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Abstract

Different methods can be applied to satellite images to

derive an altitude map from a set of images. In this article

we evaluate a set of representative methods from different

approaches. We consider true multi-view stereo methods as

well as pair-wise ones, classic methods and deep learning

based ones, methods already in use on satellite images and

others that were originally devised for close range imaging

and are adapted to satellite imagery. While deep learning

(DL) methods have taken over multi-view stereo reconstruc-

tion in the last years, this tendency has not fully reached

satellite stereo pipelines that still largely rely on pair-wise

classic algorithms. For the comparison, we set-up a frame-

work that allows to interface a DL-based stereo method

taken from the computer vision literature with a satellite

stereo pipeline. For multi-view stereo algorithms we build

on a recently proposed framework originally devised to ap-

ply Colmap method to satellite images. Methods are com-

pared on several datasets that include sets of images taken

within a few days and sets of images taken months apart.

Results show that DL methods have, in general, a good gen-

eralization power. In particular, the use of the GANet DL

method as the matching step in a pair-wise stereo pipeline

is promising as it already performs better than the classic

counterpart, even without a specific training.

1. Introduction

Stereo vision is an area that has been extensively re-

searched and multiple algorithms have been proposed along

the last decades [30, 15, 20]. Initial methods worked on one

stereo pair. Then, Multi-View Stereo (MVS) was first ap-

proached as an extension of the stereo algorithms by ag-

gregating the information of multiple stereo pairs. True

MVS algorithms considering directly all the images of the

scene arrived some time afterwards [5]. True MVS algo-

rithms were mostly devised, by the computer vision com-

munity, for the reconstruction of objects, buildings and inte-

riors with images taken with standard pinhole-like cameras
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Figure 1. Digital Surface Models (DSM) computed by the methods

analyzed in this work on the subregion 156 of JAX NIT dataset.

Methods from top to bottom and left to right: S2P, S2P-GANet,

COLMAP, and CasMVSNet. The ground truth altitude for this

example can be seen in Figure 5.

at close distance [10, 32]. Deep Learning (DL) MVS meth-

ods [20] flourished in the last years and have taken over the

top rankings of the main benchmarks of the area [33, 18] but

classic methods are still a valid option when dealing with

many and/or large size images since DL methods struggle

to accommodate large 3D structures in GPU memories.

In the case of satellite images, MVS has traditionally

been performed with pair-wise approaches where the mul-

tiple views are treated by pairs doing traditional two-view

stereo and then aggregating the pair-wise reconstructions

(elevation models or point clouds, for example) to get the

final result [6, 26, 19]. Satellite images have specific char-

acteristics that have historically discouraged the use of true

MVS methods, for example: (a) the extremely small ratio

between the depth range and the distance from the camera
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to the scene implies working with a camera model that devi-

ates from the standard pinhole and deals with structures that

occupy few pixels in the images; (b) the images for a cer-

tain location can only be acquired through several sweeps

which may be days, months or, even years apart, introduc-

ing variability in illumination, seasonal changes and man-

made changes, among others. The variability poses impor-

tant challenges for the matching of correspondent regions

across the images. This variability problem has usually

been tackled with a heuristic selection of best pairs that tend

to minimize separation in time of the images and prefer the

view angles that ensure less error in triangulation [8].

A recent work [37] showed that classic true MVS algo-

rithms used in computer vision could be adapted to satellite

images for the benefit of the remote sensing field. We build

upon that work and extend the concept to include stereo and

MVS methods based on DL.

This work is a concise evaluation of a set of methods

which are representative of different approaches that can be

applied to satellite images in order to derive an altitude map

from a set of images. It is not an extensive benchmark at-

tempt. The selected methods span different interesting as-

pects: methods already in use on satellite images and others

originally devised for close range imaging and adapted to

satellite imagery, classic and DL approaches, pair-wise and

multi-view reconstruction methods.

