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Abstract

Different methods can be applied to satellite images to
derive an altitude map from a set of images. In this article
we evaluate a set of representative methods from different
approaches. We consider true multi-view stereo methods as
well as pair-wise ones, classic methods and deep learning
based ones, methods already in use on satellite images and
others that were originally devised for close range imaging
and are adapted to satellite imagery. While deep learning
(DL) methods have taken over multi-view stereo reconstruc-
tion in the last years, this tendency has not fully reached
satellite stereo pipelines that still largely rely on pair-wise
classic algorithms. For the comparison, we set-up a frame-
work that allows to interface a DL-based stereo method
taken from the computer vision literature with a satellite
stereo pipeline. For multi-view stereo algorithms we build
on a recently proposed framework originally devised to ap-
ply Colmap method to satellite images. Methods are com-
pared on several datasets that include sets of images taken
within a few days and sets of images taken months apart.
Results show that DL methods have, in general, a good gen-
eralization power. In particular, the use of the GANet DL
method as the matching step in a pair-wise stereo pipeline
is promising as it already performs better than the classic
counterpart, even without a speci�c training.

1. Introduction
Stereo vision is an area that has been extensively re-

searched and multiple algorithms have been proposed along
the last decades [30, 15, 20]. Initial methods worked on one
stereo pair. Then, Multi-View Stereo (MVS) was �rst ap-
proached as an extension of the stereo algorithms by ag-
gregating the information of multiple stereo pairs. True
MVS algorithms considering directly all the images of the
scene arrived some time afterwards [5]. True MVS algo-
rithms were mostly devised, by the computer vision com-
munity, for the reconstruction of objects, buildings and inte-
riors with images taken with standard pinhole-like cameras
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Figure 1. Digital Surface Models (DSM) computed by the methods
analyzed in this work on the subregion 156 of JAX NIT dataset.
Methods from top to bottom and left to right: S2P, S2P-GANet,
COLMAP, and CasMVSNet. The ground truth altitude for this
example can be seen in Figure 5.

at close distance [10, 32]. Deep Learning (DL) MVS meth-
ods [20] �ourished in the last years and have taken over the
top rankings of the main benchmarks of the area [33, 18] but
classic methods are still a valid option when dealing with
many and/or large size images since DL methods struggle
to accommodate large 3D structures in GPU memories.

In the case of satellite images, MVS has traditionally
been performed with pair-wise approaches where the mul-
tiple views are treated by pairs doing traditional two-view
stereo and then aggregating the pair-wise reconstructions
(elevation models or point clouds, for example) to get the
�nal result [6, 26, 19]. Satellite images have speci�c char-
acteristics that have historically discouraged the use of true
MVS methods, for example: (a) the extremely small ratio
between the depth range and the distance from the camera
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to the scene implies working with a camera model that devi-
ates from the standard pinhole and deals with structures that
occupy few pixels in the images; (b) the images for a cer-
tain location can only be acquired through several sweeps
which may be days, months or, even years apart, introduc-
ing variability in illumination, seasonal changes and man-
made changes, among others. The variability poses impor-
tant challenges for the matching of correspondent regions
across the images. This variability problem has usually
been tackled with a heuristic selection of best pairs that tend
to minimize separation in time of the images and prefer the
view angles that ensure less error in triangulation [8].

A recent work [37] showed that classic true MVS algo-
rithms used in computer vision could be adapted to satellite
images for the bene�t of the remote sensing �eld. We build
upon that work and extend the concept to include stereo and
MVS methods based on DL.

This work is a concise evaluation of a set of methods
which are representative of different approaches that can be
applied to satellite images in order to derive an altitude map
from a set of images. It is not an extensive benchmark at-
tempt. The selected methods span different interesting as-
pects: methods already in use on satellite images and others
originally devised for close range imaging and adapted to
satellite imagery, classic and DL approaches, pair-wise and
multi-view reconstruction methods.

