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Abstract

Recent efforts in multi-domain learning for semantic seg-
mentation attempt to learn multiple geographical datasets
in a universal, joint model. A simple fine-tuning experi-
ment performed sequentially on three popular road scene
segmentation datasets demonstrates that existing segmenta-
tion frameworks fail at incrementally learning on a series of
visually disparate geographical domains. When learning a
new domain, the model catastrophically forgets previously
learned knowledge. In this work, we pose the problem of
multi-domain incremental learning for semantic segmenta-
tion. Given a model trained on a particular geographical
domain, the goal is to (i) incrementally learn a new geo-
graphical domain, (ii) while retaining performance on the
old domain, (iii) given that the previous domain’s dataset
is not accessible. We propose a dynamic architecture that
assigns universally shared, domain-invariant parameters to
capture homogeneous semantic features present in all do-
mains, while dedicated domain-specific parameters learn
the statistics of each domain. Our novel optimization strat-
egy helps achieve a good balance between retention of old
knowledge (stability) and acquiring new knowledge (plas-
ticity). We demonstrate the effectiveness of our proposed
solution on domain incremental settings pertaining to real-
world driving scenes from roads of Germany (Cityscapes),
the United States (BDD100k), and India (IDD). 1

1. Introduction
Driving is a skill that humans do not forget under nat-

ural circumstances. They can easily drive in multiple ge-
ographies. This shows that humans are naturally capable
of lifelong learning and barely forget previously learned vi-
sual patterns when faced with a domain shift or given new
objects to identify. In recent times, there has been an ac-
tive interest in developing universal vision systems capa-
ble of performing well in multiple visual domains. We ask

1Code is available at
https://github.com/prachigarg23/MDIL-SS
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Task 3: Learn on IDDTask 2: Learn on BDDTask 1: Learn on CS

=  {road, car, train}

Task 1 Task 2 Task 3

IDD DomainCityscapes Domain
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BDD100k Domain
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Figure 1: Top row: Our setting over three incremental tasks:
learning a model on CS (task 1), followed by learning on
BDD (task 2) and IDD (task 3). The domains have non-
overlapping label spaces, where the black categories are
shared among all domains and red categories are domain-
specific. Bottom row: The problem of catastrophic forget-
ting: as the CS model is fine-tuned on BDD and further on
IDD, we witness a sharp degradation in performance of old
datasets; our method significantly mitigates this forgetting.

the question: can a semantic segmentation model trained on
road scenes of a particular city extend to learn novel geo-
graphic environments?

Consider learning incrementally over three autonomous
driving datasets: Cityscapes → BDD100k → Indian Driv-
ing Dataset. We conduct a fine-tuning experiment over
these three datasets and find that deep neural networks for-
get previously acquired knowledge when trained on novel
geographic domains. The degradation of performance is
evident in Figure 1. This phenomenon where new knowl-
edge overwrites previous knowledge is referred to as catas-
trophic forgetting [29] in incremental learning. We observe
that when shifting from one geography to another, catas-
trophic forgetting can be due to two factors: (i) a domain

761



shift is encountered in the road scene environment due to
varying background conditions, such as driving culture, il-
lumination, and weather; and (ii) the label space for se-
mantic segmentation might change when encountered with
novel classes in the new geography while missing some of
the old classes.

Most semantic segmentation research today focuses on
developing models that are specialized to a specific dataset
or environment. They fail to work in continual learning set-
tings, where we want to extend the scope of our autonomous
driving model to road environments with a potential domain
shift. In the absence of an incremental model, a naive way to
solve this problem is to train a separate, independent model
for each geography, store all models and deploy the corre-
sponding model when the road scene environment changes.
Another option is to store data from all these domains and
re-train a single, joint model from scratch each time a new
domain’s data is collected. Both these approaches involve
a significant computational overhead, are not scalable, and
data-inefficient as it requires storing large amounts of data
that may be proprietary or unavailable. Moreover, when
training separate models, the new domain cannot benefit
from an old one’s existing knowledge (forward transfer in
continual learning [9]).

Kalluri et al. [18] proposed a universal semi-supervised
semantic segmentation technique that models multiple geo-
graphic domains simultaneously in a universal model. Their
method requires simultaneous access to all the datasets in-
volved, and does not follow the incremental learning set-
ting. We extend this literature by considering the case of
incremental learning where multiple domains are learnt in
a single model, sequentially, eliminating the need to store
previously learnt data. We draw inspiration from exist-
ing literature on multi-domain incremental learning (MDIL)
for classification [36, 37, 26], and reparametrize a seman-
tic segmentation architecture into domain-invariant param-
eters (shared among domains) and domain-specific parame-
ters that are exclusively added, trained on and used for each
novel domain being learnt. To the best of our knowledge,
our work is the first attempt at MDIL for semantic segmen-
tation. Our key contributions can be outlined as follows:

1. We define the problem of multi-domain incremental se-
mantic segmentation and propose a dynamic framework
that reparameterizes the network into a set of domain-
invariant and domain-specific parameters. We achieve
this with a 78.83% parameter sharing across all domains.