A simple and modular satellite image processing

pipeline (S2P) [6] is considered as a baseline. Experiments

in this article explore if modifications in the pipeline or the

use of other methods adapted to satellite imagery can give

promising or better results in comparison to the already es-

tablished pipeline. A framework is built in order to compare

different methods on several datasets that include sets of im-

ages from different sites and that consider acquisitions over

short and long periods of time. The comparison shows that

the analyzed methods attain comparable and sometimes bet-

ter performance than the classical ones. Figure 1 shows typ-

ical results, where rows compare pair-wise vs. multi-view

approaches and columns compare classic vs. DL methods.

The rest of the article is organized as follows: Section 2

explains the methodology used to compare the methods in-

troduced in Section 3. Section 4 details the datasets on

which evaluation was performed. Section 5 presents the ex-

periments. The results are finally analyzed in Section 6.

2. Framework for the comparison

The different methods are applied to the datasets follow-

ing the scheme depicted in Figure 2. For pair-wise methods,

a Digital Surface Model (DSM) is computed for every pos-

sible pair of images of a subregion; these DSMs are then ag-

gregated to get an enhanced multi-pair DSM. On the other

hand, true multi-view methods are fed with all the images

of a subregion.

Figure 2. Scheme of multi-pair and true multi-view methods.

Figure 3. Flow diagram for the comparison of computed DSM with

respect to the ground truth altitude.

In order to assess the performance of the different ap-

proaches, the computed DSMs are compared against the

ground-truth DSM on all the datasets. The comparison is

done as shown in Figure 3. First each altitude map is regis-

tered to the ground-truth map. A normalized cross correla-

tion approach is used in order to obtain integer X,Y trans-

lations that register the DSMs and the altitude is adjusted

by the median of the difference to the ground-truth. Once

registered, the following metrics [3] are computed:

Completeness (COMP): Proportion of evaluated pixels

where the altitude of the computed map differs from

the ground-truth less or equal than z tol = 1m. We

consider only pixels with ground-truth information.

RMSE Accuracy: Root Mean Square Error (RMSE) be-

tween computed and ground truth maps considering

only the pixels with valid information in both maps.

MAE Accuracy: Median Absolute Error (MAE) between

computed and ground truth maps considering only the

pixels that have valid information in both maps.

3. Methods

Table 1 summarizes the evaluated methods. A brief de-

scription of each one and the necessary adaptations to satel-

lite imagery are presented hereafter.

3.1. S2P

Figure 4 shows an overview of the S2P [6] pipeline1. The

input is a stereo pair of images with their respective cam-

era models expressed by rational polynomial coefficients

1https://github.com/centreborelli/s2p
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Table 1. Tested methods
Method Type DL Notes

S2P [6] Pair-wise No MGM [7] in dispar-

ity computation

S2P-GANet Pair-wise Partially GANet [36] in dis-

parity computation

COLMAP

[32, 31]

Multi-view No Adapted for satellite

images by [37]

CasMVSNet

[14]

Multi-view Yes Adapted for satellite

images in this work

Figure 4. S2P overview. The input is a pair of images with their

respective RPC camera models, the output is a DSM given as a

georeferenced 3D point cloud and as an altitude image.

(RPC). Each image pair undergoes a pointing correction and

is rectified. Disparity is computed on rectified images using

MGM stereo matching algorithm [7]. Computed correspon-

dences are then triangulated to produce a geo-referenced 3D

point cloud and an altitude map.

3.2. GANet

GANet [36] uses Deep Neural Networks (DNN) to com-

pute a disparity map. As other DNN methods [20], it fol-

lows the traditional stereo steps: dense features are ex-

tracted for both images, the cost of matching the features

at different disparities is organized in a Cost Volume (CV),

which is regularized by aggregation and/or filtering and fi-

nally a map with minimal cost is derived from the CV.

