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Abstract

We present Sandwich Batch Normalization (SaBN), a
frustratingly easy improvement of Batch Normalization
(BN) with only a few lines of code changes. SaBN is
motivated by addressing the inherent feature distribution
heterogeneity that one can be identified in many tasks,
which can arise from data heterogeneity (multiple input
domains) or model heterogeneity (dynamic architectures,
model conditioning, etc.). Our SaBN factorizes the BN
affine layer into one shared sandwich affine layer, cas-
caded by several parallel independent affine layers. Con-
crete analysis reveals that, during optimization, SaBN pro-
motes balanced gradient norms while still preserving di-
verse gradient directions – a property that many applica-
tion tasks seem to favor. We demonstrate the prevailing ef-
fectiveness of SaBN as a drop-in replacement in four tasks:
conditional image generation, neural architecture search
(NAS), adversarial training, and arbitrary style trans-
fer. Leveraging SaBN immediately achieves better Incep-
tion Score and FID on CIFAR-10 and ImageNet condi-
tional image generation with three state-of-the-art GANs;
boosts the performance of a state-of-the-art weight-sharing
NAS algorithm significantly on NAS-Bench-201; substan-
tially improves the robust and standard accuracies for ad-
versarial defense; and produces superior arbitrary styl-
ized results. We also provide visualizations and anal-
ysis to help understand why SaBN works. Codes are
available at: https://github.com/VITA-Group/
Sandwich-Batch-Normalization.

1. Introduction
This paper presents a simple, light-weight, and easy-to-

implement modification of Batch Normalization (BN) [30],
motivated by various observations [69, 13, 61, 62] drawn
from several applications, that BN has troubles standardiz-
ing hidden features with a heterogeneous, multi-modal dis-
tribution. We call this phenomenon feature distribution het-
erogeneity. Such heterogeneity of hidden features could
arise from multiple causes, often application-dependent:

• One straightforward cause is the input data hetero-
geneity. For example, when training a deep network
on a diverse set of visual domains, that possess signif-
icantly different statistics, BN is found to be ineffec-
tive in normalizing the activations with only a single
mean and variance [13], and often needs to be re-set or
adapted [40].

• Another intrinsic cause could arise from the model
heterogeneity, i.e., when the training is, or could be
equivalently viewed as, on a set of different models.
For instance, in neural architecture search (NAS) using
weight sharing [43, 17], training the supernet during
the search phase could be considered as training a large
set of sub-models (with many overlapped weights) si-
multaneously. As another example, for conditional
image generation [47], the generative model could be
treated as a set of category-specific sub-models packed
together, one of which would be “activated” by the
conditional input each time.

The vanilla BN (Figure 1 (a)) fails to perform well when
there is data or model heterogeneity. Recent trends split the
affine layer into multiple ones and leverage input signals to
modulate or select among them [12, 13] (Figure 1 (b)); or
even utilize several independent BNs to address such dis-
parity [69, 61, 62, 67]. While those relaxations alleviate the
data or model heterogeneity, we suggest that they might be
“too loose” in the normalization or regularization effects.

Let us take the conditional image generation task of
GANs as a concrete motivating example to illustrate our
rationale. A GAN model is trained with an image dataset
containing various image classes, tending to capture the
distribution of real samples to produce similar image ex-
amples. As a helpful remedy for the generator to encode
class-specific information, Categorical Conditional Batch
Normalization (CCBN), is widely used in the conditional
image generation [5, 47, 48]. It is composed of a normal-
ization layer and a number of following separate affine lay-
ers for different image classes, which allows class-specific
information to be encoded separately, thus enables the gen-
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erator to generate more vivid examples.
But what might be missing? Unfortunately, using sepa-

rate affines ignores one important fact that different image
classes, while being different, are not totally independent.
Considering that images from the same dataset share some
common characteristic (e.g., the object-centric bias for CI-
FAR images), it is convincing to hypothesize the different
classes to be largely overlapped at least (i.e., they still share
some hidden features despite the different statistics). To put
it simply: while it is oversimplified to normalize the differ-
ent classes as “the same one”, it is also unfair and unneces-
sary to treat them as “totally disparate”.