2. In continual learning, plasticity is the ability to acquire
new knowledge, while stability refers to retaining exist-
ing knowledge [31]. Our primary objective in this work
is to tackle this stability-plasticity dilemma. We propose
a novel optimization strategy designed to fine-tune the
domain-invariant and domain-specific layers differently
towards a good stability-plasticity trade-off. In a first,

we find a combination of differential learning rates and
domain adaptive knowledge distillation to be highly ef-
fective towards achieving this goal.

3. We consider the challenging issue of non-overlapping la-
bel spaces in multi-domain incremental semantic seg-
mentation owing to its relevance in real-world au-
tonomous driving scenarios. We show that our model
performs well on both: (i) datasets that have a do-
main shift but an overlapping label space (Cityscapes →
BDD100k); (ii) datasets that have non-overlapping label
spaces in addition to domain shift (Cityscapes → Indian
Driving Dataset). We also analyze forward transfer and
domain interference in these cases (Section 4).

2. Related Work
2.1. Incremental Learning

Incremental learning (IL) involves lifelong learning of
new concepts in an existing model without forgetting pre-
viously learned concepts. IL in computer vision has
most widely been studied for image classification [35, 8],
where the methods can be broadly grouped into three cat-
egories [8]: memory or replay-based, regularization-based,
and parameter-isolation based methods. Replay-based tech-
niques store previous experience either implicitly via gen-
erative replay [42, 49, 34] or explicitly [38, 4, 17, 50]
in the form of raw samples or dataset statistics of pre-
vious data. Regularization-based methods can be fur-
ther categorized as prior-focused [56, 20, 6, 1] and data-
focused methods [16, 24, 11]. In parameter isolation meth-
ods [27, 26, 37, 2], additional task-specific parameters are
added to a dynamic architecture for each new task.

Multi-Domain Incremental Learning. Multi-domain IL
is concerned with sequentially learning a single task,
say image classification, on multiple visual domains with
possibly different label spaces. The earliest works in
this space on the classification task are Progressive Neu-
ral Networks [41], Dynamically Expandable Networks
(DENs) [54], and attaching controller modules to a base
network [40]. [26] and [28] learn a domain-specific bi-
nary mask over a fixed backbone architecture to get a com-
pact and memory-efficient solution. Other works using
parameter-isolation based techniques dedicate a domain-
specific subset of parameters to each unique task, to mit-
igate forgetting by construction. To this end, Rebuffi et
al. introduced residual adapters in series [36] and paral-
lel [37] in an attempt to define universal parametrizations
for multi-domain networks by using certain domain-specific
and shared network parameters. Other recent works [14, 3,
13, 43] also share a similar approach, but focus on the clas-
sification task. Recently, [25] proposed incremental learn-
ing across various domains and categories for object de-
tection. Also related to our work is multi-task incremen-
tal learning [19] over tasks like edge detection and human

762



Problem Setting Sequential Differences, Source vs target Data (availability, supervision) Goals Solution Type
Label Space Domain Shift Source Target Task-Aware Multi-Head

UDA [46, 47, 53] ✓ same ✓ ✓ ✓(unlabeled) learn new × ×
Class-IL [32, 5, 12, 33] ✓ different × × ✓ retain old, learn new × ×
MDL [18] × different ✓ ✓ ✓ retain all ✓ ✓
MDIL (ours) ✓ different ✓ × ✓ retain old, learn new ✓ ✓

Table 1: A comparison of different semantic segmentation settings: Unsupervised Domain Adaptation (UDA), Class Incre-
mental Learning (Class-IL), Multi-Domain Learning (MDL) and Multi-Domain Incremental Learning (MDIL)

parts segmentation. Our work in multi-domain incremental
learning, while inspired by these methods, seeks to address
the semantic segmentation setting for the first time.

Incremental Learning for Semantic Segmentation. IL
methods have been developed for semantic segmentation in
recent years, although from a class-incremental perspec-
tive. [32, 5] and [21] were the first to solve class-IL for se-
mantic segmentation. Recent methods [5, 12, 33] focus on
the problem of semantic shift in the background class distri-
bution, which is typical to strict class incremental learning
for semantic segmentation. In their setting, labels occur-
ring in previous steps are not used for training in subsequent
steps and all classes belong to the same domain. Not only
does MDIL have a domain drift between any two consecu-
tive steps, there are no restrictions on the label spaces which
may or may not have common labels (Table 1).

