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Abstract

This paper 1 focuses on task recognition and action
segmentation in weakly-labeled instructional videos, where
only the ordered sequence of video-level actions is avail-
able during training. We propose a two-stream framework,
which exploits semantic and temporal hierarchies to rec-
ognize top-level tasks in instructional videos. Further, we
present a novel top-down weakly-supervised action segmen-
tation approach, where the predicted task is used to con-
strain the inference of fine-grained action sequences. Ex-
perimental results on the popular Breakfast and Cooking 2
datasets show that our two-stream hierarchical task model-
ing significantly outperforms existing methods in top-level
task recognition for all datasets and metrics. Additionally,
using our task recognition framework in the proposed top-
down action segmentation approach consistently improves
the state of the art, while also reducing segmentation infer-
ence time by 80-90 percent.

1. Introduction
Millions of people watch instructional videos online ev-

ery day, to learn to perform tasks such as cooking or chang-
ing a car tire. Also, new models of assistant robots [1] can
learn from such videos how to assist humans in their daily
lives. Hence, there has been extensive research in recent
years on automated understanding of the top-level tasks and
their sub-actions in such videos [8, 10, 44, 50].

From a theoretical point of view, instructional videos can
be seen as videos illustrating hierarchical activities. Each
instructional video illustrates a single top-level activity, for
which we use the term “task” throughout this paper. Exam-
ples of such video-level tasks are “making coffee” or “cook-
ing eggs”. Each video-level task is composed of a sequence
of lower level activities, such as “pouring milk” or “adding
sugar”. Throughout the paper, we will refer to such lower-
level activities using the term “action”. Consequently, using

1https://github.com/rezaghoddoosian/Hierarchical-Task-Modeling

Figure 1. The proposed segmentation approach. Initially, the weak
understanding of duration leads to the alignment of irrelevant ac-
tions with an Alignment Score (AS) of 98. However, a prior pre-
diction of the task allows the alignment module to infer the correct
sequence of actions (outlines by red) despite the lower AS (86).

this terminology, each instructional video illustrates a task
that consists of a sequence of actions.

For instructional videos, and hierarchical activity videos
in general, we would like to have automated systems that
both recognize the overall task and also understand what
lower-level actions take place, and when those actions start
and end. Fully-supervised training would require not only
annotating the top level task, but also marking the start and
end frame of each lower-level action. With the ever-growing
size of instructional video datasets, manually annotating
such start and end frames can quickly become a bottleneck.
To address this issue, weakly-supervised action segmenta-
tion methods require, as training data, only the sequence of
actions that takes place at each video, and no start/end frame
information for those actions [4, 6, 7, 27, 42].

Our goal in this paper is to jointly address the problems
of top-level task recognition and lower-level action segmen-
tation, in the weakly supervised setting (given sequences of
actions, not given start/end frames). The main novelty is a
method for top-level task recognition that uses, in parallel,
two different hierarchical decompositions of the problem.
One module models the semantic hierarchy between the
top-level task and lower-level attributes. These attributes
correspond to either the set of actions, or the set of the
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object/verb components of those actions, e.g., “take” and
“cup” in the action “take cup”. This module jointly learns
to identify the presence of attributes in the video and to rec-
ognize the top-level task based on the estimated attributes.

A parallel second stream models the temporal hierarchy
between the entire video and equal-duration subdivisions of
the video. Tasks are usually performed in a relative order
of stages, and some stages are particularly useful for dis-
tinguishing tasks from each other. For example, preparing
tea typically involves three stages: taking a cup, adding a
tea bag, and pouring water from the kettle. The first and
last stages are visually similar with corresponding stages of
the “preparing coffee” task. The temporal hierarchy module
can capture the importance of adding the tea bag in distin-
guishing the “preparing tea” task from the “preparing cof-
fee” task. This module learns the relation between stages
and their importance in classifying the video task.

We also propose a novel top-down approach for action
segmentation (i.e., frame-level action labeling), that com-
bines our task recognition method with existing weakly-
supervised segmentation methods. In this approach (Fig.1),
the video-level task is estimated first, and is subsequently
used to constrain the search space for action segmentation.
In summary, the contributions of this paper are these:

1) We introduce a two-stream framework that exploits
both semantic and temporal hierarchies to recognize tasks
in weakly-labeled instructional videos.

2) We provide specific, non-trivial implementations of
these two streams. Our ablation studies demonstrate that
our implementation choices have a significant impact on
performance. A highlight of such an implementation choice
is using TF-IDF weights to model the discriminative power
of each attribute for each task (see Section 3.2.2).