A simple and modular satellite image processing
pipeline (S2P) [6] is considered as a baseline. Experiments
in this article explore if modi�cations in the pipeline or the
use of other methods adapted to satellite imagery can give
promising or better results in comparison to the already es-
tablished pipeline. A framework is built in order to compare
different methods on several datasets that include sets of im-
ages from different sites and that consider acquisitions over
short and long periods of time. The comparison shows that
the analyzed methods attain comparable and sometimes bet-
ter performance than the classical ones. Figure 1 shows typ-
ical results, where rows compare pair-wise vs. multi-view
approaches and columns compare classic vs. DL methods.

The rest of the article is organized as follows: Section 2
explains the methodology used to compare the methods in-
troduced in Section 3. Section 4 details the datasets on
which evaluation was performed. Section 5 presents the ex-
periments. The results are �nally analyzed in Section 6.

2. Framework for the comparison
The different methods are applied to the datasets follow-

ing the scheme depicted in Figure 2. For pair-wise methods,
a Digital Surface Model (DSM) is computed for every pos-
sible pair of images of a subregion; these DSMs are then ag-
gregated to get an enhanced multi-pair DSM. On the other
hand, true multi-view methods are fed with all the images
of a subregion.

Figure 2. Scheme of multi-pair and true multi-view methods.

Figure 3. Flow diagram for the comparison of computed DSM with
respect to the ground truth altitude.

In order to assess the performance of the different ap-
proaches, the computed DSMs are compared against the
ground-truth DSM on all the datasets. The comparison is
done as shown in Figure 3. First each altitude map is regis-
tered to the ground-truth map. A normalized cross correla-
tion approach is used in order to obtain integer X,Y trans-
lations that register the DSMs and the altitude is adjusted
by the median of the difference to the ground-truth. Once
registered, the following metrics [3] are computed:

Completeness (COMP): Proportion of evaluated pixels
where the altitude of the computed map differs from
the ground-truth less or equal than z tol = 1m. We
consider only pixels with ground-truth information.

RMSE Accuracy: Root Mean Square Error (RMSE) be-
tween computed and ground truth maps considering
only the pixels with valid information in both maps.

MAE Accuracy: Median Absolute Error (MAE) between
computed and ground truth maps considering only the
pixels that have valid information in both maps.

3. Methods
Table 1 summarizes the evaluated methods. A brief de-

scription of each one and the necessary adaptations to satel-
lite imagery are presented hereafter.

3.1. S2P

Figure 4 shows an overview of the S2P [6] pipeline1. The
input is a stereo pair of images with their respective cam-
era models expressed by rational polynomial coef�cients

1https://github.com/centreborelli/s2p
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Table 1. Tested methods
Method Type DL Notes
S2P [6] Pair-wise No MGM [7] in dispar-

ity computation
S2P-GANet Pair-wise Partially GANet [36] in dis-

parity computation
COLMAP
[32, 31]

Multi-view No Adapted for satellite
images by [37]

CasMVSNet
[14]

Multi-view Yes Adapted for satellite
images in this work

Figure 4. S2P overview. The input is a pair of images with their
respective RPC camera models, the output is a DSM given as a
georeferenced 3D point cloud and as an altitude image.

(RPC). Each image pair undergoes a pointing correction and
is recti�ed. Disparity is computed on recti�ed images using
MGM stereo matching algorithm [7]. Computed correspon-
dences are then triangulated to produce a geo-referenced 3D
point cloud and an altitude map.

3.2. GANet

GANet [36] uses Deep Neural Networks (DNN) to com-
pute a disparity map. As other DNN methods [20], it fol-
lows the traditional stereo steps: dense features are ex-
tracted for both images, the cost of matching the features
at different disparities is organized in a Cost Volume (CV),
which is regularized by aggregation and/or �ltering and �-
nally a map with minimal cost is derived from the CV.

