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Abstract

Integrating the solar power into the power grid system
while maintaining its stability is essential for utilising such
type of clean energy widely. It renders the solar irradiance
(determining the solar power) forecasting a critical task.
This paper tackles the problem of solar irradiance predic-
tion from a history of sky image sequence. Most existing ma-
chine learning methods directly regress the solar irradiance
values from a historical image sequence and/or solar irra-
diance observations. By contrast, we propose a novel deep
neural network for short-term solar irradiance forecasting
by leveraging a clear sky model. In particular, we build
our network structure on the vision transformer to encode
the spatial as well as the temporal information in the sky
video sequence. We then aim to predict the solar irradiance
residual from the learned representation by explicitly using
a clear sky model. We evaluated our approach extensively
on the existing benchmark datasets, such as TSI880 and
ASI16. Results on the nowcasting task, namely estimation
of the solar irradiance from the observations, and the fore-
casting task, which is up to 4-hour ahead-of-time predic-
tion, demonstrate the superior performance of our method
compared with existing machine learning algorithms.

1. Introduction
Global warming and climate change have become crit-

ical issues, which are mainly due to human activities, pri-
marily fossil fuel burning [2]. Using clean energy, espe-
cially solar energy, worldwide can reduce the carbon diox-
ide (CO2) emissions to the atmosphere which is considered
as one of the major sources for global warming [1]. While
solar power can make the energy system resilient, it is un-
stable which is largely influenced by real-time weather con-
ditions. Furthermore, the usage of the household roof solar
panel may lead to the risk of damaging the power grid in-
frastructure due to the exporting of excess household solar
power to the grid. To maintain the stability of the power
grid system, solar irradiance forecasting, namely prediction
of the solar irradiance for the future short-term and long-

Figure 1. Examples of solar irradiance variations on a cloudy day
(a) and a clear day (b). It shows that the shielding of clouds causes
solar irradiance to drop compared with that on clear days. Given
the observed sky images (c), and (d) for the past 1 hour (see the
green triangles in (a), (b) respectively), we aim to forecast the solar
irradiance up to 4 hours ahead-of-time (see red dots in (a), (b)).

term horizon from historical observations, is beneficial for
solving the problem.

Traditional methods, such as Autoregressive Moving Av-
erage [15], and Autoregressive Integrated Moving Aver-
age [19], are proven effective in modelling historical solar
irradiance sequence only even with limited data. However,
solar irradiance is highly influenced by real-time weather
conditions. Thus, the most recent common trend in short-
term solar irradiance forecasting consists of modelling the
sky image video sequences using deep learning models
such as long short-term memory (LSTM) for future predic-
tion [21]. Specifically, to reduce the memory requirement in
modelling the image sequence, each image in the sequence
is encoded as a feature vector by a pretrained nowcasting
model, which is a framework to estimate the solar irradi-
ance output at the time instance with image observation.
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Then the temporal encoding is achieved via LSTM on the
extracted image feature sequences.

Unlike [21], we propose a unified framework based on
the encoder of the Vision Transformer (ViT) [10] for fea-
ture extraction as well as temporal encoding. Such network
structure allows us to encode the long-range spatial infor-
mation within an image and the temporal information of the
video sequence across the long-term horizon.

Similar to [21], we explore the clear sky model which
models the solar irradiance values on a clear day. Instead of
treating the solar irradiance value from the clear sky model
as an extra dimensional feature only, we explicitly predict
the residual between the true irradiance value and the one
from the clear sky model. Examples of sky images and their
corresponding solar irradiance on a cloudy day and a clear
day are shown in Fig. 1. As evidenced by our experiments
on TSI880 and ASI16, our method shows superior perfor-
mance.

Our contributions can be summarised as follows.

• We introduce a transformer-based solar irradiance pre-
diction model that can encode the spatial and temporal
information in a unified structure.

• Our explicit residual prediction of the solar irradiance
using a clear sky model benefits the short-term solar
irradiance forecasting.

• It yields the state-of-the-art performance on the now-
casting task and shows superior performance on fore-
casting tasks.

