We ob-
serve that MMG is able to consistently remove more false
positives(domain-noise) across all videos, while still retain-
ing a significant amount of true positives that are useful for
training. Training details are provided in the supplementary.

6.6. Improving image-level adaptation

Experiments are conducted to see which layers in the
YOLOV3-SPP need to be trained to achieve better image-
level adaptation. In general, while fine-tuning YOLOV3,
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(a) France vs. Croatia

(b) France vs. Belgium

(c) England vs. Croatia

Figure 6: Heat-map of player locations for first 20 minutes various matches. Brighter regions contain more players.

Table 5: Comparison between training only the detection lay-
ers(YOLO) and training both the convolution upsampling and de-
tection layers(YOLO+Up) to achieve better image level adapta-
tion.

FR vs. CR FR vs. BE EN vs. CR
Method
P R mAP | P R mAP | P R mAP
YOLO 064 079 0.67 | 0.69 0.80 0.69 | 0.66 0.72 0.60
YOLO+Up | 0.76 085 0.79 | 089 0.79 0.76 | 0.77 0.78 0.72

only the final detection layers are re-trained using the tar-
get domain data. However, we observe that jointly training
both the detection and the upsampling convolution layers of
our transductive model yielded much richer feature maps at
the detection layer. This increases the number of detection
the model makes at the NMS stage[24] and improves the
detector performance. Comparisons are shown in Table 5.

6.7. Field heat-maps

An interesting application for a reliable detection sys-
tem is tracking where players are throughout the match. To
showcase this, we generate a heat-map of the field using
bounding box detections from our transductive model for
the first 20 minutes of the FR vs. CR match. We use the
method described in [12] for top-view registration of de-
tected bounding boxes in every frame. We then warp the
bounding box centers and generate a heat-map over the en-
tire field. We show heat-maps for the first 20 minutes of the
three matches in our dataset as shown in Fig. 6. Some in-
teresting inferences can be obtained from these heat-maps
about the match. For instance, the heat-map for France vs.
Croatia map shows brighter regions towards the left goal
post, this goal post represents the Croatia side, which had
a goal scored against them at the 18” minute. Thus show-
ing a higher concentration of players on the Croatia side
of both defenders and attackers from the opposing team in
the first 20 minutes. In France vs. Belgium map, there is
a fairly uniform distribution of the players across the field.
This is consistent with the match since both teams had a

fairly equal possession of the ball and no goal was scored in
the video. For England vs. Croatia map, a small region of
activity can be seen on the Croatia side(left), where a goal
was scored early by England on the 5 minute. Such heat-
maps generated per player with reliable detection models
and player identities are useful tools in analyzing the game.
Heat-maps are just an example of the kind of analysis that
is possible with reliable detection systems. It would be in-
teresting to explore further avenues of application for such
systems.

7. Conclusion

This work analyzes player detection in unconstrained
soccer broadcast videos using a transductive approach for
learning without having annotated ground-truth data. We
formulate player detection as a domain adaptation problem
and highlight the domain noise issue that prevents unsu-
pervised and self-supervised forms of learning from per-
forming well. A novel clustering approach is proposed to
annotate domain labels collectively at the instance-level to
address this noise. We create a dataset comprising soccer
broadcast videos to evaluate our method, that we will re-
lease publicly. Our model performs player detection bet-
ter than other supervised and self-supervised methods with
only a few samples annotated with domain labels. Using our
trained transductive model, we showcase a real world appli-
cation by generating heat-maps that track player positions
across the field and draw inferences about the match from
them. Combining accurate detection models with player
recognition allows many applications such as tracking the
player across the match and searching for actions made by
a certain player across the video. Detection models are used
by many action detection approaches to localise the region
of the frame where an action is being performed. It would
be interesting to explore further applications of reliable de-
tection models in future works.
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