In most DNN based stereo methods, cost aggregation is
done by 3D convolutions, usually in an hourglass con�gu-
ration [20]. 3D convolutions imply large memory require-
ments; the computational burden restricts the size of images
that can be processed. GANet takes a different approach by
introducing a Semi-global Guided Aggregation layer (SGA)
which implements a differentiable approximation of Semi-
Global Matching (SGM) [16]. SGA is followed by a Lo-
cal Guided Aggregation layer (LGA) that performs a local
�ltering. SGA and LGA weights are generated by an aux-
iliary �guidance subnet� fed with original images and the
extracted features.

S2P-GANet: Adaptation to satellite images In this
work, GANet is used as an alternative �stereo matching�
step in the S2P pipeline, see Figure 4. The stereo matching
step receives a recti�ed stereo pair of images and computes
disparity maps in both directions: left-to-right and right-to-
left. A consistency check is performed to �lter out pixels
with non congruent disparities [9, 4]. In order to use GANet
in the S2P pipeline, some adaptations have to be considered:

a) Negative disparities: In most stereo algorithms, a CV
is computed and regularized, and a disparity map is derived
from it. The CV is computed for a certain range of possi-
ble disparity values, which must be known a priori or esti-
mated. In the S2P pipeline, the disparity range is tradition-
ally estimated by the sparse matching of interest points (e.g.
SIFT keypoints [23]), but other strategies are allowed such
as specifying a �xed known disparity range or estimating
the disparity range from a known altitude range. In several
stereo matching algorithms, including [7] used by default in
S2P, disparity admits positive and negative values. GANet,
however, accept only negative disparities. That is, all pixels
in the secondary recti�ed image must �move� to the left rel-
ative to the recti�ed reference image. In this work, a �xed
known altitude range is used, based on the ground truth plus
an additional safety guard. The S2P pipeline was adapted
to get a recti�cation compatible with negative disparities.

b) GPU memory restrictions: The size of the recti�ed
stereo images that can be handled by GANet is bounded
by the available memory in the GPU. Also, images’ width
and height must be multiple of 48. A tiling strategy is thus
implemented to process large images. The disparity estima-
tion is more error prone at tile borders. So tiles are chosen
as large as possible and the overlaps are merged considering
the distance to the border as a weight. The experiments re-
ported in this work use tiles of 1872 � 480 pixels and were
run on a Nvidia Tesla P100 GPU with 12Gb of RAM.

3.3. COLMAP

COLMAP [32] is part of a family of methods [13, 10, 11]
that focus on large-scale dense reconstruction and fusion.
These methods aim to integrate the information of diverse
multiple images of a scene such as crowd-sourced image
datasets. COLMAP is closely related to [38] and con-
siders, as other MVS methods, a variety of photometric
and geometric priors ensuring consistency among differ-
ent views. The method follows a generalized Expectation-
Maximization (EM) scheme with alternating and inter-
leaved estimation of occlusions in the E-step and depths
in the M-step. The depth estimation M-step is based on
PatchMatch [1] where the tested hypothesis are based on
the depths, the normals and their perturbations.

Zhang et al. [37] adapted COLMAP to the peculiarities
of satellite images. For that, they work on local scene co-
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ordinates, approximate the RPC camera model with a per-
spective camera and reparameterize the depths as heights
over a horizontal reference plane that lies below the scene.
In the adaptation, the hypothesis depth planes become the
horizontal planes in the scene.

To approximate the camera, the scene volume is sampled
in a regular grid and projected by the RPC model. This
yields a set of 3D-2D correspondences that are used to �t a
3 � 4 projection matrix.