2. Related work
Traditional Methods Modelling variations in solar irra-
diance has been studied for decades. In the early stage of
the solar energy field, the research is hindered by lacking
solar irradiance data collection devices. Therefore, the in-
direct prediction methods are explored to predict solar irra-
diance from sunshine duration, diffuse radiation, tempera-
ture, and relative humidity. The atmospheric information,
such as temperature and relative humidity, has been proven
correlated with solar irradiance on clear days. The model
proposed by Udagawa [3] achieves the prediction by explor-
ing the relationship between the height of the sun and solar
irradiance. Although it adopts limited data and lacks time
representation, it still lays a foundation for future research.

Direct prediction models predict the values of future so-
lar irradiance from the former solar irradiance values. More
and more facilities are dedicated to collecting solar irra-
diance data to provide effective support for research pur-
poses [12, 22]. There are several kinds of traditional predic-
tion methods, such as regression model, trend extrapolation,
and support vector machine (SVM) [28].

Time series approaches primarily aim at the modelling
of long-term solar irradiance forecast, which includes Mov-
ing Average, Autoregressive [6], Autoregressive Moving
Average [15], and Autoregressive Integrated Moving Aver-
age [19] models. These time series models rely on historical
solar irradiance only, ignoring the relevant meteorological
factors. Besides, it can merely capture linear relationships
and require stationary input data. Since these traditional
methods have limitations such as manual feature extraction
and cannot handle non-linear problems [9], machine learn-
ing provides a new approach to this task.

Machine Learning Methods Machine learning models,
such as Artificial Neural Network (ANNs) [17], have been
widely used for solar irradiance forecasting tasks. Wang et
al. [25] propose a backpropagation neural network, which
is a simple fully connected neural network, to perform a
short-term solar irradiance forecast. Inputs and outputs of
this model are both solar irradiance with an interval of one
hour. The simple model can only provide short-term perdi-
tion. It could not meet the performance requirements under
complex weather conditions. After that, ensemble methods
have been introduced, such as Random Forests [7] and Ex-
treme Gradient Boosting [8].

To improve real-time forecasting accuracy and reduce
the possible negative effects of photovoltaic systems, Yang
et al. [27] propose a weather-based hybrid method for 1-
day ahead hourly forecasting of solar power output with the
application of Self-organizing Map, Learning Vector Quan-
tization, and Support Vector Regression. There is an obvi-
ous time series in input data, we can use machine learning
algorithms to learn the patterns between these series.

Recent developments in deep learning, particularly in
Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM), provide approaches to solve this prob-
lem. Qing and Niu [20] use LSTM to catch the dependence
between hourly solar irradiance values over a day. Gensler
et al. [11] employ an auto-encoder architecture to reduce the
dimension of historical data, and apply LSTM to forecast
the solar irradiance. Nonetheless, these methods just utilise
solar irradiance to perform forecast, but do not include sky
image features, which can well indicate the current weather
conditions and play an important role in forecasting solar
irradiance.

Sky Images On cloudy days, solar irradiance fluctuate
greatly at a small level, which makes the forecast of solar
irradiance more challenging. Wolff et al. [26] propose a
method to track the movement of clouds by using digital
image processing technology and calculating the displace-
ment of clouds in the sky images. Alonso-Montesinos et
al. [4], as well as Kurtz and Kleissl [16] design networks
that first predict the cloud distributions base on linear ex-
trapolation, then calculate the solar irradiance according to
the predicted distributions of clouds. Zhang et al. [29] ex-
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Figure 2. The overview of our transformer-based forecasting network. Given a sequence of historical sky images and their corresponding
auxiliary weather data for the past M frames, this model forecasts solar irradiance up to T time steps ahead-of-time.

plore different architectures to estimate the variation of so-
lar irradiance from current and previous solar irradiance val-
ues. However, their model can only predict one time step
and is more suitable for ultra-short-term prediction tasks,
such as one minute.

Recently, Siddiqui et al. [21] employ a nowcasting
model consisting of convolutional layers to extract the fea-
tures of each sky image followed by using an LSTM to en-
code the temporal information for forecasting solar irradi-
ance for the next 4 hours. It additionally leverages the clear
sky model as an additional feature for solar irradiance fore-
casting. By contrast, we explicitly explore the clear sky
model and predict the residual which is proven effective in
the forecasting task.