In most DNN based stereo methods, cost aggregation is

done by 3D convolutions, usually in an hourglass configu-

ration [20]. 3D convolutions imply large memory require-

ments; the computational burden restricts the size of images

that can be processed. GANet takes a different approach by

introducing a Semi-global Guided Aggregation layer (SGA)

which implements a differentiable approximation of Semi-

Global Matching (SGM) [16]. SGA is followed by a Lo-

cal Guided Aggregation layer (LGA) that performs a local

filtering. SGA and LGA weights are generated by an aux-

iliary “guidance subnet” fed with original images and the

extracted features.

S2P-GANet: Adaptation to satellite images In this

work, GANet is used as an alternative “stereo matching”

step in the S2P pipeline, see Figure 4. The stereo matching

step receives a rectified stereo pair of images and computes

disparity maps in both directions: left-to-right and right-to-

left. A consistency check is performed to filter out pixels

with non congruent disparities [9, 4]. In order to use GANet

in the S2P pipeline, some adaptations have to be considered:

a) Negative disparities: In most stereo algorithms, a CV

is computed and regularized, and a disparity map is derived

from it. The CV is computed for a certain range of possi-

ble disparity values, which must be known a priori or esti-

mated. In the S2P pipeline, the disparity range is tradition-

ally estimated by the sparse matching of interest points (e.g.

SIFT keypoints [23]), but other strategies are allowed such

as specifying a fixed known disparity range or estimating

the disparity range from a known altitude range. In several

stereo matching algorithms, including [7] used by default in

S2P, disparity admits positive and negative values. GANet,

however, accept only negative disparities. That is, all pixels

in the secondary rectified image must “move” to the left rel-

ative to the rectified reference image. In this work, a fixed

known altitude range is used, based on the ground truth plus

an additional safety guard. The S2P pipeline was adapted

to get a rectification compatible with negative disparities.

b) GPU memory restrictions: The size of the rectified

stereo images that can be handled by GANet is bounded

by the available memory in the GPU. Also, images’ width

and height must be multiple of 48. A tiling strategy is thus

implemented to process large images. The disparity estima-

tion is more error prone at tile borders. So tiles are chosen

as large as possible and the overlaps are merged considering

the distance to the border as a weight. The experiments re-

ported in this work use tiles of 1872× 480 pixels and were

run on a Nvidia Tesla P100 GPU with 12Gb of RAM.

3.3. COLMAP

COLMAP [32] is part of a family of methods [13, 10, 11]

that focus on large-scale dense reconstruction and fusion.

These methods aim to integrate the information of diverse

multiple images of a scene such as crowd-sourced image

datasets. COLMAP is closely related to [38] and con-

siders, as other MVS methods, a variety of photometric

and geometric priors ensuring consistency among differ-

ent views. The method follows a generalized Expectation-

Maximization (EM) scheme with alternating and inter-

leaved estimation of occlusions in the E-step and depths

in the M-step. The depth estimation M-step is based on

PatchMatch [1] where the tested hypothesis are based on

the depths, the normals and their perturbations.

Zhang et al. [37] adapted COLMAP to the peculiarities

of satellite images. For that, they work on local scene co-
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ordinates, approximate the RPC camera model with a per-

spective camera and reparameterize the depths as heights

over a horizontal reference plane that lies below the scene.

In the adaptation, the hypothesis depth planes become the

horizontal planes in the scene.

To approximate the camera, the scene volume is sampled

in a regular grid and projected by the RPC model. This

yields a set of 3D-2D correspondences that are used to fit a

3× 4 projection matrix.

Being (0, 0, 1,−d) the coefficients of the horizontal ref-

erence plane (plane equation ntx − d = 0 with n =
(0, 0, 1)t ), the reparameterization of the depths is handled

extending the 3× 4 projection matrix with a fourth row
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where Z is the conventional depth (distance from the cam-

era center) and m the reparameterized depth (the height

over the reference plane). Z is computed as the average con-

ventional depth of all the sparse scene points in the Struc-

ture From Motion (SFM) step. In order to check the pho-

tometric consistency between two views at a certain depth,

COLMAP, as other MVS methods, computes an homogra-

phy between the first and second view as:

H = K2

(

R12 −
nT t12

f

)

K
−1

1
, (2)

where (n,−f) are the coefficients of the hypothesis plane

that induces the homography, R12 and t12 indicate the

pose of camera 2 w.r.t camera 1; and K1 and K2 are

the intrinsic parameters of the cameras. In the adaptation,

Zhang et al. [37] propose a more stable homography com-

putation based on the 4 × 4 projection matrices instead of

operating with the intrinsic and extrinsic parameters.