3) We present a novel top-down approach for weakly-
supervised action segmentation, where the video-level task
is used to constrain the segmentation output.

4) We present results on two benchmark datasets: Break-
fast [21] and MPII Cooking 2 [44]. In top-level task recog-
nition, our method significantly outperforms the state of
the art on both datasets for all metrics. For weakly super-
vised action segmentation (frame-level labeling), applying
the proposed top-down approach on top of existing methods
[27, 42] again leads to state of the art results, and also cuts
the inference time by 80-90 percent.

2. Related Work
Instructional Video Analysis. In recent years,

untrimmed instructional videos have been studied in ar-
eas like video retrieval [8, 31, 32], quality assessment
[9, 36], future action planning [5], and key-step segmenta-
tion [10, 24, 28, 41, 44, 50, 56]. Fully-supervised action
segmentation methods [12, 22, 23, 26, 39, 43, 46] learn
to identify action segments in the presence of frame-level

ground-truth. For example, [50] use a bottom-up technique
to aggregate initial action proposal scores to classify the
top-level video task, before modifying its preliminary frame
labels in a fully supervised way. Also, [44] analyze a host of
holistic and regional features to train shared low-level clas-
sifiers to recognize tasks and detect fine-grained actions.

Recently, unsupervised learning of instructional videos
has seen increased attention [10, 11, 24, 45]. In [24], an un-
supervised approach performs video segmentation and task
clustering through learned feature embeddings. In [10], a
network is trained using only video task labels, for unsuper-
vised discovery of procedure steps and task recognition.

The above-mentioned methods are either fully super-
vised or unsupervised, and thus they are not direct com-
petitors for our method, which uses weak labels.

In the scope of activity recognition, most works [13, 18,
53] study short-range or trimmed videos. Our work is clos-
est to [16, 17, 54], where the focus is recognizing minutes-
long activities. However, unlike them, our paper is on in-
structional videos, and on how recognition can aid segmen-
tation, so it relies on hierarchical activity labels (top-level
task, lower-level attributes as targets for segmentation).

Weakly-Supervised Key-Step Localization. In the
context of weakly-labeled instructional videos, many meth-
ods [2, 25, 30, 57] are trained under the supervision of
narration and subtitle. Directly relevant to our work are
[4, 6, 7, 15, 27, 40, 42], where, as in our method, only the
sequence of actions is known for each training video. In
particular [27, 42] deploy a factorized probabilistic model
to tackle the segmentation problem using dynamic program-
ming. Also, [4] formulate a differential dynamic program-
ming framework for end-to-end training of their model.

Recent weakly-supervised segmentation methods [4, 6,
27, 42, 48, 47] are formulated to identify the action taking
place at each frame, and not the top-level video task. At the
same time, the output of these methods implicitly specifies
the top-level task, because only one task is compatible with
the detected sequence of actions. We use these implicit task
predictions of [27, 42] to compare those methods to ours on
task recognition accuracy. In contrast to these bottom-up
approaches (going from actions to task), our method explic-
itly learns to classify video-level tasks, and this classifica-
tion is used in a top-down fashion (from task to actions) to
constrain the detected action sequence.

We should also mention the methods in [33, 35, 37, 52],
which perform weakly-supervised action detection. These
methods identify and localize occurrences of, typically, a
single action in the input video. For completeness, we eval-
uate extensions of these methods to task classification.

3. Hierarchical Task Modeling Method
In this section, we present an overview of our two-stream

hierarchical task modeling. Full details of our implementa-
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tion choices and architecture are provided in Sec. 3.2.
As our formulation uses many terms and symbols, the

supplementary material provides a glossary of terms and a
table of all symbols we use.

3.1. Method Overview

Problem Definition. The training set V = {vi}Ni=1

consists of N videos vi. From each vi we extract a fea-
ture vector xi ∈ RF×Ti , that consists of Ti frames of F -
dimensional features. We denote by C = {ci}|C|i=1 the set of
all top-level task labels, and by A = {aj}|A|j=1 the set of all
lower-level attribute labels. As an implementation choice,
these attributes can be the set of actions in the dataset, or the
set of verb/object components of those actions. Each video
vi is labeled by a task ci ∈ C, and also by a set Ai ⊆ A of
Mi attributes, so that Ai = {ai,j}Mi

j=1. At test time, given
an input video, the system estimates the top-level task.