Being (0; 0; 1; �d) the coef�cients of the horizontal ref-
erence plane (plane equation nt x � d = 0 with n =
(0; 0; 1)t ), the reparameterization of the depths is handled
extending the 3 � 4 projection matrix with a fourth row
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where Z is the conventional depth (distance from the cam-
era center) and m the reparameterized depth (the height
over the reference plane). Z is computed as the average con-
ventional depth of all the sparse scene points in the Struc-
ture From Motion (SFM) step. In order to check the pho-
tometric consistency between two views at a certain depth,
COLMAP, as other MVS methods, computes an homogra-
phy between the �rst and second view as:

H = K 2

�
R 12 �

nT t12

f

�
K � 1

1 ; (2)

where (n; �f) are the coef�cients of the hypothesis plane
that induces the homography, R 12 and t12 indicate the
pose of camera 2 w.r.t camera 1; and K 1 and K 2 are
the intrinsic parameters of the cameras. In the adaptation,
Zhang et al. [37] propose a more stable homography com-
putation based on the 4 � 4 projection matrices instead of
operating with the intrinsic and extrinsic parameters.

3.4. CasMVSNet

True multi-view stereo methods based on DNN construct
a CV in a similar manner as DNN stereo methods [20].
MVSNet [35] is a well known representative of this cate-
gory. Given a reference image, fronto-parallel hypothesis
planes at different depths are considered. Features are then
extracted for each image and differentiable homographies
are used to warp the 2D feature maps into the hypothesis
planes of the reference camera to form feature volumes (one
feature volume per image). The CV is computed as the vari-
ance of all the feature volumes. The cost regularization is
done by 3D convolutions. A raw depth map is regressed
from the regularized CV and �nally re�ned taking into ac-
count the information of the reference image.

As mentioned above, aggregation with 3D convolutions
struggles with memory and computational costs growing

cubically. The Cascade Cost Volume for High-Resolution
Multi-View Stereo (CasMVSNet) [14] is a true multi-view
stereo method that tries to overcome this issue with a
coarse-to-�ne approach. Features are extracted at multiple
scales. At the early stages of the cascade the CV is built
taking into account large scale features and sparse plane hy-
pothesis. This low resolution CV leads to a raw depth that is
subsequently used to adjust the depth sampling. Progress-
ing through the stages, features at �ner scales are considered
but on the other hand the considered depths hypothesis are
narrower bands surrounding the previous estimated depths.
This keeps bounded the size of the CV along the stages.

Adaptation to satellite images The adaptation of the al-
gorithm in order to use it with satellite images is based on
the COLMAP adaptation [37] summarized in Section 3.3.
The perspective approximation of the RPC cameras into
4 � 4 extended projection matrices is borrowed from the
output of the SFM step of a run of the adapted COLMAP.

In the code of the adapted CasMVSNet, projections are
handled with Equation 1 and homographies are computed
as proposed by [37]. In order to preserve the ordering of
the planes as trained in CasMVSNet (from near to far rel-
ative to the camera), the horizontal planes are traversed in
decreasing height (from near to far).

3.5. DSM aggregation criteria

In the case of pair-wise MVS, it is well known that DSM
aggregation improves in general the completeness [27, 8].
However, if the DSM computed from a bad pair is included,
the result degrades. For this reason it is essential to pre-
select the pairs to be aggregated. In [8] a very simple heuris-
tic based on two conditions on the metadata of the images
was proposed: a) �ltering: both images in the pair must
have an incidence angle smaller than 40” and the angle be-
tween views should be in the [5”, 45”] range, preferably
around 20”; b) ordering: pairs are ordered by the increasing
absolute difference between the dates of the images. This is
the a priori selection criterion used in our experiments. But,
this is not enough to �lter out all bad matches. Indeed, we
observed that strong seasonal changes can lead to very bad
results independently of the metadata.

For this reason we apply an additional selection criterion
on the pairs, which determines a posteriori, after computing
the DSM, if it should be aggregated. A DSM is aggregated
if it has more that a certain number of valid (not unde�ned)
pixels. In our experiments a minimum of 70% of valid pix-
els was considered.

4. Datasets

The methods described above were tested on three
datasets, consisting on stereo satellite images from the
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Figure 5. Ground-truth altitude maps from the datasets used in this
study. Left: JAX dataset (subregions 156, 165, 214, 251, 264).
Center: OMA dataset (subregions 203, 247, 251, 287, 353). Right:
Site 1 of MVS3D dataset (subregions 001, 002, 003, 004, 005).
Altitudes are in meters.