3. Our Approach
Let us now introduce our approach to solar irradiance

forecasting. Let I1:M be a sequence of M observed sky
images I1:M = {Ii}Mi=1, where Ii represents the ith his-
torical image frame. Assume their corresponding auxiliary
data A1:M = [a1,a2, · · · ,aM ], where am ∈ Rk repre-
sents k weather features such as air temperature, relative
humidity, wind speed, and air pressure, etc. Our goal is
to forecast a sequence of solar irradiance sM+1:M+T =
[sM+1, sM+2, · · · , sM+T ], where st ∈ R, t ∈ {M +
1, · · · ,M + T}, for the next T time steps. In our exper-
iments below, we are focusing on short-term solar irradi-
ance prediction by observing sky images in the past 1 hour
(M = 6) to forecast the solar irradiance up to 4 hours
ahead-of-time (T = 24).

An overview of our framework is shown in Fig. 2. It
mainly consists of three modules, namely the feature extrac-
tion module, the temporal encoding module, and the solar
irradiance residual prediction module. Below, we discuss
these modules in detail.

3.1. Nowcasting Network for Feature Extraction

To obtain sM+1:M+T from I1:M , the common practice is
to build an end-to-end trainable network. While it is likely
to yield the best performance due to the end-to-end training,
the memory cost will grow significantly with the increase of
the image resolution. Therefore, instead of treating the im-
age video sequence as the input to the forecasting network
directly, we propose to perform the prediction from the fea-
ture of each historical image and auxiliary data extracted
from a nowcasting network. Specifically, the nowcasting
network is designed to estimate the solar irradiance for each
time instance from the observed data. Similar to [21], our
nowcasting network takes the observed sky image It as well
as the auxiliary information, namely the meteorological in-
formation at which includes wind speed, air temperature,
and relative humidity, as input to estimate the correspond-
ing solar irradiance st at time t.

Our nowcasting network largely follows the most re-
cent transformer-based framework, namely Vision Trans-
former (ViT) [10], to encode the input information. The
network structure is shown in Fig. 3. Given a sky im-
age I ∈ RH×W×C , where (H , W ) is the resolution of
the input image and C is the number of channels, we first
split it into a sequence of N patches of size (P , P ), where
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Figure 3. Transformer-based nowcasting network

N = HW/P 2. Then each image patch is flattened into a
vector xn ∈ RP 2·C , n = {1, 2, ..., N}. {xn}Nn=1 are then
further embedded into D dimensions with a trainable linear
projection to obtain the patch embeddings.

Similar to the Vision Transformer (ViT) [10], we put an
extra embedding x0 at the beginning of the sequence. This
extra embedding x0 is a learnable mapping from the input
auxiliary data a which concatenates the information such
as air temperature, relative humidity, wind speed, air pres-
sure, azimuth angle, zenith angle, and an estimated solar
irradiance value from a clear sky model [13]. Since these
auxiliary parameters have different ranges, each component
is normalized by subtracting the mean and then dividing by
its standard deviation before feeding them into the network.
Transformer Encoder Module. Following ViT [10], we
encode the image as well as the auxiliary data using
the transformer encoder module (see Fig. 4). To be self-
contained, we review the transformer encoder module be-
low. This module consists of L transformer layers, each
of which is further composed of a multi-head self-attention
(MSA) and a multilayer perceptron (MLP) sub-layer. For
each sub-layer, a layernorm (LN) [5] is applied before it
and a residual connection [14] is employed around it. The
MSA layer is depicted in the right column of Fig. 4, which
mainly follows the classical structure proposed by Vaswani
et al. [24]. An attention mechanism is applied to a query
matrix Q and a set of key-value pairs, which are packed to-
gether into a key matrix K and a value matrix V . They are
essentially the transformed image and auxiliary data em-
beddings. This can be expressed as

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (1)

where dk is the dimension of queries and keys and 1√
dk

is a
scaling factor of the dot-product.

Figure 4. (left) Transformer encoder module [10, 24] (right) Multi-
head self-attention structure [24]

In addition, we also apply the multi-head strategy [24]
in which the queries Q, keys K and values V are linearly
projected h times with different, learnable matrices WQ

i ∈
RD×dk ,WK

i ∈ RD×dk ,WV
i ∈ RD×dk , i = {1, 2, ..., h}.