Semantic Hierarchy Stream (SHS). To recognize the
task, one approach is to directly estimate p(ci|xi). How-
ever, this approach is prone to overfitting when the number
of video samples per task is limited. As attributes can be
shared among tasks, the average number of training videos
per attribute is typically greater than the average number of
videos per task. Using attribute information also helps the
model learn similarities and differences of spatio-temporal
patterns in different tasks.

Thus, we model task recognition as p(ci|ψai ).p(ψai |xi),
where ψai is an intermediate vector of attribute scores that
is computed for each xi. The system learns a mapping
function Ma

x : RF×Ti → R|A|, that maps each vector
xi to attribute score vector ψai . It also learns a function
Mc

a : R|A| → R|C|, that maps each attribute score vector
ψai to a task score vector ψci (Fig.2).

Temporal Hierarchy Stream (THS). Tasks in instruc-
tional videos are usually performed in a relative order of
steps. Understanding the task-discriminative stages of a
video is essential in distinguishing tasks that share similar-
looking actions. Thus, we divide each video into K stages
of equal duration, and train a classifier Sκ : RF×

Ti
K → R|C|

for each stage κ. The system also learns an aggregation
function T : RK|C| → R|C|, that maps stage-wise predic-
tions to classification scores ϑi,total of the entire video.

Stream Fusion Module. In the end, we fuse the pre-
dictions of the SHS and THS streams to output the final
task prediction scores f ci of the entire model. A high-level
diagram of the overall network is shown on Fig.2. The net-
work is optimized using a loss function for the fusion mod-
ule, as well as separate loss functions for the SHS and THS
streams.

3.2. Detailed Architecture

In this section we explain in detail the architecture of our
two-stream hierarchical model (Fig.3), and we derive the

Figure 2. An overview of how our recognition model exploits the
semantic and temporal hierarchies of tasks. The attribute repre-
sentation of videos are formed by their discriminative attributes.

three proposed loss functions.

3.2.1 Feature Extraction

Video task recognition is highly dependent not only on mo-
tion patterns, but also on object appearance. Ignoring object
appearance can lead to misclassifications when the motion
patterns of two tasks are very similar, e.g., making coffee
and making tea. Hence, instead of the mostly motion-based
iDT features[51] used in [4, 27, 42], we adopt the I3D net-
work, pre-trained on the Kinetics dataset[3]. I3D extracts,
for each frame, 1024-dimensional feature vectors respec-
tively from the RGB and optical flow channels. We use
PCA separately on RGB and flow features, to reduce the
dimensions from 1024 to 128.

The 256-dimensional concatenated RGB and optical
flow features of each frame are stored in video-level feature
vector xi ∈ R256×Ti , where Ti is the total number of frames
in video vi. In principle, any spatio-temporal network can
be used instead of I3D. In the supplementary material, we
show that I3D outperforms iDT for task recognition.

3.2.2 Semantic Hierarchy Loss

In order to obtain a data-specific representation of video-
level feature vector xi, we pass each frame-level subvector
of xi through a fully-connected layer g with bias and out-
put dimension of 256, then apply temporal convolution to
the output of g. Using such 1D temporal convolutions with
a set of F learnable kernels kφ ∈ RL×256 of size L , xi
is eventually mapped to a F -dimensional feature encoding
φ(xi) ∈ RF×Ti .

Let |A| be the number of unique attributes in the dataset.
We pass each frame-level subvector of φ(xi) through a fully
connected layer with bias and output dimension of |A| to
obtain Ψa

i ∈ R|A|×Ti , which is the sequence of attribute
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Figure 3. Our two-stream model architecture for task classification using RGB and flow frames as input. The semantic hierarchy loss Lsh
ensures task classification after clustering videos based on their shared weighted attributes through the TF-IDF mask Mtfidf . The THS
stream learns to aggregate stage-wise task predictions by Lth, and a third loss (Lf ) optimizes the fused results of both streams.

scores for each of the Ti frames. Ψa
i is also known as tem-

poral class activation map (T-CAM)[34].
Similar to [37, 38], we compute a video-level attribute

score vector ψai by average-pooling the highest ki = bTi

s c
T-CAM scores of each attribute separately over time, where
s is a hyperparameter:

ψai [j] =
1

ki

ki−1∑
i=0

topk{Ψa
i [j, :]} (1)

Intuitively, these selected ki scores highlight the most im-
portant parts of a task in video i.