2.2. Domain Adaptation
Our work may also be related in a sense to domain adap-

tation [57, 46, 53, 30, 51] for semantic segmentation. [52]
proposed incremental unsupervised domain adaptation and
showed the effectiveness of learning domain shift by adapt-
ing the model incrementally over smaller, progressive do-
main shifts. Class-incremental domain adaptation [23] fo-
cused on source-free domain adaptation while also learn-
ing novel classes in target domain. However, all such ef-
forts tackle domain adaptation where source knowledge is
adapted to target domains in general, unlike our work in
IL which focuses on retaining source domain performance
while learning on the target domain (Table 1).

3. Multi-Domain Incremental Learning for Se-
mantic Segmentation: Methodology

Problem Setting. In incremental learning, T tasks are
presented sequentially, each corresponding to a differ-
ent dataset of domains D1,D2, ...,Dt, ...,DT having label
spaces Y1,Y2, ...,Yt, ...,YT , respectively. Learning takes
place in incremental steps, where each step involves learn-
ing an existing model on the current task Tt, which in our
case is Dt. A domain Dt represents image data collected
from a particular geographic road environment, and Yt rep-
resents the semantic label space of the classes present in that
domain. We consider the general case of non-overlapping
label spaces such that the label space Yt will either have a

full overlap or a partial overlap w.r.t. Yt−1. Yt may contain
novel classes that were not present in Yt−1 and Yt−1 may
also have novel classes absent in Yt. Dt has a domain shift
with respect to Dt−1, as expected.

Our goal is to train a single semantic segmentation model
M that learns to classify data on each domain Dt, sequen-
tially. Hence, given T tasks, at each IL step t, we aim to
learn a task-aware mapping Mt(Xt, t) = Yt for the tth do-
main Dt = (Xt,Yt), such that performance on any of the
previous domains Dt−i, 0 < i < t does not degrade when
learning on the tth domain. At any given step t, input Xt−i

or annotation Yt−i data pertaining to any previous domain
Dt−i is not available for training. Note that we use the terms
task, domain, and dataset interchangeably to refer to Dt.

Proposed Framework. Our frameworkM , as illustrated in
Figure 2, is composed of a shared encoder module F and
different domain-specific decoder modules Gt for predic-
tion in the domain-specific label spaces. For a given input
image xt ∈ Dt at incremental step t, our method learns a
mapping Mt(xt, t;Ws,Wt) = Gt(F(xt, t;Ws, αt)), com-
posed of a set of shared, domain-invariant parameters Ws

which are universal for all domains and a domain-specific
set of parameters Wt which are exclusive to its respec-
tive domain Dt. The idea is to factorize the network la-
tent space such that homogeneous semantic representation
among all datasets gets captured in the shared parameters
Ws. In contrast, heterogeneous dataset statistics are learned
by the corresponding domain-specific layers Wt. This way,
by construction, we get a good stability-plasticity trade-off.
Our approach is designed for segmentation models with a
ResNet [15] based encoder backbone. We modify each
residual unit in the encoder to a Domain-Aware Residual
Unit (DAU).

Domain-Aware Residual Unit: As shown in Figure 3, each
DAU consists of (i) a set of domain-invariant parameters
Ws = {w1, w2}, and (ii) a set of domain-specific parame-
ters for each task t given as, αt = {αw, αs, αb}. w1, w2 are
the 3× 3 convolutional layers present in a traditional resid-
ual unit [15] and are shared among all domains. Domain-
specific layers in the DAU are of two kinds: (i) Domain-
Specific Parallel Residual Adapter layers (DS-RAP), and
(ii) Domain-Specific Batch Normalization layers (DS-BN).
We use the concept of Parallel Residual Adapters (RAP)
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Training Phase

Frozen

Inference Phase

x

Figure 2: Multi-domain incremental semantic segmentation framework. Training Phase: Training on domain Dt in
incremental step t. Our model consists of domain-specific decoders and a single encoder. The encoder is composed of
Domain-Aware Residual Units (DAU), illustrated in Figure 3. Layers indicated in green inside the encoder (Ws) are common
to all domains. They have been shown separately for illustration of separate domain-specific paths. Domain-specific layers
of current domain (Wt) are in blue; domain-specific layers of previous domain (Wt−1) are in orange. Inference phase: For
evaluation on a particular domain, the corresponding domain-specific path is used to get the segmentation output.