For each projection, we perform the attention mechanism
to the projected QWQ

i ,KWK
i , V WV

i in parallel and re-
gard each of them as an attention head. The outputs from h
self-attention blocks are concatenated and then projected by
WO ∈ Rhdk×D to generate the final representation. That is

MSA(Q,K, V ) = Concat(head1, ..., headh)WO (2)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ). Follow-

ing [10], the formulation of these L layers of transformation
are provided below

z0 =
[
x0;x

1
pE;x2

pE; · · · ;xN
p E

]
+Epos

z′ℓ = MSA(LN (zℓ−1)) + zℓ−1,

zℓ = MLP (LN (z′ℓ)) + z′ℓ,

f = LN
(
z0L

) (3)

where ℓ = {1 . . . L}, E ∈ R(P
2·C)×D and Epos ∈

R(N+1)×D represents the position embeddings. We can ob-
tain the image and auxiliary data representation f after the
encoding process by the transformer.

3.2. Transformer-based Temporal Encoding for
Forecasting

We extract the representation for the historical observa-
tion from the nowcasting network. The observed image
sequence as well as the auxiliary data are represented as
f1:M = [f1, f2, · · · , fM ], where fi ∈ Rd, i ∈ {1 . . .M}.
Note that the nowcasting network can be trained offline.
The extracted feature is a low dimensional representation
of the image which alleviates the memory constraint on the
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Figure 5. Sky images under different weather conditions from TSI880 dataset (top) and ASI16 dataset (bottom).

forecasting network. Given f1:M , we adopt a transformer
module for the temporal encoding. Similarly, we introduce
an extra embedding f0 as a global representation for this ob-
served image sequence. The transformer module explores
the long-range dependencies among the observed data and
encodes the feature sequence to a sequence embedding h
for the forecasting task.

3.3. Residual Forecasting with a Clear Sky Model

Instead of predicting the solar irradiance for the next T
frames from the sequence embedding h directly, we pro-
pose to learn the residual solar irradiance relative to an ini-
tial prediction p ∈ RT that is calculated from a simple clear
sky model [13]. This model defines the value of solar irra-
diance under a cloudless day as

GHI = 1098× cos(z)× exp

(
−0.057

cos(z)

)
(4)

where GHI denotes the Global Horizontal Irradiance and z
represents the solar zenith angle. For each time step t in the
next T frames, we calculate the GHI value using the solar
zenith angle zt at time t.

We learn the solar irradiance residual with respect to p
from the features extracted from historical sequence embed-
ding h as well as p via a network consisting of a few MLP
layers with residual connections.

3.4. Training

Let us now introduce the loss function, ln and lf , we use
to train our nowcasting and forecasting model, respectively.

ln =
1

N

N∑
i=1

|ŝi − si| (5)

lf =
1

N · T

N∑
i=1

T∑
j=1

|ŝiM+j − siM+j | (6)

where ŝi denotes the estimated solar irradiance by the now-
casting model, si is the ground truth for the ith sample, and
ŝiM+j is the predicted solar irradiance for the next jth time
step.

Both our nowcasting network and forecasting network
are trained using SGD optimizer with batch size of 32,
learning rate as 0.001, and a momentum of 0.9. For the
nowcasting network, the input image is of size 224 × 224
and the patch is of size (16, 16). We set the number of trans-
former layers as 12 and the input dimension D as 768. In
each transformer layer, the number of heads h is chosen as
12, thus the projected vector dimension dk in a single at-
tention block becomes dk = D/h = 768/12 = 64. The
dimension of the feature representation f extracted from the
nowcasting network for each image is set as 64. In the fore-
casting network, the number of residual blocks is 6 and the
hidden dimension is 512.

4. Experimental Results and Analysis
Following the previous work [21], we evaluate our

method on TSI880 and ASI16, two publicly available
datasets. In the following, we discuss these datasets, evalu-
ation metrics, the baseline approach and present our results.