More application examples can be found that all share
this important structural feature prior. [43, 17, 67] train
a large variety of child models, constituting model hetero-
geneity; but most child architectures inevitably have many
weights in common since they are sampled from the same
supernet. Similarly, in adversarial training, the model is
trained by a mixture of the original training set (“clean ex-
amples”) and its attacked counterpart with some small per-
turbations applied (“adversarial examples”). But the clean
examples and adversarial examples could be largely over-
lapped, considering that all adversarial images are gener-
ated by perturbing clean counterparts only minimally.

Our Contributions: Recognizing the need to address
feature normalization with “harmony in diversity”, we pro-
pose a new SaBN as illustrated in Fig 1 (c). SaBN modifies
BN in an embarrassingly simple way: it is equipped with
two cascaded affine layers: a shared unconditional sand-
wich affine layer, followed by a set of independent affine
layers that can be conditioned. Compared to CCBN, the
new sandwich affine layer is designed to inject an inductive
bias, that all re-scaling transformations will have a shared
factor, indicating the commodity.

We then dive into a detailed analysis of why SaBN shows
to be effective, and illustrate that during optimization, SaBN
promotes balanced gradient norms (leading to more fair
learning paces among heterogeneous classes and features),
while still preserving diverse gradient directions (leading
to each class leaning towards discriminative feature clus-
ters): a favorable inductive bias by many applications.

Experiments on the applications of conditional image
generation and NAS demonstrate that SaBN addresses the
model heterogeneity issue elegantly, improving generation
quality in GAN and the search performance in NAS in a
plug-and-play fashion. To better address the data hetero-
geneity altogether, SaBN could further integrate the idea of
split/auxiliary BNs [69, 61, 62, 67], to decompose the nor-
malization layer into multiple parallel ones. That yields the
new variant called SaAuxBN, demonstrated by the example
of adversarial training. Lastly, we extend the idea of SaBN
to Adaptive Instance Normalization (AdaIN) [28] and show
the resulting SaAdaIN to improve arbitrary style transfer.

2. Related Work
2.1. Normalization in Deep Learning

Batch Normalization (BN) [30] made critical contribu-
tions to training deep convolutional networks and nowadays
becomes a cornerstone of the latter for numerous tasks. BN
normalizes the input mini-batch of samples by the mean
and variance, and then re-scales them with learnable affine
parameters. The success of BNs was initially attributed to
overcoming internal covariate shift [30], but later on raises
many open discussions on its effect of improving landscape
smoothness [55]; enabling larger learning rates [4] and re-
ducing gradient sensitivity [2]; preserving the rank of pre-
activation weight matrices [11]; decoupling feature length
and direction [35]; capturing domain-specific artifacts [40];
reducing BN’s dependency on batch size [29, 56]; prevent-
ing elimination singularities [53]; and even characterizing
an important portion of network expressivity [20].

Inspired by BN, a number of task-specific modifications
exploit different normalization axes, such as Instance Nor-
malization (IN) [57] for style transfer; Layer Normalization
(LN) [3] for recurrent networks; Group Normalization (GN)
[60] for tackling small batch sizes; StochNorm [36] for
fine-tuning; Passport-aware Normalization [72] for model
IP protection; and [38, 58, 73] for image generation.

Several normalization variants have been proposed by
modulating BN parameters, mostly the affine layer (mean
and variance), to improve the controlling flexibility for more
sophisticated usages. For example, Harm et al. [12] pre-
sented Conditional BN, whose affine parameters are gen-
erated as a function of the input. Similarly, Conditional
IN [19] assigned each style with independent IN affine pa-
rameters. In [47], the authors developed Categorical Con-
ditional BN for conditional GAN image generation, where
each generated class has its independent affine parameters.
Huang & Belongie [28] presented Adaptive IN (AdaIN),
which used the mean and variance of style image to replace
the original affine parameter, achieving arbitrary style trans-
fer. Spatial adaptivity [51] and channel attention [39] man-
aged to modulate BN with higher complexities.

A few latest works investigate to use multiple normaliza-
tion layers instead of one in BN. [13] developed mode nor-
malization by employing a mixture-of-experts to separate
incoming data into several modes and separately normaliz-
ing each mode. [69] used two separate BNs to address the
domain shift between labeled and unlabeled data in semi-
supervised learning. Very recently, [62, 61] revealed the
two-domain issue in adversarial training and find improve-
ments by using two separate BNs (AuxBN).