ReLU
DS-BN

DS-BN

DS-RAP

DS-RAP

DS-BN

DS-BN

DS-RAP

DS-RAP

ReLU

Layers used in forward pass
Layers not used in forward pass

DS layers of current domain DS layers of previous domain

Figure 3: Domain-Aware Residual Unit (DAU). These
units constitute encoder F(·). For testing current domain,
domain-specific layers for current domain (blue) and shared
layers (green) are used for forward pass through DAU.

from [37] and modify its optimization for our setting. DS-
RAP layers, αw are 1 × 1 convolutional layers added to
the shared convolutional layers in parallel. They act as
layer-level domain adapters. Differently from the residual
adapter module in [37], we make the Batch Normalization
layers also domain-specific. In BN, the normalized input is
scaled and shifted as s ⊙ x + b; here, (αs, αb) denote the
learnable scale and shift parameters of the DS-BN layers.
The shared weights act like universal filter banks, learning
domain-generalized knowledge. In contrast, the DS-RAP
and DS-BN layers are exclusive to their particular domain,
responsible for learning domain-specific features.

Existing residual adapter-based approaches for image
classification [19, 36, 37] freeze their shared parametersWs

to a generic initialization such as Imagenet [10] pre-trained

weights and train only domain-specific parameters. We find
that Imagenet initialization for Ws does not work well for
fine-grained tasks like semantic segmentation (Section 5).
Thus, instead of freezing shared parameters Ws, we fine-
tune them on the new domain Dt, in an end-to-end training.
We propose an optimization strategy that makes Ws param-
eters learn domain-agnostic features and a different opti-
mization for Wt parameters to make them domain-specific,
as described below.

Optimization Strategy. Domain-specific parameters: For
a particular task t, the composition of domain-specific pa-
rameters is given as Wt = {αt,Gt}. To learn a new domain
Dt at step t, we add new parameters Wt to the model from
the previous step Mt−1 and call this model Mt. We ini-
tialize all Wt from Wt−1, except the output classifier layer
which is randomly initialized (label space Yt may be dif-
ferent from Yt−1). We refer to this initialization strategy as
initWt . The domain-specific layers Wt are trained only on
the task-specific loss for domain Dt given as:

LCEt
=

1

N

∑
xtϵDt

ψt(yt,Gt(F(xt, t;Ws, αt)) (1)

where ψt is the task-specific softmax cross-entropy loss
function over the label space Yt. All domain-specific layers
of previous domains Wt−i, 0 < i < t remain frozen during
current domain training.

Domain-invariant parameters: The Ws layers in the en-
coder are shared among all tasks. In IL step t, we initialize
these weights from the corresponding weights in Mt−1. In
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addition to the task-specific cross entropy lossLCEt , we use
a regularization loss LKLD to optimize the shared weights:

qsi =Mt(xt, t− 1;Ws,Wt−1) (2)

qti =Mt−1(xt, t− 1;Ws,Wt−1) (3)

LKLD = λKLD ·
t−1∑
i=1

∑
xtϵDt

ϕ(qsi , q
t
i) (4)

where qsi is the prediction map of the current model Mt on
the current input xt for the previous task t − 1; qti is the
prediction map of the previous model Mt−1 on the current
input xt for the previous task t− 1; ϕ is the KL-divergence
(KLD) loss between these two softmax probability distri-
bution maps, computed and summed over each previously
learned task i, 0 < i < t; λKLD is the regularization hy-
perparameter for KL-divergence. KLD here effectively dis-
tills domain knowledge from the teacher qti to the student
qsi , and can be seen as domain adaptive knowledge distilla-
tion [22]. Total loss for domain-invariant parameters Ws is
hence given as:

LWs
= LCEt

+ LKLD (5)

Optimization of the Ws and Wt parameters in our model is
at a differential learning rate, dlr. We observe that optimiz-
ing Ws at a learning rate 100× lower than the learning rate
of Wt stabilizes Ws w.r.t. Wt−1 and prevents forgetting.
As shown in Section 5, a combination of the initWt

and dlr
learning strategies is responsible for preserving old knowl-
edge and learning new knowledge simultaneously. We sum-
marize the optimization protocol in Algorithm 1.

When the shared weights Ws are trained on the domain-
specific loss LCEt

of the current step, they learn the current
domain’s features and quickly forget the domain-specific
representation learned on the previous domain. The dlr
strategy prevents the shared weights Ws from drifting away
from the domain-specific features learned in the previous
step, when learning the current domain. This model is re-
ferred to as DAU-FT-dlr in our results (Table 5). Mini-
mizing KLD between the output feature maps of the pre-
vious and current models preserves previous tasks’ domain
knowledge in the shared weights. A combination of LKLD,
LCEt and dlr learning strategy thus help train domain-
invariant shared layers in the encoder. Wt weights are
domain-specific as they are trained only on the domain-
specific loss. Together, the above steps reparametrize the
model into domain-specific and domain-invariant features,
which in turn achieve strong performance on the new do-
main while retaining performance on older domains.
Inference Phase. For a query image xt ∈ Dt, t ∈ T (set
of tasks the model has learned on so far), our model gives
an output segmentation map of pixel-wise predictions ŷt =
Mt(xt, t) over the label space Yt. For evaluation on any