4.1. Datasets

The TSI880 and ASI16 are publicly benchmark
datasets built by Solar Radiation Research Laboratory
(SRRL) [23] of the National Renewable Energy Laboratory
(NREL) [18]. Since 1981, SRRL has been continuously
collecting research-quality measurements of solar radiation
and surface meteorological parameters using the installed
Baseline Measurement System (BMS). BMS has more than
80 meteorological sensors, such as pyranometers, pyrhe-
liometers, pyrgeometers, anemometers, etc.
TSI880 SRRL has employed a NREL-built All-Sky cam-
era with 180◦ fish eye lens, named TSI-880, to capture the
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Model TSI880 2015 TSI880 2016 ASI16 2020
Siddiqui et al. (wo) [21] 15.9 17.3 14.0∗

Siddiqui et al. [21] 14.6 15.7 13.1∗

Ours(wo) 8.2 8.4 8.2
Ours 7.7 7.7 6.9

Table 1. nMAP errors (%) for nowcasting on TSI880 and ASI16 dataset (wo - without the auxiliary input, * - reproduced results).

Figure 6. Sampled nowcasting results of solar irradiance on TSI880 2015 dataset (first row), TSI880 2016 dataset (second row), ASI16
2020 dataset (third row) by Siddiqui’s model [21] and our model.

sky images every 10 minutes and archive them to disk since
July 14, 2004. We show example sky images in the first row
of Fig. 5. In TSI880, a mechanical sun tracker is adopted to
block the sun and prevent image saturation. Following [21],
we train our network on 2004-2014 data and test on 2015-
2016 data for both nowcasting and forecasting tasks. For the
nowcasting dataset, we match the sky images (taken every
10 minutes) with the auxiliary data in the BMS data stream
(refreshed every minute), and the resulting interval of each
sample is 10 minutes. It results in 260,754 and 52,707 data
pairs for training and testing, respectively. For the fore-
casting task, the network takes 6 consecutive sky images
consisting of one hour observation as input to forecast the

future 24 solar irradiance values which are the 4 hour ahead-
of-time prediction.

ASI16 ASI16 is a dataset of images captured by a high
quality camera, ASI-16, every 10 minutes since September
26, 2017 without a sun tracker. As shown in the second
row of Fig. 5, the sky images under different weather con-
ditions in the ASI16 dataset have better quality than those in
TSI880 due to its wider field of view. For nowcasting, we
use sky images captured between 2017 and 2019 (51,091
frames in total) for training and 2020 (25,043 frames) for
testing. For forecasting, similar to TSI880, the model is
trained by taking the past 6 frames as input to predict the
future 24 solar irradiance values.
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TSI880 2015 TSI880 2016 ASI16 2020
Model + 1 h + 2 h + 3 h + 4 h + 1 h + 2 h + 3 h + 4 h + 1 h + 2 h + 3 h + 4 h
Siddiqui et al. [21] 17.9 25.2 31.6 39.1 16.9 25.0 31.9 39.5 21.6∗ 27.9∗ 33.0∗ 36.9∗

Ours 22.6 26.3 30.1 33.7 19.9 23.8 27.2 30.7 17.4 20.9 25.1 29.2

Table 2. nMAP errors (%) for forecasting the solar irradiance for the next 4 hours (T = 24) on TSI880 and ASI16 dataset (* - reproduced
result). +1h, +2h, +3h and +4h represent the nMAP error evaluated at the next 6th, 12th, 18th and 24th time step, respectively.

Figure 7. Sampled forecasting results for the next 4 hours on TSI880 2015 dataset (first row), TSI880 2016 dataset (second row), ASI16
2020 dataset (third row) by Siddiqui’s model [21] and our method. The four dots shown on each forecasting curve represent the predicted
value exactly at +1h, +2h, +3h, +4h.

4.2. Evaluation Metric and Baseline

We evaluate the performance of our nowcasting and fore-
casting models using the normalized mean absolute per-
centage (nMAP) error defined below,

nMAP =
1

N

N∑
i=1

|gi − si|
1
N

∑N
i=1 gi

× 100 (7)

where gi is the ground truth and si is the predicted solar
irradiance value for the ith sample, i ∈ {1, . . . , N}. It is
commonly used in solar irradiance forecasting. We compare
our approach with [21] which consists of the state of the art.