Multiple View Stereo Benchmark for Satellite Imagery
(MVS3D) [3] and the US3D dataset [2].

The MVS3D is a set of 47 satellite images of a neighbor-
hood of the city of Buenos Aires, Argentina. Besides, an
airborne Lidar of the same region acquired for the MVS3D
challenge [3] (in a different date than the satellite images),
is considered the ground truth for the altitudes.

The US3D dataset consists of 26 WorldView-3 target-
mode panchromatic, visible, and near infrared (VNIR) im-
ages collected between 2014 and 2016 over Jacksonville
(JAX), Florida and 43 WorldView-3 target-mode panchro-
matic and VNIR images collected between 2014 and 2015
over Omaha (OMA), Nebraska. Semantic labels and an air-
borne Lidar are also available. The Lidar, acquired at a dif-
ferent date than the satellite images by the USGS, is consid-
ered the ground-truth for the altitudes.

For our evaluation, 5 subregions from each of the
datasets are considered. The selection is representative of
the datasets but arbitrary in any other aspect, see Figure 5.
In each subregion, a bounded set of images is considered

in order to allow a tractable pairwise analysis: 6 images
acquired in a small time interval (same day or some days
apart) and 6 images acquired in a longer time interval (span-
ning months) are considered. These sets of images are given
the suf�xes NIT and FIT which stand for near-in-time and
far-in-time, respectively. Table 2 summarizes the set of im-
ages used for the experiments.

Table 2. Datasets used. For each location, �ve subregions are con-
sidered. For each subregion, six images acquired in a small time
interval (same day or some days apart) and six acquired in a longer
time interval (months apart) are considered.

Dataset Subregions Time
span

Alias

MVS3D MVS f001, 002, 003, 004, 005g 1 d MVS NIT
US3D JAX JAX f151, 165, 214, 251, 264g 44 d JAX NIT
US3D OMA OMA f203, 247, 251, 287, 353g 24 d OMA NIT
US3D JAX JAX f151, 165, 214, 251, 264g 386 d JAX FIT
US3D OMA OMA f203, 247, 251, 287, 353g 405 d OMA FIT

5. Experiments
5.1. Methods on stereo pairs

The S2P, S2P-GANet and COLMAP methods were
tested on all the possible pairs for each subregion. With
6 images per subregion, there are 30 possible pairs consid-
ering the order of the images. Methods based on the S2P
pipeline already work on stereo pairs, while COLMAP is set
to work on the minimal set of two images. Table 3 presents
the results, averaging only the DSMs that have at least 70%
of valid pixels.

As expected and consistently with what was reported
in [37], S2P based methods outperform the adapted
COLMAP which is not intended to work just on image
pairs. Among the two variants of S2P, results are quite sim-
ilar in completeness with S2P-GANet achieving better val-
ues of RMSE accuracy, which denotes a lower dispersion in
the altitude values of the DSMs. Figure 6 compares the two
variants of S2P. S2P-GANet variant achieves comparable
or better results than the S2P pipeline, even without having
been trained on satellite images, as illustrated in Table 3.

5.2. Aggregated pair›wise DSM

Pair-wise DSMs computed for S2P and S2P-GANet
methods are aggregated after being selected and ordered
with the criteria explained in Section 3.5. Among the cri-
teria used, the a posteriori �ltering becomes relevant in the
case of sets of images with important seasonal changes as
seen in Figure 7. Note that in OMA FIT dataset, less than
half of pair-wise DSMs pass the criterion and are consid-
ered for the aggregation (see column #DSMs in Table 3),
however the heuristics with a posteriori �ltering achieves
similar results as the oracle guided integration.

For the aggregation, the selected DSMs are registered
to the ground truth DSM and then reduced by the median.