3.4. CasMVSNet

True multi-view stereo methods based on DNN construct

a CV in a similar manner as DNN stereo methods [20].

MVSNet [35] is a well known representative of this cate-

gory. Given a reference image, fronto-parallel hypothesis

planes at different depths are considered. Features are then

extracted for each image and differentiable homographies

are used to warp the 2D feature maps into the hypothesis

planes of the reference camera to form feature volumes (one

feature volume per image). The CV is computed as the vari-

ance of all the feature volumes. The cost regularization is

done by 3D convolutions. A raw depth map is regressed

from the regularized CV and finally refined taking into ac-

count the information of the reference image.

As mentioned above, aggregation with 3D convolutions

struggles with memory and computational costs growing

cubically. The Cascade Cost Volume for High-Resolution

Multi-View Stereo (CasMVSNet) [14] is a true multi-view

stereo method that tries to overcome this issue with a

coarse-to-fine approach. Features are extracted at multiple

scales. At the early stages of the cascade the CV is built

taking into account large scale features and sparse plane hy-

pothesis. This low resolution CV leads to a raw depth that is

subsequently used to adjust the depth sampling. Progress-

ing through the stages, features at finer scales are considered

but on the other hand the considered depths hypothesis are

narrower bands surrounding the previous estimated depths.

This keeps bounded the size of the CV along the stages.

Adaptation to satellite images The adaptation of the al-

gorithm in order to use it with satellite images is based on

the COLMAP adaptation [37] summarized in Section 3.3.

The perspective approximation of the RPC cameras into

4 × 4 extended projection matrices is borrowed from the

output of the SFM step of a run of the adapted COLMAP.

In the code of the adapted CasMVSNet, projections are

handled with Equation 1 and homographies are computed

as proposed by [37]. In order to preserve the ordering of

the planes as trained in CasMVSNet (from near to far rel-

ative to the camera), the horizontal planes are traversed in

decreasing height (from near to far).

3.5. DSM aggregation criteria

In the case of pair-wise MVS, it is well known that DSM

aggregation improves in general the completeness [27, 8].

However, if the DSM computed from a bad pair is included,

the result degrades. For this reason it is essential to pre-

select the pairs to be aggregated. In [8] a very simple heuris-

tic based on two conditions on the metadata of the images

was proposed: a) filtering: both images in the pair must

have an incidence angle smaller than 40º and the angle be-

tween views should be in the [5º, 45º] range, preferably

around 20º; b) ordering: pairs are ordered by the increasing

absolute difference between the dates of the images. This is

the a priori selection criterion used in our experiments. But,

this is not enough to filter out all bad matches. Indeed, we

observed that strong seasonal changes can lead to very bad

results independently of the metadata.

For this reason we apply an additional selection criterion

on the pairs, which determines a posteriori, after computing

the DSM, if it should be aggregated. A DSM is aggregated

if it has more that a certain number of valid (not undefined)

pixels. In our experiments a minimum of 70% of valid pix-

els was considered.

4. Datasets

The methods described above were tested on three

datasets, consisting on stereo satellite images from the

847



Figure 5. Ground-truth altitude maps from the datasets used in this

study. Left: JAX dataset (subregions 156, 165, 214, 251, 264).

Center: OMA dataset (subregions 203, 247, 251, 287, 353). Right:

Site 1 of MVS3D dataset (subregions 001, 002, 003, 004, 005).

Altitudes are in meters.