2.2. Brief Backgrounds for Related Applications

We use four important applications as testbeds. All of
them appear to be oversimplified by using the vanilla BN,
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Figure 1. Illustration of (a) vanilla batch normalization (BN), composed of one normalization layer and one affine layer; (b) Categorical
Conditional BN, composed of one normalization layer following a set of independent affine layers to intake conditional information; (c)
Sandwich BN, sequentially composed of one normalization layer, one shared sandwich affine layer, and a set of independent affine layers.

where the feature homogeneity and heterogeneity are not
properly handled. We briefly introduce them below, and
will concretely illustrate where the heterogeneity comes
from and how our methods deal with it in Sec. 3.

Generative Adversarial Network GAN has been pre-
vailing since its origin [23] for image generation. Many ef-
forts have been made to improve GANs, such as modifying
loss function [1, 25, 32], improving network architecture
[71, 34, 22, 6] and adjusting training procedure [33]. Recent
works also tried to improve the generated image quality by
proposing new normalization modules, such as Categorical
Conditional BN and spectral normalization [47].

Neural Architecture Search (NAS) The goal of NAS is
to automatically search for an optimal model architecture
for the given task and dataset. It was first proposed in [74]
where a reinforcement learning algorithm iteratively sam-
ples, trains and evaluates candidate models from the search
space. Due to its prohibitive time cost, the weight-sharing
mechanism was introduced [52] and becomes a popular
strategy [43]. However, weight-sharing causes performance
deterioration due to unfair training [10], motivating other
alternatives to accelerate NAS [65, 7, 45]. Besides, a few
NAS benchmarks [66, 18, 70] were recently released, with
ground-truth accuracy for candidate models pre-recorded,
enabling researchers to evaluate the performance of the
search method more easily [64, 8, 59].

Adversarial Robustness Deep networks are notorious
for the vulnerability to adversarial attacks [24]. In order
to enhance adversarial robustness, countless defense ap-
proaches have been proposed [15, 50, 63, 46, 41, 44, 16].
Among them, adversarial training (AT) [44] is arguably the
strongest, which trains the model over a mixture of clean
and perturbed data. The normalization in AT had not been

studied in-depth until the pioneering work [61] introduced
an auxiliary batch norm (AuxBN) to improve the clean im-
age recognition accuracy.

Neural Style Transfer Style transfer [21] generates a
stylized image, by combining the content of one image with
the style of another. Various improvements are made on
the normalization methods [9]. [57] proposed Instance Nor-
malization (IN), improving the stylized quality of generated
images. Conditional Instance Normalization (CIN) [19] and
Adaptive Instance Normalization (AdaIN) [28] enable a sin-
gle network to perform multiple/arbitrary style transfer.

3. Sandwich Batch Normalization
Given the input feature x ∈ RN×C×H×W (N denotes

the batch size, C the channel number, H height and W
width), the vanilla Batch Normalization (BN) works as:

h = γ(
x− µ(x)

σ(x)
) + β, (1)

where µ(x) and σ(x) are the running estimates (or batch
statistics) of input x’s mean and variance along (N , H , W )
dimensions. γ and β are the learnable parameters of the
affine layer, and both are of shape C. However, the vanilla
BN only has a single re-scaling transform and will treat any
latent feature from one single distribution.

As an improved variant, Categorical Conditional BN
(CCBN) [47] is proposed to remedy the heterogeneity is-
sue in the task of conditional image generation, boosting
the quality of generated images. CCBN has a set of inde-
pendent affine layers, whose activation is conditioned by the
input domain index and each affine layer is learned to cap-
ture the class-specific information. It can be expressed as:

h = γi(
x− µ(x)

σ(x)
) + βi, i = 1, ..., C, (2)
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(a) Inter-class gradient magnitude standard deviation

(b) Inter-class gradient cosine similarity

Figure 2. The visualization of standard deviations of gradient magnitudes (the lower the better, i.e., more balanced optimization paces)
and cosine similarity across different classes (the lower the better, i.e., more diverse features learned). The x-axis of each plot denotes the
depth of generator network, where each generator is composed of four stages of convolution blocks.

where γi and βi are parameters of the i-th affine layer. Con-
cretely, i is the expected output class in the image genera-
tion task [48]. However, we argue that this “separate/split”
modification might cause imbalanced learning for different
classes. Since the training data from each class might vary a
lot (different number of examples, complicated/simple tex-
tures, large/small inner-class variation, etc.), different indi-
vidual affine layers might have significantly diverged con-
vergence speed, impeding the proper training of the whole
network. Dominant classes will introduce stronger induc-
tive biases on convolutional layers than minor classes.