Table 3. Results on stereo pairs for S2P, S2P-GANet and COLMAP methods. The results are the average of the metrics on each of the
datasets. Only DSMs with at least 70% of valid pixels are considered. The best metrics on each row are depicted in bold.

S2P S2P-GANet COLMAP
# DSMs COMP RMSE MAE # DSMs COMP RMSE MAE DSMs COMP RMSE MAE

JAX NIT 139 0.61 4.25 0.42 127 0.61 3.22 0.48 119 0.53 18.03 0.58
MVS NIT 146 0.62 2.89 0.51 131 0.62 2.57 0.47 111 0.56 7.41 0.55
OMA NIT 136 0.76 2.53 0.27 143 0.76 2.16 0.28 123 0.57 17.18 0.53
JAX FIT 114 0.57 4.85 0.35 90 0.62 2.80 0.34 99 0.38 30.37 1.25
OMA FIT 71 0.54 4.94 0.50 58 0.60 2.54 0.47 63 0.16 39.25 8.48

Figure 6. Results on stereo pairs for S2P and S2P-GANet.

Figure 7. Evaluation of the a posteriori pair selection criterium. Comparison of the progressive integration of pair-wise DSMs using the
completeness oracle (DSM are ordered by completeness) and the heuristic rules based on metadata with and without the a posteriori
�ltering. Left: subregion 353 of OMA NIT. Right: subregion 353 of OMA FIT. The use of the a posteriori criterium becomes relevant in
the case of the OMA FIT dataset which presents important seasonal changes between images.

Note that this procedure is used for comparing the methods
but cannot be used in real cases when ground truth is not
available. In a realistic setting a surrogate DSM must be
selected as reference for the registration [8].

Figure 8 illustrates the progression of DSM integration
for S2P and S2P-GANet on two subregions. Second and
fourth rows show the error reduction induced by DSM ag-
gregation. Note the better performance of S2P-GANet, even
with less DSMs.

5.3. Pair›wise vs true multi›view methods

Table 4 presents the results for aggregated pair-wise
and true multi-view methods. As can be seen, pair-wise
methods overcomes true multi-view methods in almost all
datasets and metrics.

5.4. Fine›tuning

Although there are multiple datasets for training stereo
and multi-view stereo algorithms, these datasets are mostly
comprised of close range scenes [30, 18, 34]. In the last
years some datasets were deployed that allow training in
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Figure 8. Two examples of the progressive integration of pair-wise DSMs for the S2P and S2P-GANet methods. Second and fourth rows
show the difference with the respective ground truth DSM. Colorbars are in meters

long range scenes such as the WHU MVS/Stereo dataset
(WHU dataset) [22] and the RVL Purdue SatStereo (RVL
dataset) [28]. WHU is a synthetic aerial dataset produced
out of thousands of real aerial images covering an area over
the Guizhou Province in China. RVL Purdue SatStereo
dataset provides a set of stereo-recti�ed images and asso-
ciated ground truth disparities for areas of interest drawn
from two sources: IARPA’s MVS Challenge dataset [3] and
the CORE3D-Public dataset [2].

GANet developers made available three pretrained mod-
els. The results reported in previous sections use the very
basic model trained on the Scene�ow [24] dataset for only
10 epochs. This model is intended, in principle, as a starting
point for �ne tuning, but it was used as-is in our work. Tests
were conducted on the other two available models which are
�ne-tuned for the Kitti2012 and Kitti2015 [12, 25] bench-
marks. Best results were attained with the basic model.

A �ne-tuning of GANet, starting from the basic model
and using the WHU and RVL datasets was performed. For
the training on WHU, over 8000 crops were used and re-
sults are reported after 9 epochs. For the RVL dataset, 440
crops were used from the MP1, MP2, MS1 and MS2 sub-
sets of the dataset and results are reported after 65 epochs.
The results on stereo pairs for the basic model and the two

�ne-tuned models are presented in Table 5. In general sim-
ilar or better results are obtained in completeness and in the
accuracy with the �ne-tuned models.