Multiple View Stereo Benchmark for Satellite Imagery

(MVS3D) [3] and the US3D dataset [2].

The MVS3D is a set of 47 satellite images of a neighbor-

hood of the city of Buenos Aires, Argentina. Besides, an

airborne Lidar of the same region acquired for the MVS3D

challenge [3] (in a different date than the satellite images),

is considered the ground truth for the altitudes.

The US3D dataset consists of 26 WorldView-3 target-

mode panchromatic, visible, and near infrared (VNIR) im-

ages collected between 2014 and 2016 over Jacksonville

(JAX), Florida and 43 WorldView-3 target-mode panchro-

matic and VNIR images collected between 2014 and 2015

over Omaha (OMA), Nebraska. Semantic labels and an air-

borne Lidar are also available. The Lidar, acquired at a dif-

ferent date than the satellite images by the USGS, is consid-

ered the ground-truth for the altitudes.

For our evaluation, 5 subregions from each of the

datasets are considered. The selection is representative of

the datasets but arbitrary in any other aspect, see Figure 5.

In each subregion, a bounded set of images is considered

in order to allow a tractable pairwise analysis: 6 images

acquired in a small time interval (same day or some days

apart) and 6 images acquired in a longer time interval (span-

ning months) are considered. These sets of images are given

the suffixes NIT and FIT which stand for near-in-time and

far-in-time, respectively. Table 2 summarizes the set of im-

ages used for the experiments.

Table 2. Datasets used. For each location, five subregions are con-

sidered. For each subregion, six images acquired in a small time

interval (same day or some days apart) and six acquired in a longer

time interval (months apart) are considered.
Dataset Subregions Time

span

Alias

MVS3D MVS {001, 002, 003, 004, 005} 1 d MVS NIT

US3D JAX JAX {151, 165, 214, 251, 264} 44 d JAX NIT

US3D OMA OMA {203, 247, 251, 287, 353} 24 d OMA NIT

US3D JAX JAX {151, 165, 214, 251, 264} 386 d JAX FIT

US3D OMA OMA {203, 247, 251, 287, 353} 405 d OMA FIT

5. Experiments

5.1. Methods on stereo pairs

The S2P, S2P-GANet and COLMAP methods were

tested on all the possible pairs for each subregion. With

6 images per subregion, there are 30 possible pairs consid-

ering the order of the images. Methods based on the S2P

pipeline already work on stereo pairs, while COLMAP is set

to work on the minimal set of two images. Table 3 presents

the results, averaging only the DSMs that have at least 70%

of valid pixels.

As expected and consistently with what was reported

in [37], S2P based methods outperform the adapted

COLMAP which is not intended to work just on image

pairs. Among the two variants of S2P, results are quite sim-

ilar in completeness with S2P-GANet achieving better val-

ues of RMSE accuracy, which denotes a lower dispersion in

the altitude values of the DSMs. Figure 6 compares the two

variants of S2P. S2P-GANet variant achieves comparable

or better results than the S2P pipeline, even without having

been trained on satellite images, as illustrated in Table 3.

5.2. Aggregated pair­wise DSM

Pair-wise DSMs computed for S2P and S2P-GANet

methods are aggregated after being selected and ordered

with the criteria explained in Section 3.5. Among the cri-

teria used, the a posteriori filtering becomes relevant in the

case of sets of images with important seasonal changes as

seen in Figure 7. Note that in OMA FIT dataset, less than

half of pair-wise DSMs pass the criterion and are consid-

ered for the aggregation (see column #DSMs in Table 3),

however the heuristics with a posteriori filtering achieves

similar results as the oracle guided integration.