To denote the set Ai of attributes present in video vi,
we define a multihot ground-truth attribute vector ~ai ∈
{0, 1}|A|, where for every j ∈ {0, 1, ..., |A|−1}, ~ai,j = 1 if
aj ∈ Ai, otherwise ~ai,j = 0. However, this representation
fails to capture the fact that different attributes have differ-
ent levels of relevance for recognizing each task. For ex-
ample, attributes “take out” and “open” are present in most
videos, and thus not discriminative. As a second example,
for the “preparing avocado” task, “avocado” is a more in-
formative attribute compared to “knife”.

Inspired by text retrieval methods [19, 29], we com-
pute the TF-IDF weight matrix Wtfidf ∈ R|A|×|C|, so that
Wtfidf (j, τ) captures the importance of attribute j for task
τ . Initially, we formulate TF ∈ R|A|×|C| and IDF ∈ R|A|
as follows:

TF(j, τ) =

∑N−1
i=0 ~ai,j · 1(τ = ci)∑N−1

i=0 1(τ = ci)
(2)

IDF(j) = log(
|C|

|{τ ∈ C|TF(j, τ) > 0}| ) (3)

where 1() denotes the indicator function and TF(j, τ) and
IDF(j) are, respectively, the percentage of times attribute

aj is present in videos of task τ ∈ C, and the log inverse of
percentage of all tasks that entail attribute j in at least one
of their videos. We then define the elements Wtfidf (j, τ)
of the TF-IDF weight matrix as:

Wtfidf (j, τ) =
TF(j, τ) · IDF(j)

ε+
∑|A|−1
k=0 TF(k, τ) · IDF(k)

(4)

with ε set to a very small value to avoid division by zero.
Using these TF-IDF weights, we intorduce the TF-IDF-

weighted attribute ground-truth vector ~awi ∈ R|A| as:

~awi,j =
~ai,j ·Wtfidf (j, ci)∑|A|−1

k=0 ~ai,k ·Wtfidf (k, ci)
(5)

We also define a TF-IDF mask Mtfidf ∈ R|A|×|C|,
where Mtfidf (j, τ) is 1 if the corresponding TF-IDF weight
Wtfidf (j, τ) is nonzero, otherwise it is 0. We use the TF-
IDF mask to form a mapping from attribute score vectors
ψai to task probability scores ψ̂ci ∈ R|C|, as:

ψ̂i
c

= s[(wc �MT
tfidf )ReLU(ψai )] (6)

In the above, s[] and � mean the softmax and element-
wise product operations respectively, and wc ∈ R|C|×|A|
are weights to be learned. Using the TF-IDF mask allows
the model to focus only on relevant attributes for each task.

Let ~ci be the one-hot task ground-truth vector and ψ̂a =
s[ψa]. The semantic hierarchy loss Lsh is then defined as:

Lsh = −λE[ ~aw
T
i log(ψ̂ai )]− (1− λ)E[~cTi log(ψ̂i

c
)] (7)

E denotes “expected value”, and λ is a design parameter
that decides how fast each term is trained comparatively.
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3.2.3 Temporal Hierarchy Loss

We model the temporal hierarchy by dividing each video
into K stages of equal duration d, and training a classifier
for each stage. Formally, given the frame-level feature en-
coding φ(xi) of video i, we define hi,κ ∈ RF as the feature
summary of the κ-th stage and produce unnormalized task
scores (logits) ϑi,κ ∈ R|C|:

hi,κ =

∑[(κ+1)d]−1
t=κd φ(xi)[:, t]

d
(8)

ϑi,κ =wκhi,κ + bκ (9)

where wκ ∈ R|C|×F and bκ ∈ R|C| are parameters of each
stage. During the training process, for each stage, the loss
function Lκ = E[~cTi log(ϑ̂i,κ)] is defined on the softmax of
the stage-wise task prediction logits ϑ̂i,κ.

Stage Aggregation Function. As mentioned earlier,
certain stages of a task are more discriminative than oth-
ers. We define the auxiliary function Γ([ϑ0 ϑ1 ... ϑK−1]),
that maps stage-level task score vectors to a video-level task
score vector. While training, Γ( ) randomly masks out one
of its K input prediction vectors ϑκ entirely and multiplies
the rest of the input predictions by K

K−1 . Γ( ) acts similar to
the spatial drop out operation by promoting independence
between predictions of each stage, to avoid overfitting to a
single stage. We form our stage aggregation function us-
ing Γ( ) and aggregation parameters wtotal ∈ RK|C|×|C| to
produce video-level task probability values ϑ̂i,total ∈ R|C|:

ϑ̂Ti,total =Γ(ReLU([ϑTi,0 ϑ
T
i,1 ... ϑ

T
i,K−1])) wtotal (10)

Finally, we present our temporal hierarchy loss Lth to in-
corporate the aggregated and stage-wise predictions:

Lth = −E[~cTi log(ϑ̂i,total)]−
K−1∑
κ=0

Lκ (11)

3.2.4 Stream Fusion Loss

We explore three different mechanisms for fusing the pre-
dictions of the SHS and THS streams, to produce the final
task prediction logits f ci . We provide experimental results
of each in Section 5.2.