Algorithm 1 Training protocol in the tth incremental step
Require:
Dt: new data of current step t
Mt−1: model from previous step t− 1

Initialize:
Mt ← add new DS layers Wt to Mt−1 (for learning Dt)
initWt : Wt in Mt ←Wt−1 in Mt−1

Freeze: DS weights of all previous domains; Wt−i, 0 < i < t

1: for epochs do
2: for mini-batch do
3: Forward pass Mt(xt, t) via Wt

4: Compute task-specific loss LCEt for Dt by Eq. 1
5: Forward pass Mt(xt, t− 1) via Wt−1, Eq. 2
6: Forward pass Mt−1(xt, t− 1) via Wt−1 of Mt−1, Eq. 3
7: Compute KLD loss LKLD by Eq. 4
8: Compute LWs by Eq. 5
9: Update:

10: LCEt on Wt at standard network learning rate lr
11: LWs on Ws at a lower learning rate dlr
12: end for
13: end for
Discard training data Dt

domain Dt, only the corresponding domain-specific αt and
Gt get activated in the forward pass. In effect, our model
has multiple domain-specific paths with a large degree of
parameter sharing.

Experimental Setting. Consider a two-task IL setting
where the goal is to take a model trained on geographical
domainDA and incrementally learn on another domainDB .
Multi-domain incremental semantic segmentation consists
of two scenarios: (i) Case 1: DA and DB have a domain
shift, but aligned label spaces, i.e. DA ̸= DB ,YA = YB ;
(ii) Case 2: DA and DB have a domain shift as well as non-
overlapping label spaces, i.e. DA ̸= DB ,YA ̸= YB . Our
proposed approach for MDIL tackles both these scenarios.

4. Experiments and Results
Datasets. We perform IL over three highly diverse, large-
scale urban driving datasets collected from different geo-
graphic locations. The Cityscapes dataset (CS) [7] is a stan-
dard autonomous driving dataset of daytime images col-
lected from urban streets of 50 European cities. It con-
tains 19 labels, captured in 2975 training and 500 valida-
tion images. The Berkeley Deep Drive dataset (BDD) is
a widespread collection of road scenes spanning diverse
weather conditions and times of the day in the United
States [55]. It covers residential areas and highways along
with urban streets. It has 7000 training and 1000 val-
idation images. The Indian Driving Dataset (IDD) has
unconstrained road environments collected from Indian
cities [45]. These road environments captured in 6993 train-
ing and 781 validation images are highly unstructured with
unique labels like billboard, auto-rickshaw, animal, etc. In
our experiments, we adhere to the default label spaces of
these datasets, i.e., we use the 19 labels in Cityscapes and
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IL Step Step 1 Step 2: DA ̸= DB ,YA = YB Step 2: DA ̸= DB ,YA ̸= YB

CS CS → BDD CS → IDD

Methods CS ↑ ∆m% ↓ CS ↑ BDD ↑ ∆m% ↓ CS ↑ IDD ↑ ∆m% ↓
Single-task 72.55 72.55 54.1 72.55 61.97
Multi-task 72.55 69.42 57.69 1.16% (↑) 71.11 60.85 1.89%
FT 72.55 0.0% 40.05 (-32.5) 52.74 23.66% 36.81 (-35.74) 61.56 24.96%
FE 72.55 0.0% 72.55 (-0.00) 42.93 10.32% 72.55 (-0.00) 45.69 13.14%
FT (Single-Head) 72.55 47.42 (-25.13) 50.89 20.29% 36.82 (-35.73) 53.79 31.22%
LwF [24] 72.55 58.66 (-13.89) 43.26 19.59% 62.63 (-9.92) 42.89 22.23%
ILT [32] 72.55 56.84 (-15.71) 32.97 30.36% 54.37 (-18.18) 25.07 42.30%
Ours 71.82 1.01% 65.21 (-7.34) 55.73 (+1.63) 3.55% 64.58 (-7.97) 59.11 (-2.86) 7.80%

Table 2: Results of 2-task incremental settings. We report performance on all datasets, after incrementally learning on the
current dataset Dt in step t. Arrows indicate order of learning. Parenthesis show drop/gain in performance w.r.t single-task
baseline for the corresponding dataset. Lower ∆m% indicates better stability-plasticity trade-off and overall performance.