For the aggregation, the selected DSMs are registered

to the ground truth DSM and then reduced by the median.
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Table 3. Results on stereo pairs for S2P, S2P-GANet and COLMAP methods. The results are the average of the metrics on each of the

datasets. Only DSMs with at least 70% of valid pixels are considered. The best metrics on each row are depicted in bold.
S2P S2P-GANet COLMAP

# DSMs COMP RMSE MAE # DSMs COMP RMSE MAE DSMs COMP RMSE MAE

JAX NIT 139 0.61 4.25 0.42 127 0.61 3.22 0.48 119 0.53 18.03 0.58

MVS NIT 146 0.62 2.89 0.51 131 0.62 2.57 0.47 111 0.56 7.41 0.55

OMA NIT 136 0.76 2.53 0.27 143 0.76 2.16 0.28 123 0.57 17.18 0.53

JAX FIT 114 0.57 4.85 0.35 90 0.62 2.80 0.34 99 0.38 30.37 1.25

OMA FIT 71 0.54 4.94 0.50 58 0.60 2.54 0.47 63 0.16 39.25 8.48

Figure 6. Results on stereo pairs for S2P and S2P-GANet.

Figure 7. Evaluation of the a posteriori pair selection criterium. Comparison of the progressive integration of pair-wise DSMs using the

completeness oracle (DSM are ordered by completeness) and the heuristic rules based on metadata with and without the a posteriori

filtering. Left: subregion 353 of OMA NIT. Right: subregion 353 of OMA FIT. The use of the a posteriori criterium becomes relevant in

the case of the OMA FIT dataset which presents important seasonal changes between images.

Note that this procedure is used for comparing the methods

but cannot be used in real cases when ground truth is not

available. In a realistic setting a surrogate DSM must be

selected as reference for the registration [8].

Figure 8 illustrates the progression of DSM integration

for S2P and S2P-GANet on two subregions. Second and

fourth rows show the error reduction induced by DSM ag-

gregation. Note the better performance of S2P-GANet, even

with less DSMs.

5.3. Pair­wise vs true multi­view methods

Table 4 presents the results for aggregated pair-wise

and true multi-view methods. As can be seen, pair-wise

methods overcomes true multi-view methods in almost all

datasets and metrics.

5.4. Fine­tuning

Although there are multiple datasets for training stereo

and multi-view stereo algorithms, these datasets are mostly

comprised of close range scenes [30, 18, 34]. In the last

years some datasets were deployed that allow training in
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S2P S2P-GANet

Ground truth 1 DSM 15 DSM 30 DSM 1 DSM 15 DSM 25 DSM

M
V

S
N

IT
0

0
1

Ground truth 1 DSM 10 DSM 21 DSM 1 DSM 10 DSM 18 DSM

J
A

X
F

IT
2

5
1

Figure 8. Two examples of the progressive integration of pair-wise DSMs for the S2P and S2P-GANet methods. Second and fourth rows

show the difference with the respective ground truth DSM. Colorbars are in meters

long range scenes such as the WHU MVS/Stereo dataset

(WHU dataset) [22] and the RVL Purdue SatStereo (RVL

dataset) [28]. WHU is a synthetic aerial dataset produced

out of thousands of real aerial images covering an area over

the Guizhou Province in China. RVL Purdue SatStereo

dataset provides a set of stereo-rectified images and asso-

ciated ground truth disparities for areas of interest drawn

from two sources: IARPA’s MVS Challenge dataset [3] and

the CORE3D-Public dataset [2].

GANet developers made available three pretrained mod-

els. The results reported in previous sections use the very

basic model trained on the Sceneflow [24] dataset for only

10 epochs. This model is intended, in principle, as a starting

point for fine tuning, but it was used as-is in our work. Tests

were conducted on the other two available models which are

fine-tuned for the Kitti2012 and Kitti2015 [12, 25] bench-

marks. Best results were attained with the basic model.

A fine-tuning of GANet, starting from the basic model

and using the WHU and RVL datasets was performed. For

the training on WHU, over 8000 crops were used and re-

sults are reported after 9 epochs. For the RVL dataset, 440

crops were used from the MP1, MP2, MS1 and MS2 sub-

sets of the dataset and results are reported after 65 epochs.