Average Fusion. Here, we treat results of semantic
and temporal hierarchies equally, and we backpropagate the
same gradient to both streams at training time.

fci = 0.5(ϑi,total + ψci ) (12)

Weighted Average Fusion. Here, the final prediction
is a linear combination of streams, whose predictions are
weighted by learned weights w1,w2 ∈ R|C|×|C|. .

fci = w1ϑi,total + w2ψ
c
i (13)

Task-wise Switching Gates. Sometimes, wrong predic-
tions of one stream can negatively impact the final fused

classification scores f ci at test time. We introduce task-
wise switching gates to allow the system enough freedom to
learn, for each task independently, to switch between stream
predictions. We define switching gate α = σ(wα) as the
sigmoid function σ() of learnable parameters wα ∈ R|C|.
The sigmoid function makes sure our gates stay in the range
of 0 to 1. Then, for training and test time, f ci is defined as:

fci =

{
α� ϑi,total + (1− α)� ψci , training

H0.5(α)� ϑi,total + (1−H0.5(α))� ψci , test
(14)

where Hx() denotes the Heaviside step function shifted to
x. At test time, given task τ , our final prediction is discretely
chosen from the SHS stream if ατ < 0.5 or is selected from
the THS stream otherwise.

In cases of the weighted average fusion and switching
gates, our fusion loss Lf = −E[~cTi log(f̂ ci )] is added to the
previous losses to form our final loss L with the design pa-
rameter β. Finally we train the whole network end-to-end
but stop the gradients of Lf flowing back to the streams to
isolate the fusion module from the rest.

L = Lf + Lsh + βLth (15)

4. Top-Down Action Segmentation
We now present our top-down segmentation approach.

In the segmentation problem, the goal is to partition a video
temporally into a sequence of S action labels δS1 and their
corresponding durations lS1 . The input in our approach is
a video of Tv frames, represented by xTv

1 , as the sequence
of per-frame features. Let Π(τ) be the set of all action se-
quences in the training set given the top-level task τ . Then,
grammar π ∈ Π(τ) lists an ordered sequence of S action
labels taking place in the video of task τ . The goal is to
identify the most likely sequence of action labels δ

S

1 and
their durations l

S

1 associated with a specific grammar π:

(δ
S
1 , l

S
1 , τ) = argmax

δS
1 ,l

S
1 ,τ

p(δS1 , l
S
1 , τ |xTv

1 ) (16)

= argmax
δS
1 ∈Π(τ),lS1 ,τ

p(xTv
1 |δ

S
1 )p(lS1 |δS1 )p(δS1 |τ)p(τ)

(17)

where p(xTv
1 |δ

S
1 ) is modeled by a neural network and the

Bayes rule as in [40, 42], and p(lS1 |δ
S
1 ) is any given duration

model, e.g., Poisson[42] or DurNet[14].
Eq.17 is formulated similarly to the probabilistic model

in [42]. However, we explicitly integrate the task variable
τ ∈ C into this equation, which dictates the choice of the
fine-grained action sequence δS1 . Specifically we introduce
the task model p(τ) as the probability output of a task clas-
sification network. Without loss of generality, we used the
output of our two-stream hierarchical network f̂ c, so that
p(τ) = 1 for the predicted task τ = argmax(f̂ c) and
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p(τ) = 0 otherwise. In [42], the task is a by-product of
the inferred segments (δ

S

1 ,l
S

1 ). In contrast, our proposed ap-
proach eliminates all segmentations whose inferred actions
do not belong to Π(τ) of the predicted task τ by setting
p(δS1 |τ) to 0 for those segmentations, and to 1 otherwise.
We follow the Viterbi algorithm in [42] to solve Eq. 17.

5. Experiments

We compare our method to several existing methods on
two popular instructional video datasets, both for task clas-
sification and for action segmentation using weakly-labeled
videos as training. Further, in ablation studies we evaluate
the contribution of each component of our model.