To better handle the imbalance, we present Sandwich
BN (SaBN), that is equipped with a shared sandwich affine
layer and a set of independent affine layers:

h = γi(γsa(
x− µ(x)

σ(x)
) + βsa) + βi, i = 1, ..., C. (3)

As depicted in Fig. 1 (d), γsa and βsa denote the new sand-
wich affine layer, while γi and βi are the i-th affine param-
eters, conditioned on categorical inputs. Implementation-
wise, SaBN only takes a few lines of code changes over
BN: please see the supplement for pseudo codes.

3.1. Why SaBN meaningfully works?

One might be curious about the effectiveness of SaBN,
since at the inference time, the shared sandwich affine layer
can be multiplied/merged into the independent affine layers,
making the inference form of SaBN completely identical to
CCBN. So where is its real advantage?

By the analysis below, we argue that: SaBN provides a
favorable inductive bias for optimization. During training,

we observe that SaBN promotes balanced gradient norms
(leading to more fair learning paces among heterogeneous
classes and features), while still preserving diverse gradi-
ent directions (leading to each class leaning towards dis-
criminative feature clusters).

We take the training of the conditional image generation
task as an example. As one of the state-of-the-art GANs,
SNGAN [47] successfully generates high-quality images in
the conditional image generation task with CCBN. Intu-
itively, it uses independent affine layers to disentangle the
image generation of different classes. We consider ana-
lyzing the following two models: 1) SNGAN (equipped
with CCBN originally); 2) SNGAN-SaBN (simply replaces
CCBN with our SaBN). Both of them are trained on the
same subset of ImageNet, with the same training recipe
(see Sec. 4.1 for details). Here we analyze the difference
of inter-class gradients of the generator in two aspects: (1)
gradient magnitude and (2) gradient direction.

SaBN Encourages Balanced Gradient Magnitudes.
For the first aspect, we analyze the standard deviation of the
l2-norm (magnitude) of generator’s gradients among differ-
ent classes in Fig. 2 (a). Concretely, we take the gradients
from weights of convolution layers, which are right before
the normalization modules. We observe that the gradient
norms from SNGAN-SaBN mostly have lower standard de-
viations, indicating that the gradient magnitudes of different
classes in SNGAN-SaBN are more balanced. A balanced
distribution of gradient magnitudes is found to be preferred
for model training, avoiding some features dominating the
others, and facilitating the optimization of all sub-tasks at
similar paces [68].
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Figure 3. (left) The generator loss LG of SNGAN and SNGAN-
SaBN during training phase (ImageNet). (right) The Inception
Score curves during training.

SaBN Preserves Diversity of Gradient Directions. We
then visualize the averaged cosine similarity of generator’s
gradients from different classes during training in Fig. 2
(b). Specifically, we define the inter-class gradient similar-
ity ginter, which aims to measure the divergence of gradients
from different input class labels y and averaged over latent
vectors (z):

glinter =
1

m

m−1∑
i=0

C
(
∇θlL(G(zi, yj))|n−1

j=0

)
(4)

Here the generator is denoted by G, and ∇θlL(G(zi, yj))
represents the gradients on convolution layers of the l-th
stage of the generator (i.e., the derivative of loss L with
respect to parameters in l-th stage θl; we omit the discrimi-
nator here). m and n are the total number of latent vectors
z and class labels y, respectively. Function C calculates the
averaged pair-wise cosine similarity of inputs:

C
(
vi|Ni=1

)
=

1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

vi · vj

∥vi∥∥vj∥
. (5)

We can see that SNGAN-SaBN has lower ginter, indicating
the gradients from different classes are more diverse in their
directions. This enables the generator to capture richer dis-
criminative information among different classes and con-
tribute to a visually more diverse generation.

Summary: The above two characteristics brought by
SaBN, i.e., overall more balanced gradient norms, and inter-
class more diverse gradient directions, together draw the
big picture why SaBN facilitates the optimization especially
in the presence of heterogeneous or multi-domain features.
Fig. 3 visualizes GAN training with and without SaBN:
SNGAN with SaBN can achieve much lower generator loss
LG (Eq. 6) than the original SNGAN (Fig. 3 left), and the
generation quality of the former consistently outperforms
the latter (by Inception Score [54], Fig. 3 right).