The results on stereo pairs for the basic model and the two

fine-tuned models are presented in Table 5. In general sim-

ilar or better results are obtained in completeness and in the

accuracy with the fine-tuned models.

6. Discussion

Satellite images have specific characteristics that hinder

the adaptation of well established methods used on close

range images. Most satellite pipelines in use are based on

pair-wise approaches with classic methods that are known

to achieve accurate results. This study confirms this fact

showing that it is hard to beat the baseline pipeline. On

the other hand, results also expose that other valuable meth-

ods from the computer vision field can be adapted to work

on satellite images since they get results comparable and in

some cases slightly better than the baseline even if they have

not been trained on satellite images.

Stereo methods can be adapted to work as a stage of

an existing satellite stereo pipeline. In this work we tested

the GANet method as an alternative “stereo matching” step

in the S2P pipeline. An interesting finding is that the re-

sults for the S2P-GANet variant were similar and in some

cases better than the S2P baseline pipeline without an spe-

cific training. The fine-tuning of GANet in more appro-

priate datasets, such as WHU and RVL, showed a slight
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Table 4. Results of the tested pair-wise and true multi-view methods on each subregion of the datasets.
Pair-wise True multi-view

S2P S2P-GANet COLMAP CasMVSNet

# DSMs COMP RMSE MAE # DSMs COMP RMSE MAE COMP RMSE MAE COMP RMSE MAE

J
A

X
N

IT

JAX 156 30 0.822 1.803 0.123 30 0.813 1.864 0.144 0.763 3.322 0.175 0.830 1.423 0.147

JAX 165 25 0.690 6.042 0.311 20 0.676 4.260 0.431 0.570 6.645 0.515 0.624 3.741 0.381

JAX 214 24 0.699 5.868 0.271 22 0.671 4.847 0.417 0.593 8.480 0.455 0.612 4.331 0.485

JAX 251 30 0.675 4.747 0.313 25 0.661 3.946 0.396 0.561 12.990 0.621 0.654 2.968 0.351

JAX 264 30 0.792 2.562 0.160 30 0.833 2.147 0.183 0.697 7.341 0.210 0.755 2.231 0.214

M
V

S
N

IT

MVS 001 30 0.744 2.570 0.282 25 0.730 2.388 0.367 0.675 2.666 0.389 0.682 2.917 0.329

MVS 002 30 0.828 2.024 0.158 30 0.823 1.945 0.180 0.787 1.978 0.223 0.827 2.587 0.164

MVS 003 28 0.688 3.873 0.338 23 0.667 3.851 0.415 0.645 3.915 0.413 0.642 3.913 0.359

MVS 004 30 0.707 2.218 0.358 27 0.654 2.263 0.544 0.681 2.324 0.392 0.665 2.461 0.412

MVS 005 28 0.670 2.983 0.440 26 0.663 2.683 0.433 0.632 2.867 0.488 0.633 2.760 0.407

O
M

A
N

IT

OMA 203 29 0.867 1.728 0.105 30 0.871 1.678 0.127 0.817 1.779 0.151 0.800 1.923 0.236

OMA 247 28 0.841 2.458 0.146 27 0.845 2.345 0.149 0.778 2.973 0.217 0.803 2.544 0.221

OMA 251 25 0.903 2.769 0.095 30 0.915 2.240 0.124 0.856 3.000 0.167 0.835 2.360 0.219

OMA 287 24 0.832 2.561 0.155 28 0.853 2.025 0.138 0.743 3.801 0.220 0.763 2.858 0.285

OMA 353 30 0.836 2.455 0.126 28 0.837 2.387 0.138 0.796 2.420 0.192 0.792 2.738 0.193

J
A

X
F

IT

JAX 156 29 0.791 2.031 0.123 30 0.828 1.739 0.124 0.693 7.715 0.188 0.800 1.579 0.171

JAX 165 15 0.692 5.985 0.274 6 0.706 4.195 0.310 0.579 10.845 0.384 0.529 5.267 0.465

JAX 214 19 0.678 6.615 0.244 12 0.701 3.951 0.285 0.586 12.693 0.334 0.444 4.257 0.655

JAX 251 21 0.681 4.461 0.285 18 0.703 3.624 0.284 0.611 15.230 0.370 0.610 4.447 0.371