IL Step Step 3: DA ̸= DB ,YA ̸= YB
CS → BDD → IDD

Methods CS ↑ BDD ↑ IDD ↑ ∆m% ↓
Single-task 72.55 54.1 61.97
Multi-task 69.37 58.13 59.37 0.38%
FT 30.49 (-42.06) 32.05 (-22.05) 60.65 33.62%
FE 72.55 (-0.00) 42.93 (-11.17) 46.09 15.42%
Ours 59.19 (-13.36) 49.66 (-4.44) 59.16 10.39%

CS → IDD → BDD
Methods CS ↑ IDD ↑ BDD ↑ ∆m% ↓
Single-task 72.55 61.97 54.1
Multi-task 69.37 59.37 58.13 0.38%
FT 36.19 (-36.36) 26.3 (-35.67) 53.37 36.34%
FE 72.55 (-0.00) 45.69 (-16.28) 43.06 15.56%
Ours 62.55 (-10.0) 53.85 (-8.12) 55.90 7.85%

Table 3: Results of 3-task incremental learning settings.
CS → BDD → IDD model was trained on CS in step 1,
on BDD in step 2. Performance is reported on all 3 datasets
after it is incrementally trained on IDD in step 3. Similarly,
we report results on the CS → IDD → BDD setting.

BDD100k, and IDD level 3, which has 26 labels.
Evaluation Metrics. We use the mean Intersection-over-
Union (mIoU) metric to evaluate the semantic segmentation
performance of a model on each dataset, following standard
practice. Similar to [19], we quantify the overall IL perfor-
mance of a model m, as the average per-task drop in se-
mantic segmentation performance (mIoU) with respect to
the corresponding single-task baseline b:

∆m% =
1

T

T∑
t=1

mIoUm,t −mIoUb,t

mIoUb,t
(6)

where mIoUm,t is the segmentation accuracy of model m
on task t. ∆m% quantifies the stability-plasticity trade-off
to give an overall score of IL performance.
Implementation Details. We use ERFNet [39] as the back-
bone for implementing this work, as it allows the dynamic
addition of our modules seamlessly. Similar to [18, 48, 5],
we report mIoU on the standard validation sets of these
datasets. More details are provided in the supplementary.

IL Step Step 1 Step 2: DA ̸= DB ,YA ̸= YB
IDD IDD → BDD

Methods IDD ↑ ∆m% ↓ IDD ↑ BDD ↑ ∆m% ↓
Single-task 61.97 61.97 54.1
Multi-task 61.97 61.05 56.05 1.06% (↑)
FT 61.97 0.0 27.33 52.88 29.08%
FE 61.97 0.0 61.97 46.23 7.27%
Ours 62.60 1.02 (↑) 57.36 55.73 2.21%

BDD BDD → IDD
Methods BDD ↑ ∆m% ↓ BDD ↑ IDD ↑ ∆m% ↓
Single-task 54.1 54.1 61.97
Multi-task 54.1 56.05 61.05 1.06% (↑)
FT 54.1 0.0 30.72 59.9 23.28%
FE 54.1 0.0 54.1 47.24 11.88%
Ours 52.1 3.70 50.92 57.21 6.78%

Table 4: Results of domain ordering on IDD → BDD and
BDD → IDD 2-task incremental settings.

Results. We show detailed analysis on two, 2-task settings
CS → BDD and CS → IDD to compare the two possi-
ble cases. We also show results on 3-task settings including,
CS → BDD → IDD and CS → IDD → BDD.

Incremental Learning Baselines: We compare our proposed
approach with four standard IL baselines. The single-task
baseline denotes datasets trained independently on separate
models, which one can consider as the gold standard or the
upper bound for IL performance. This is used to compute
catastrophic forgetting and overall evaluation score ∆m%
across our experiments. The multi-task model gives the
joint training performance, where a single multi-decoder
model is trained offline on all the datasets together (note
that this violates the IL setting, but is shown for complete-
ness). Fine-tuning (FT) is a standard baseline in IL, where
a model is fine-tuned on the newer domain without any ex-
plicit effort to mitigate forgetting. This can be considered
as a lower bound for our experiments. In feature extrac-
tion (FE), we freeze all encoder weights and only train the
new domain’s decoder weights. Fine-tuning gives the max-
imum plasticity and minimum stability, while feature ex-
traction exhibits maximum stability and minimum plastic-
ity. We also compare our method against an existing class-

766



(a) Cityscapes (b) BDD100k

Figure 4: Analysis of class-wise accuracy (IoU) on (a) CS and (b) BDD after incrementally learning from CS → BDD. Our
model is able to show significant improvement for the categories marked in red.