4. Experiments
Sandwich Batch Normalization is an effective plug-and-

play module. In this section, we present the experiment re-

Table 1. Best Inception Scores (“IS”, ↑) and FIDs (↓) achieved by
conditional SNGAN, BigGAN, and AutoGAN-top1, using CCBN
and SaBN on CIFAR-10 and ImageNet (dogs & cats).

CIFAR-10 ImageNet (dogs & cats)

Model IS FID IS FID

AutoGAN-top1 8.43 10.51 - -
BigGAN 8.911 8.571 - -
SNGAN 8.76 10.18 16.75 79.14

AutoGAN-top1-SaBN 8.72(+0.29) 9.11(−1.40) - -
BigGAN-SaBN 9.01(+0.10) 8.03(−0.54) - -
SNGAN-SaBN 8.89(+0.13) 8.97(−1.21) 18.31(+1.56) 60.38(−18.76)

sults of naively applying it into two different tasks: condi-
tional image generation and neural architecture search.

4.1. Conditional Image Generation with SaBN

Following the discussion in the previous section, we
present detailed settings and main results on the condi-
tional image generation task using SaBN in this section.
We choose three representative GAN models, SNGAN,
BigGAN [5] and AutoGAN-top1 [22], as our baselines.
The generator of SNGAN and BigGAN are equipped with
CCBN originally. AutoGAN-top1 does not have any nor-
malization layer and is designed for unconditional image
generation, thus we manually insert CCBN into its gener-
ator to adapt it to the conditional image generation task.
We then construct SNGAN-SaBN, BigGAN-SaBN, and
AutoGAN-top1-SaBN, by simply replacing all CCBN in
the above baselines with our proposed SaBN.

GAN models in our paper are all trained with the hinge
version adversarial loss [47, 5]:

LD =− E(x,y)∼pdata [min(0,−1 +D(x, y))]

− Ez∼pz,y∼pdata [min(0,−1−D(G(z, y), y))],

LG =− Ez∼pz,y∼pdata D(G(z, y), y),

(6)

where LD and LG denote discriminator loss and generator
loss respectively.

We test all the above models on CIFAR-10 dataset [37]
(10 categories, resolution 32 × 32). Furthermore, we test
SNGAN and SNGAN-SaBN on high-resolution conditional
image generation task with ImageNet [14], using the subset
of all 143 classes belonging to the dog and cat super-classes,
cropped to resolution 128 × 128) following [47]’s setting.
Inception Score [54] (the higher the better) and FID [27]
(the lower the better) are adopted as evaluation metrics. We
summarize the best performance the models have achieved
during training into Table 1. We find that SaBN can con-
sistently boost the generative quality of all three baseline
GAN models, which demonstrates the effectiveness of the
injected shared sandwich affine layer. We also provide visu-
alization results of generated images in Fig. 4. Since images
of CIFAR-10 dataset [37] are too small to tell difference,

1Results obtained by using the author’s officially unofficial PyTorch
BigGAN implementation.
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(a) SNGAN’s results (b) SNGAN-SaBN’s results

Figure 4. The image generation results of SNGAN and
SNGAN-SaBN on ImageNet. Each column is corresponding to a
specific image class. Images are chosen without cherry-pick.

we only visualize the results on ImageNet [14]. Specifi-
cally, we compare the generation results of SNGAN and
SNGAN-SaBN. The images generated by SNGAN-SaBN
are more visual appealing, showing better quality.

4.2. Architecture Heterogeneity in Neural Architec-
ture Search (NAS)

Recent NAS works formulate the search space as a
weight-sharing supernet that contains all candidate opera-
tions and architectures, and the goal is to find a sub-network
that of the optimal performance. As one of the representa-
tive works in NAS, DARTS [43] solves the search problem
by assigning each candidate operation a trainable architec-
ture parameter α. Model weights ω and architecture param-
eters α are optimized to minimize the cross-entropy loss in
an alternative fashion. After searching, the final architec-
ture is derived by choosing the operation with the highest α
value on each edge.