6. Discussion
Satellite images have speci�c characteristics that hinder

the adaptation of well established methods used on close
range images. Most satellite pipelines in use are based on
pair-wise approaches with classic methods that are known
to achieve accurate results. This study con�rms this fact
showing that it is hard to beat the baseline pipeline. On
the other hand, results also expose that other valuable meth-
ods from the computer vision �eld can be adapted to work
on satellite images since they get results comparable and in
some cases slightly better than the baseline even if they have
not been trained on satellite images.

Stereo methods can be adapted to work as a stage of
an existing satellite stereo pipeline. In this work we tested
the GANet method as an alternative �stereo matching� step
in the S2P pipeline. An interesting �nding is that the re-
sults for the S2P-GANet variant were similar and in some
cases better than the S2P baseline pipeline without an spe-
ci�c training. The �ne-tuning of GANet in more appro-
priate datasets, such as WHU and RVL, showed a slight



Table 4. Results of the tested pair-wise and true multi-view methods on each subregion of the datasets.
Pair-wise True multi-view

S2P S2P-GANet COLMAP CasMVSNet
# DSMs COMP RMSE MAE # DSMs COMP RMSE MAE COMP RMSE MAE COMP RMSE MAE

JA
X

N
IT

JAX 156 30 0.822 1.803 0.123 30 0.813 1.864 0.144 0.763 3.322 0.175 0.830 1.423 0.147
JAX 165 25 0.690 6.042 0.311 20 0.676 4.260 0.431 0.570 6.645 0.515 0.624 3.741 0.381
JAX 214 24 0.699 5.868 0.271 22 0.671 4.847 0.417 0.593 8.480 0.455 0.612 4.331 0.485
JAX 251 30 0.675 4.747 0.313 25 0.661 3.946 0.396 0.561 12.990 0.621 0.654 2.968 0.351
JAX 264 30 0.792 2.562 0.160 30 0.833 2.147 0.183 0.697 7.341 0.210 0.755 2.231 0.214

M
V

S
N

IT

MVS 001 30 0.744 2.570 0.282 25 0.730 2.388 0.367 0.675 2.666 0.389 0.682 2.917 0.329
MVS 002 30 0.828 2.024 0.158 30 0.823 1.945 0.180 0.787 1.978 0.223 0.827 2.587 0.164
MVS 003 28 0.688 3.873 0.338 23 0.667 3.851 0.415 0.645 3.915 0.413 0.642 3.913 0.359
MVS 004 30 0.707 2.218 0.358 27 0.654 2.263 0.544 0.681 2.324 0.392 0.665 2.461 0.412
MVS 005 28 0.670 2.983 0.440 26 0.663 2.683 0.433 0.632 2.867 0.488 0.633 2.760 0.407

O
M

A
N

IT

OMA 203 29 0.867 1.728 0.105 30 0.871 1.678 0.127 0.817 1.779 0.151 0.800 1.923 0.236
OMA 247 28 0.841 2.458 0.146 27 0.845 2.345 0.149 0.778 2.973 0.217 0.803 2.544 0.221
OMA 251 25 0.903 2.769 0.095 30 0.915 2.240 0.124 0.856 3.000 0.167 0.835 2.360 0.219
OMA 287 24 0.832 2.561 0.155 28 0.853 2.025 0.138 0.743 3.801 0.220 0.763 2.858 0.285
OMA 353 30 0.836 2.455 0.126 28 0.837 2.387 0.138 0.796 2.420 0.192 0.792 2.738 0.193