Datasets. 1) The Breakfast Dataset (BD) [21] consists
of around 1.7k untrimmed cooking videos of few seconds
to over ten minutes long. There are 48 action labels demon-
strating 10 breakfast dishes with a mean of 4.9 actions per
video, and the evaluation metrics are conventionally calcu-
lated over four splits. 2) The MPII Cooking 2 (C2) [44] has
training and test subject-wise splits of 201 and 42 long and
high quality videos respectively. Particularly, these videos
are 1 to 40 mins long adding to 27 hours of data from 29
subjects who prepare 58 different dishes. This dataset of-
fers different challenges compared to the BD dataset for
two main reasons; First, the annotated 155 objects and 67
actions (verbs) are extremely fine-grained, so that there are
on average 51.8 non-background action segments per video.
Second, despite the great number of frames in the dataset,
the number of samples per class is unbalanced and limited.

Metrics. We evaluate task classification performance us-
ing two metrics: 1) t-acc is the standard mean task accuracy
over all videos. 2) t-mAP denotes the mean Average Preci-
sion of task predictions. mAP is used in [44] to assign soft
class-wise scores to give insight about how far off the wrong
predictions are. Further, we use four metrics as [7] to mea-
sure the segmentation results: acc and acc-bg are the frame-
level accuracies with and without background frames, while
IoU and IoD define the average non-background intersec-
tion over union and detection, respectively.

Implementation. We extracted I3D features on the C2
dataset using TV-L1 optical flow [55] on a moving window
of 32 frames with stride 2, and the pre-computed I3D fea-
tures of the BD dataset were obtained from [12]. We noticed
that it is not necessary to process the whole video. Instead,
we followed the sampling strategy in [37] to maintain the
length of the videos in a batch to be less than a pre-defined
length T ≈ 9 mins while training. This approach speeds
up training, lowers memory demands, and applies temporal
augmentation. Also, we divided videos into K = 3 stages
for the THS stream (analysis in Section 5.2).

Our model is trained with a batch size of 10 using the
Adam [20] optimizer with 10−3 learning rate and 0.005

Table 1. Task classification results of state-of-the-art methods on
two main datasets. Best results reported out of I3D (†) or iDT
(‡) features (more in supplementary material and [49]).* results
obtained using the author’s source code. [24] results for 10 classes.

Breakfast (%) Cooking (%)
Supervision Models t-acc t-mAP t-acc t-mAP

Full Rohrbach et al.[44] - - - 57.40
Unsupervised CTE[24] 31.80‡ - - -

NNViterbi[42]∗ 70.98‡ - 23.80† -
CDFL[27]∗ 74.86‡ - 28.57† -

Weak W-TALC[37]∗ 76.19† 80.98† 33.33† 43.07†

3C-Net[33]∗ 75.23† 80.99† 30.95† 46.30†

Timeception[16]∗ 76.37† 80.80† 21.43† 25.14†

VideoGraph[17]∗ 78.70† - 23.80† -
Our Method 80.04 86.36 45.24 54.49

weight decay for 20k iterations. For both datasets, we ad-
just λ to 0.9, and β is set to 0.25 and 0.01 for the BD and C2
datasets, respectively. The 1D convolutions are done with
F = 64 as the number of kernels, and L = 15 as their size.
s = 8 and we use a drop-out keep rate of 0.3. The set of
verbs and objects are used as our attributes.

5.1. Comparison to State-of-the-Art Methods

We used the standard dish labels in both datasets as task
labels. All experiments on the BD dataset for all models, ex-
cept the unsupervised CTE [24], were done for 9 tasks after
we combined the two dishes of frying and scrambling eggs
as the top-level task of making eggs, because both share al-
most the same set of actions. For CTE, we report the results
on the original 10 classes, as given by the authors. We note
that CTE is unsupervised and not a direct competitor.

Task Classification. Table 1 shows quantitative results
on task recognition, for our method as well as other methods
that use different types of supervision. Particularly, [27, 42]
are the state-of-the-art open-source weakly-supervised seg-
mentation methods. They implicitly identify the task cor-
responding to the inferred sequence of actions during infer-
ence. Our explicit task modeling significantly outperforms
them in accuracy by around 5 to 9 percent on the BD dataset,
and by 16 to 21 percent in the 58 tasks of the C2 dataset.