IL method for segmentation, ILT [32]. This is a single-head
architecture comparison along with the fine-tuning (single-
head). We also compare against learning without forgetting
LwF [24] implemented as a multi-head.
Cityscapes → BDD100k : In this setting, we start by learn-
ing a model on Cityscapes (CS) in step 1, followed by in-
crementally learning the same model on BDD100k (BDD)
in step 2. CS and BDD datasets have a common label space
of 19 labels. Hence, there is a domain shift when going
from CS → BDD, but their label spaces are aligned. As
shown in Table 2, using our model, forgetting on CS has
been mitigated by 25.16% (w.r.t the fine-tuning baseline)
and is only 7.34% below the single-task upper limit. A com-
parison of the class-wise performance of our approach with
the fine-tuning baseline is given in Figure 4. Our model mit-
igates forgetting in all 19 classes, and retains performance
by a significantly large margin (≥ 30%) on safety-critical
classes such as traffic light, traffic sign, person, rider, truck,
bus and bicycle. Importantly, we observe that our proposed
model has surpassed the single-task model performance on
BDD by 1.63%. We hypothesize that this forward transfer
is achieved since our model captures the domain-specific
characteristics of the dataset distributions of CS and BDD
in the domain-specific parameters. Class-wise analysis are
explained in detail in supplementary material.

Cityscapes → IDD : As presented in Table 2, we first learn
a model on CS in step 1, then incrementally learn on IDD in
step 2. CS has a label space of 19 labels, and IDD has a label
space of 26 labels such that a subset of 17 road classes is
common. 2 classes are exclusive to CS, while 8 classes are
exclusive to IDD. This scenario includes both a domain shift
as well as label misalignment. Forgetting on CS is mitigated
by 27.77% by our model. This shows that despite the label
misalignment, our approach can retain old task performance
in CS → IDD almost as well as it does in the CS → BDD
setting (forgetting on CS is 7.97% after learning on IDD as
compared to the 7.34% after learning on BDD).

3-Task Incremental Settings : In Table 3, we show results
for Cityscapes → BDD100k → IDD and Cityscapes → IDD
→ BDD100k settings. We also explore different sequences
of domain ordering in Table 4. These results show that
our model is generalizable with respect to domain ordering.

Methods LKLD dlr initWt DAU CS BDD
Single-task × × × × 72.55 54.1
DAU-FT × × × ✓ 1.34 49.96
DAU-FT-dlr1 × × ✓ ✓ 8.41 54.51
DAU-FT-rinit × ✓ × ✓ 46.4 54.50
DAU-FT-dlr × ✓ ✓ ✓ 58.4 57.03
Ours ✓ ✓ ✓ ✓ 65.21 55.73

Table 5: Ablation studies on the contribution of each com-
ponent of our proposed model for the CS → BDD setting.
mIoU on CS, BDD is reported after learning on BDD.

More exhaustive permutations are given in supplementary.

5. Ablation Studies and Analysis
Significance of optimization strategies. In this section, we
study the significance of the optimization and initialization
strategy we use for attaining a stability-plasticity trade-off
in our IL setting. Table 5 shows these results. In IL step t,
the Ws and Wt−1 weights in current model Mt are initial-
ized from the corresponding layers in Mt−1 (for all exper-
iments). The DS weights of current domain Wt can either
be randomly initialized or initialized from the DS weights
of previous domain Wt−1. We call the latter as initWt

.
In DAU-FT model, we perform vanilla fine-tuning of the
Ws and randomly initialize Wt weights using the standard
learning rate on the task-specific loss LCEt . This performs
poorly on both old and new domains, catastrophically for-
getting the previous domain (1.34% mIoU).

Next, we define a differential learning rate dlr as LRWt

LRWs
.

If we use dlr=1 and fine-tune both Ws and Wt using same
LR, theWs parameters learn on the new domain (BDD) and
forget the previously learned representation on CS (DAU-
FT-dlr1 in table). All dlr models use initWt

unless stated
otherwise. As we decrease the LR of Ws w.r.t Wt, stability
of the model w.r.t the previous domain increases and plas-
ticity w.r.t. the new domain decreases. We find that a dlr
value of 100 gives a good stability-plasticity trade-off. This
model is referred to as DAU-FT-dlr in the table. Apply-
ing LKLD on the shared weights Ws of DAU-FT-dlr model
further mitigates forgetting by 7.91% and is our proposed
model (ours). It is important that the DS weights Wt not be
randomly initialized. If they are randomly initialized, there
is a performance drop as given by DAU-FT-rinit.
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IL Step Step 1 Step 2: DA ̸= DB ,YA = YB Step 2: DA ̸= DB ,YA ̸= YB Step 3: DA ̸= DB ,YA ̸= YB