JAX 264 30 0.728 3.074 0.187 24 0.794 2.407 0.181 0.621 8.564 0.263 0.687 2.807 0.286

O
M

A
F

IT

OMA 203 17 0.729 2.650 0.229 7 0.707 2.381 0.392 0.500 20.750 0.537 0.602 2.336 0.504

OMA 247 13 0.792 2.796 0.229 10 0.825 2.501 0.198 0.574 13.987 0.383 0.725 2.419 0.305

OMA 251 14 0.859 3.224 0.156 17 0.891 2.318 0.208 0.623 17.756 0.312 0.679 3.049 0.388

OMA 287 15 0.772 3.853 0.243 12 0.822 2.557 0.211 0.537 16.973 0.534 0.610 4.245 0.462

OMA 353 12 0.740 2.652 0.315 12 0.744 2.511 0.375 0.528 16.477 0.651 0.693 2.694 0.459

Table 5. Results of S2P-GANet on the stereo pairs trained with SceneFlow, WHU and RVL datasets. Results are the average of the metrics

on each of the datasets. Only DSMs with at least 70% of valid pixels are considered. Best metrics on each row are in bold.

SceneFlow (basic model) WHU (9 epochs) RVL (65 epochs)

# DSMs COMP RMSE MAE # DSMs COMP RMSE MAE DSMs COMP RMSE MAE

JAX NIT 127 0.61 3.22 0.48 127 0.62 3.37 0.43 116 0.60 2.80 0.55

MVS NIT 131 0.62 2.57 0.47 134 0.64 2.55 0.42 140 0.62 2.36 0.47

OMA NIT 143 0.76 2.16 0.28 149 0.76 2.20 0.24 138 0.76 2.14 0.28

JAX FIT 90 0.62 2.80 0.34 70 0.64 2.32 0.27 92 0.64 2.35 0.35

OMA FIT 58 0.60 2.54 0.47 26 0.63 2.24 0.34 66 0.64 2.03 0.38

but consistent improvement in mean on all datasets used

in the experiments. The improvement are more notori-

ous in the (tougher) far in time acquired images (JAX FIT,

OMA FIT).

Regarding true MVS methods, Zhang et al. proposed

in [37], an adaptation strategy and implemented it for clas-

sic methods such as COLMAP and Planesweep. The ap-

proach, as reported in their article, does not achieve better

results than a pair-wise MVS based on S2P. Nevertheless,

the approach is very interesting and can be applied to other

methods, not intended initially for satellite imagery. We

use that strategy to adapt the CasMVSNet method in this

work. Table 4 shows that, although not outstanding, the

metrics are close to the ones of pair-wise MVS. Results for

CasMVSNet were obtained using a model pretrained on the

DTU [17] dataset comprised of close range scenes.

Although the popularity of DL methods, they are still not

the preferred option in satellite stereo pipelines. The results

obtained with DL methods in this study show the potential

of using this kind of algorithms on satellite images as a step

in a classic pipeline or as an end-to-end MSV solution. Both

tested DL methods exhibited a great generalization power

in particular GANet. It is interesting to note that part of the

internal structure of the GANet mimics SGM [16] which

has been extensively used as the main aggregation strat-

egy in several classic satellite stereo pipelines [26, 29, 21].

This fact, along with its generalization ability, points to this

method as a really attractive option to include it in an exist-

ing satellite pipeline. The adaptation and enhancement of

this and other methods to satellite images depends largely

on the existence of aerial and satellite training datasets that

are still scarce. The availability of more datasets such as

WHU and RVL will surely trigger the adaptation of exit-

ing methods and the development of new methods for the

benefit of the remote sensing community.
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