Originally, [33, 37] are the state-of-the-art open-source
weakly-supervised methods with specific loss functions to
classify and localize sparse action instances in videos. To
compare with them, we trained both to classify tasks. Also,
[16] and [17] classify tasks in long videos by training multi-
scale temporal convolutions and graph based representa-
tions respectively. Both networks make heavy use of mem-
ory and suffer from overfitting specifically in the C2 dataset,
where using low-level attributes is key. While such direct
task modelings under weak supervision prove to be more
effective than the implicit classification using fine-grained
action segments [27, 42], our hierarchical approach out-
performs all competitors considerably in all metrics and
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Table 2. Consistent performance gain in weakly-supervised action
segmentation following our proposed top-down approach. I3D and
iDT features used for experiments on the C2 and BD datasets, re-
spectively. (* as specified in Table 1, **: no source code).

Breakfast (%) Cooking (%)
Models acc acc-bg IoU IoD acc acc-bg IoU IoD
TCFPN[7]∗ 38.4 38.4 24.2 40.6 26.9 30.3 9.5 17.0
D3TW[4]∗∗ 45.7 - - - - - - -
DP-DTW[6]∗∗ 50.8 - 35.6 45.1 - - - -
NNViterbi[42]∗ 43.6 42.5 27.8 39.2 23.5 21.2 7.7 10.9
CDFL[27]∗ 50.2 50.4 33.5 45.6 29.9 32.2 11.0 13.8
NNViterbi+Ours 46.2 46.1 30.2 42.2 26.9 25.0 9.6 12.7
CDFL+Ours 51.4 52.0 34.5 46.7 31.3 34.5 12.8 15.6
CDFL+GT 59.8 63.0 41.3 55.2 35.0 39.7 14.4 17.6

Table 3. Inference run time (minutes) improvement of state-of-the-
art following the proposed top-down approach for segmentation.

Models Breakfast (split 4) Cooking
NNViterbi[42] 100 840

CDFL[27] 144 1070
NNViterbi+Ours 21 64

CDFL+Ours 25 110

datasets. Table 1 shows our t-mAP on the C2 dataset comes
close to the fully-supervised baseline [44], which is trained
on frame-level action ground-truth. Comparison results on
10 classes of the BD dataset are in the supp. material.

Action Segmentation. Table 2 shows results for action
segmentation. In our experiments, we combined our two-
stream task prediction framework on top of the state-of-the-
art weakly-supervised segmentation methods [27, 42] and
achieved new state-of-the art results on both datasets, man-
ifested more vividly in acc-bg, because background frames
are independent of the task. Therefore, excluding back-
ground frames highlights the contribution of the correct task
label in segmentation. This consistent improvement in all
metrics, while decreasing the inference time by 80-90%
(Table 3), demonstrates the potential of the proposed top-
down approach for weakly-supervised segmentation. More-
over, CDFL+GT in Table 2 represents CDFL segmenta-
tion results constrained by ground-truth task labels, which
serves as an upper bound for our proposed top-down model.

Table 4. Stream-specific ablation study for task classification.
Breakfast (%) Cooking (%)

Stream t-acc t-mAP t-acc t-mAP
Semantic hierarchy 73.1 77.2 42.9 52.6

Temporal hierarchy-stage 1 62.7 - 16.7 -
Temporal hierarchy-stage 2 68.9 - 28.6 -
Temporal hierarchy-stage 3 64.7 - 23.8 -

Temporal hierarchy-aggregated 80.0 86.4 31.0 45.2
Two streams fused 80.0 86.4 45.2 54.5

Table 5. The effect of sharing attributes (a) and using TF-IDF
weights (b) in the SHS stream (Cooking dataset).

(a) (b)
Setting t-acc t-mAP

Without attributes 33.3 45.4
With attributes 45.2 54.5

Setting t-acc t-mAP
Without TF-IDF 38.1 49.4

With TF-IDF 45.2 54.5

Table 6. Evaluation of
our model under different
choices of K on the BD.
# Stages t-acc t-mAP

1 74.2 82.1
2 79.6 86.4
3 80.0 86.4
4 80.0 86.4
5 79.2 85.8

Table 7. Comparison between
different fusion mechanisms
on the BD.

Fusion Type t-acc t-mAP
Average 77.2 84.2

Weighted Average 78.4 84.9
Switching Gate 80.0 86.4

5.2. Analysis and Ablation Study in Task Modeling

Stream-Specific Results. We evaluated the contribution
of the SHS and THS streams separately in Table 4. The
SHS stream is more effective on the C2 dataset because of
two main reasons: First, the average number of videos per
task (3.4) is low compared to that of videos per attribute
(28.4), so any direct way of task modeling is prone to over-
fitting. Second, the large number of attributes per task al-
lows the learning of a discriminative attribute-to-task map-
ping. Meanwhile in the THS stream, despite the weak clas-
sification power of the stage-specific classifiers, our hierar-
chical modeling is able to aggregate stage-wise predictions
effectively and produce significantly superior results. This
shows that different stages provide complimentary informa-
tion. Note that the THS stream alone achieves state-of-the-
art on the BD dataset with only task label supervision.