CS CS → BDD CS → IDD CS → BDD → IDD
Methods CS ↑ ∆m% ↓ CS ↑ BDD ↑ ∆m% ↓ CS ↑ IDD ↑ ∆m% ↓ CS ↑ BDD ↑ IDD ↑ ∆m% ↓
Single-task 72.55 72.55 54.1 72.55 61.97 72.55 54.1 61.97
RCM-NFI [19] 1.98 97.27% 1.98 1.32 97.42% 1.98 1.13 97.72% 1.98 1.32 1.13 97.67%
RCM-I [19] 63.13 12.98% 63.13 47.94 12.19% 63.13 55.66 11.58% 63.13 47.94 55.66 11.52%
RAS-I [36] 61.65 15.02% 61.65 48.05 13.10% 61.65 54.09 13.87% 61.65 48.05 54.09 12.97%
RAP-I [37] 58.43 19.46% 58.43 46.34 16.90% 58.43 50.97 18.61% 58.43 46.34 51.27 17.02%
Ours 71.82 1.01% 65.21 55.73 3.55% 64.58 59.11 7.80% 59.19 49.66 59.16 10.39%

Table 6: Comparison with other residual adapter-based architectures. Lower score ∆m% indicates better overall performance.

(a) Fine-tuning (b) Ours

Step 1 Step 1 Step 2Step 2

Figure 5: Consider the CS → BDD setting. (a) t-SNE of CS
features for the fine-tuning model in step 1 and step 2. (b)
t-SNE of CS features for our proposed model in step 1 and
step 2. Fine-tuning distorts the latent space representation
of CS learned in step 1. Our model preserves the latent
space of CS after learning on BDD in step 2.

Comparison with other residual adapter-based archi-
tectures. We show a comparison of our approach against
three state-of-the-art residual adapter-based methods in Ta-
ble 6. RAP-I [37] denotes the parallel residual adapter with
Ws weights frozen from pre-training on ImageNet. Our
proposed optimization strategy outperforms this by a large
margin. RAS-I is the series residual adapter [36]. While
RAP and RAS contain layer-level residual adapters α in the
shared encoder, RCM (Reparameterized Convolutions for
Multi-task learning) [19] is a block-level adapter, wherein a
1 × 1 convolution is added to each residual block in series.
Only the task-specific adapter layers are trained in each of
these models, while the Ws weights are frozen to Imagenet
pre-training. RCM-NFI applies normalized feature fusion
to the output of RCM layers in the RCM-I model (given as
RCM-NFF in [19]). This model does not perform well in
our setting. The RAP is a plug-and-play residual adapter
that can easily be plugged into existing segmentation mod-
els. The RAS and RCM are series adapters and need to be
included when ResNet is pre-trained on Imagenet for best
performance. We find that the RAP adapter is better suited
when fine-tuning the shared weightsWs (please see supple-
mentary material).
Latent space visualization. Figure 5 shows a t-SNE [44]
visualization of the features extracted from the last layer
of the encoder F(.). We show the latent space of features

extracted from a Cityscapes sample image before and after
incrementally learning over the next domain BDD (CS →
BDD setting). In (a), we train a single-task baseline on CS
in step 1 and fine-tune it on BDD in step 2. In (b), we train
our model on CS in step 1 and incrementally learn on BDD
in step 2. The latent space of CS gets significantly distorted
after fine-tuning the model on BDD (see (a) Step 2). On the
other hand, our model can preserve the learned feature rep-
resentation even after adding BDD to the model. While the
smaller classes (with fewer pixels) had distinct separation in
step 1, inter-cluster separation has suffered in step 2 for the
fine-tuning model. It can be observed that classes like rider,
motorcycle, traffic light, bicycle and truck have moved in
a small space towards the center and are indistinguishable,
causing confusion in predicting these classes. Our model
in step 2 is able to preserve distinct clusters and maintain
inter-class separation on the old domain CS.

6. Conclusion
We define the problem of multi-domain incremental

semantic segmentation and present a parameter-isolation
based dynamic architecture that leads to a significant im-
provement over the baselines. Our model allows domain-
specific paths for different domains, while having a large
degree of parameter sharing (78.83%) in a universal model.
We compare two scenarios of fully overlapping and par-
tially overlapping label spaces to understand the challenges
involved in multi-domain incremental semantic segmenta-
tion. From the CS → BDD and CS → IDD cases, we in-
fer that: (i) our approach works equally well in mitigating
forgetting in the two scenarios; (ii) if the labels spaces are
aligned, forward transfer can occur; (iii) misalignment of
label spaces is likely to cause some domain interference on
the new domain, although our method provides promising
performance across the domains. We demonstrate through
visualizations how the proposed method maintains the la-
tent space of classes across domains. This enables learning
novel domains while preserving the representations of the
previous domains at the same time.
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