4.3. Results

TSI880 The nowcasting results on TSI880 dataset are
shown in Tab. 1. Compared with [21], our transformer-
based nowcasting framework, with auxiliary input, reduces
the nMAP error by 6.9% and 8% on the 2015 and 2016
datasets, respectively. The qualitative results shown in
Fig. 6 further demonstrate the performance of our approach.
In Tab. 2, we report the nMAP errors for the forecasting task
on TSI880 dataset. Our proposed method achieves a smaller
forecasting error for 3-hour and 4-hour prediction. Specif-
ically, our approach achieves a 5.4% reduction on TSI880
2015 and a 8.8% reduction on TSI880 2016 for 4-hour pre-
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TSI880 2015 TSI880 2016 ASI16 2020
Model + 1 h + 2 h + 3 h + 4 h + 1 h + 2 h + 3 h + 4 h + 1 h + 2 h + 3 h + 4 h
Clearsky only 39.6 41.3 44.0 46.8 32.6 34.5 36.9 39.6 27.3 29.4 32.8 36.8
Transformer only 23.9 29.3 34.8 40.5 21.3 26.8 31.8 38.4 18.4 22.9 28.2 34.1
Ours 22.6 26.3 30.1 33.7 19.9 23.8 27.2 30.7 17.4 20.9 25.1 29.2

Table 3. nMAP errors (%) for forecasting with and without a clear sky model on TSI880 and ASI16 dataset.

Figure 8. Visualization of sky images as well as their corresponding attention maps by our transformer-based nowcasting network on
TSI880 dataset (top) and ASI16 dataset (bottom).

diction. The qualitative comparisons for the forecasting task
are shown in Fig. 7. In these figures, the green curves de-
pict the past 1 hour observation, while the orange and red
curves represent the forecasting results of solar irradiance
for the next four hours by Siddiqui’s method [21] and ours,
respectively. It shows that our approach outperforms [21],
especially for the next 3-hour and 4-hour prediction, under
various weather conditions (reflected by the fluctuation of
the solar irradiance curve across the day).

ASI16 As the source code of [21] is not publicly avail-
able, we report the results of [21] on ASI16 based on our
own implementation which follows the descriptions of their
model in the paper. The results for nowcasting and fore-
casting tasks are shown in Tab. 1 and Tab. 2, respectively.
Our approach achieves a 6.2% error reduction for nowcast-
ing when using sky images to estimate solar irradiance. As
illustrated in the third row of Fig. 6, our transformer-based
nowcasting network can outperform [21] even under chal-
lenging weather conditions. For the forecasting task, our
model consistently achieves 4.2%, 7%, 7.9% and 7.7% im-
provements over [21] for the next 4 hours.

Ablation Study To show the influence of the explicit
residual prediction with a clear sky model, we train the
model with and without the residual learning. Results in
Tab. 3 show that learning the residual of the solar irradi-
ance under a clear day indeed benefit the forecasting perfor-
mance consistently. By explicitly leveraging the clear sky
model, the nMAP errors are reduced by 1.3%, 3%, 4.7%,

and 6.8% on TSI880 2015 and 1.4%, 3%, 4.6% and 7.7%
on TSI880 2016 for the next four hours forecasting, respec-
tively. For ASI16 2020 dataset, our model also achieves
consistent improvement for next four hours solar irradiance
forecasting task.

Visualisation of Attention In Fig. 8, we visualise sam-
pled attention maps from our transformer-based nowcast-
ing network on TSI880 and ASI16 dataset respectively. The
example images cover different weather conditions such as
sunny, cloudy, and rainy days. The attention map shows
that the attention model can find the most relevant pixels
spatially within the image which contributes mostly to the
solar irradiance estimation. In particular, the highlighted
regions mostly focus on the sun regions in the image. The
errors in Fig. 8 are mainly due to the insufficient number of
training data which leads to the imperfect attention maps.

5. Conclusions

In this paper, we demonstrate that explicitly predicting
the residual of the solar irradiance relative to initial values
defined by a clear sky model will benefit fore-casting task.
In the future, we will explore next frame image prediction
and generation for long-term solar irradiance forecasting.
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