Semantic Hierarchy Ablation. As shown in Table 5a,
removing the attributes from the semantic hierarchy loss
(Eq.7), and directly classifying tasks from the feature en-
coding φ(x), leads to around 12% drop in t-acc on the C2
dataset. Simply sharing low-level attributes among tasks is
beneficial, and using the TF-IDF weights led to an addi-
tional 7% difference in t-acc (Table 5b).

Temporal Hierarchy Analysis. Modeling tasks as a
temporal hierarchy of multiple stages improves the perfor-
mance compared to the single-stage approach. Further-
more, as indicated by Table 6, such an approach is not sen-
sitive to the number of stages (K > 1) in the hierarchy.
This concludes that these stages provide complimentary in-
formation for the stage-aggregation function regardless of
their exact positioning or duration in the video.

Comparison of the Stream Fusion Mechanisms. Table
7 compares different mechanisms to fuse the predictions of
SHS and THS streams. Specifically, the Task-wise Switch-
ing Gates are trained to identify the stronger stream per task
and perform best, while the vanilla and weighted averaging
compromise between both streams and produce sub-optimal
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Figure 4. Qualitative task classification results of our THS stream on sample challenging videos from the BD dataset. For each video, we
show the ground-truth task label, predictions from the single-stage baseline, and the stage-wise and stage-aggregated recognition result.
Also, stage-wise accuracy for each of the four tasks is presented on the right side. In the first video, the subject sequentially takes a cup,
pours coffee and milk, adds sugar and stirs coffee. In the second video, the subject takes a cup, adds teabag, pours hot water, spoons sugar
and stirs. In the third video, the subject takes a cup, pours milk, spoons choc. powder, adds sugar and stirs. In the fourth video, the subject
pours cereal, spoons choc. powder, pours milk, and then stirs. Red and green boxes denote wrong and correct predictions, respectively.

results. In the BD dataset these gates propagate the results
of the THS stream, whereas in the C2 dataset they switch
between both for different tasks and combine predictions
(see row 1, 5 and 6 of Table 4).

5.3. Qualitative Results

Fig.4 compares results of the THS stream with the
single-stage baseline on four challenging videos from the
BD dataset. Due to similar-looking actions shared between
tasks, the single stage baseline misclassifies the video task,
whereas our THS stream outputs the correct task under dif-
ferent stage-wise settings. Specifically, in the first and third
videos, our model classifies the task correctly although only
one of the stage predictions is correct. For example, accord-
ing to the stage-wise accuracy of the task making chocolate
milk in Fig.4, the last stage of this task is the most discrim-
inative one. Thus, our model learns to put more weight on
the predictions of this stage, which compensates for the first
two stages outputting the wrong class of making cereal.

The two tasks of making coffee and making tea share
similar-looking actions in the first and second videos, so
analyzing the entire video in one step produces wrong pre-
dictions for both cases. The second video, in particular,
provides an interesting case where similar visuals of the ac-
tion taking cup between tasks of making chocolate milk and
making tea led to confusion of the first stage. Also, the later
two stages mistakenly predicted the task of making coffee,

because the two actions of pouring and stirring are shared
between both tasks of making coffee and making tea. Al-
though all three stage-wise predictions are wrong, the ag-
gregated result of those stages is correct. This shows that
the proposed hierarchical model not only considers the pre-
dicted class of each stage, but also learns the relationship
between stages and their fine-grained prediction scores.

In a given stage, the short discriminative part may be
dominated by the longer ambiguous section. For example,
the final stage of the last video depicts how stirring while
occluding the bowl dominates the shorter and more discrim-
inative action of pouring milk. This effectively resembles
the appearance and motion of flipping a pancake by spatula,
but the complementary information of the first two stages
eventually results in the correct aggregated recognition.

6. Conclusion
We have introduced a two-stream framework, that ex-

ploits semantic and temporal hierarchies to recognize tasks
in weakly-labeled instructional videos. We have also pro-
posed a novel top-down segmentation approach, where the
predicted task constrains the fine-grained action labels. We
report experimental results on two public datasets. Our
two-stream task recognition method outperforms existing
methods. Similarly, our top-down segmentation approach
improves the accuracy of existing state-of-the-art methods,
while simultaneously improving runtime by 80-90%.
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