JA
X

FI
T

JAX 156 29 0.791 2.031 0.123 30 0.828 1.739 0.124 0.693 7.715 0.188 0.800 1.579 0.171
JAX 165 15 0.692 5.985 0.274 6 0.706 4.195 0.310 0.579 10.845 0.384 0.529 5.267 0.465
JAX 214 19 0.678 6.615 0.244 12 0.701 3.951 0.285 0.586 12.693 0.334 0.444 4.257 0.655
JAX 251 21 0.681 4.461 0.285 18 0.703 3.624 0.284 0.611 15.230 0.370 0.610 4.447 0.371
JAX 264 30 0.728 3.074 0.187 24 0.794 2.407 0.181 0.621 8.564 0.263 0.687 2.807 0.286

O
M

A
FI

T OMA 203 17 0.729 2.650 0.229 7 0.707 2.381 0.392 0.500 20.750 0.537 0.602 2.336 0.504
OMA 247 13 0.792 2.796 0.229 10 0.825 2.501 0.198 0.574 13.987 0.383 0.725 2.419 0.305
OMA 251 14 0.859 3.224 0.156 17 0.891 2.318 0.208 0.623 17.756 0.312 0.679 3.049 0.388
OMA 287 15 0.772 3.853 0.243 12 0.822 2.557 0.211 0.537 16.973 0.534 0.610 4.245 0.462
OMA 353 12 0.740 2.652 0.315 12 0.744 2.511 0.375 0.528 16.477 0.651 0.693 2.694 0.459

Table 5. Results of S2P-GANet on the stereo pairs trained with SceneFlow, WHU and RVL datasets. Results are the average of the metrics
on each of the datasets. Only DSMs with at least 70% of valid pixels are considered. Best metrics on each row are in bold.

SceneFlow (basic model) WHU (9 epochs) RVL (65 epochs)
# DSMs COMP RMSE MAE # DSMs COMP RMSE MAE DSMs COMP RMSE MAE

JAX NIT 127 0.61 3.22 0.48 127 0.62 3.37 0.43 116 0.60 2.80 0.55
MVS NIT 131 0.62 2.57 0.47 134 0.64 2.55 0.42 140 0.62 2.36 0.47
OMA NIT 143 0.76 2.16 0.28 149 0.76 2.20 0.24 138 0.76 2.14 0.28
JAX FIT 90 0.62 2.80 0.34 70 0.64 2.32 0.27 92 0.64 2.35 0.35
OMA FIT 58 0.60 2.54 0.47 26 0.63 2.24 0.34 66 0.64 2.03 0.38

but consistent improvement in mean on all datasets used
in the experiments. The improvement are more notori-
ous in the (tougher) far in time acquired images (JAX FIT,
OMA FIT).

Regarding true MVS methods, Zhang et al. proposed
in [37], an adaptation strategy and implemented it for clas-
sic methods such as COLMAP and Planesweep. The ap-
proach, as reported in their article, does not achieve better
results than a pair-wise MVS based on S2P. Nevertheless,
the approach is very interesting and can be applied to other
methods, not intended initially for satellite imagery. We
use that strategy to adapt the CasMVSNet method in this
work. Table 4 shows that, although not outstanding, the
metrics are close to the ones of pair-wise MVS. Results for
CasMVSNet were obtained using a model pretrained on the
DTU [17] dataset comprised of close range scenes.

Although the popularity of DL methods, they are still not
the preferred option in satellite stereo pipelines. The results
obtained with DL methods in this study show the potential

of using this kind of algorithms on satellite images as a step
in a classic pipeline or as an end-to-end MSV solution. Both
tested DL methods exhibited a great generalization power
in particular GANet. It is interesting to note that part of the
internal structure of the GANet mimics SGM [16] which
has been extensively used as the main aggregation strat-
egy in several classic satellite stereo pipelines [26, 29, 21].
This fact, along with its generalization ability, points to this
method as a really attractive option to include it in an exist-
ing satellite pipeline. The adaptation and enhancement of
this and other methods to satellite images depends largely
on the existence of aerial and satellite training datasets that
are still scarce. The availability of more datasets such as
WHU and RVL will surely trigger the adaptation of exit-
ing methods and the development of new methods for the
bene�t of the remote sensing community.
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