However, such formulation introduces a strong model
heterogeneity. As shown in Fig. 5, the output of each layer
is the sum of all operations’ output, weighted by associated
architecture parameters α. Such mixed model heterogene-
ity could be harmful to the search, making the algorithm
hard to distinguish the contribution of each operation. In-
spired by the application of CCBN in GANs, we prelimi-
narily attempt to use CCBN disentangling the mixed model
heterogeneity from the previous layer, by replacing the BN
in each operation path with a CCBN (namely DARTS-
CCBN). The total number of affine paths is equal to the
number of candidate operations in the previous layer, and
the conditional index i of CCBN is obtained by applying a
multinomial sampling on the softmax of previous layers’ ar-
chitecture parameters (shown in Fig. 5). The search results
of the vanilla DARTS and DARTS-CCBN are reported in
Tab. 2. Compared with vanilla DARTS, DARTS-CCBN
does not show consistent improvement w.r.t. the search re-
sults. We argue that the brutal “separate/split” modification

Figure 5. Two consecutive layers in the supernet. By default, a BN
is integrated into each parameterized operation in vanilla DARTS.
The output of each layer is the sum of all operation paths’ output,
weighted by their associated architecture parameter α.

Table 2. The ground-truth top-1 accuracy of the final searched
architecture on NAS-Bench-201. DARTS-SaBN achieves the
highest accuracy, with the lowest standard deviation. Bench opti-
mal denotes the best test accuracy achievable in NAS-Bench-201.

Method CIFAR-100 ImageNet16-120

DARTS 44.05 ± 7.47 36.47 ± 7.06
DARTS-affine 63.46 ± 2.41 37.26 ± 7.65
DARTS-CCBN 62.16 ± 2.62 31.25 ± 6.20
DARTS-SaBN (ours) 71.56 ± 1.39 45.85 ± 0.72

Bench Optimal 73.51 47.31

in CCBN might cause imbalanced learning for different op-
erations due to their intrinsic difference, therefore leading
to unfair competition among candidate operations.

To better handle such an unbalanced issue, we consider
using SaBN instead of CCBN (DARTS-SaBN). The in-
jected shared sandwich affine layer is designed to balance
the learning among different operations, imposing a more
fair competition among candidate operations. As shown
in Tab. 2, we can observe that DARTS-SaBN outperforms
the vanilla DARTS and DARTS-CCBN significantly, whose
performance is even close to the Bench optimal. The per-
formance gap between DARTS-CCBN and DARTS-SaBN
demonstrates the effectiveness of the sandwich affine layer.
We further include an additional ablation variant DARTS-
affine, which simply enables the affine layer of the BN
in DARTS. DARTS-SaBN also outperforms DARTS-affine
with a considerable margin, implying the independent con-
ditional affine layers are also important.
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5. Extended Applications of Sandwich Batch
Normalization

In this section, we explore the possibility to extend Sand-
wich Batch Normalization to more tasks with minor mod-
ifications. Concretely, we apply two variants of SaBN on
adversarial robustness and arbitrary style transfer.

5.1. Sandwich Auxiliary Batch Norm (SaAuxBN) in
Adversarial Robustness

AdvProp [61] successfully utilized adversarial examples
to boost network Standard Testing Accuracy (SA) by in-
troducing Auxiliary Batch Norm (AuxBN). The design is
quite simple: an additional BN is added in parallel to the
original BN, where the original BN (clean branch) takes the
clean image as input, while the additional BN (adversarial
branch) is fed with only adversarial examples during train-
ing. That intuitively disentangles the mixed clean and ad-
versarial distribution (data heterogeneity) into two splits,
guaranteeing the normalization statistics and re-scaling are
exclusively performed in either domain. The loss function
of AdvProp can be formulated as:

Ltotal = L(fclean(xclean), y) + L(fadv(xadv), y), (7)

where f denotes the model and x, y denotes the input data,
label respectively. L is the cross entropy loss. Therefore,
fclean denotes the model is using the clean branch BN. xadv is
the corresponding adversarial mini-batch generated by the
model using adversarial branch BN. For simplicity, we call
the two loss terms in Eq. 7 as clean loss and adversarial
loss respectively.

However, one thing missed is that the domains of clean
and adversarial images overlap largely, as adversarial im-
ages are generated by perturbing clean counterparts mini-
mally. This inspires us to present a novel SaAuxBN, by
leveraging domain-specific normalization and affine layers,
and also a shared sandwich affine layer for homogeneity
preserving. SaAuxBN can be defined as:

h = γi(γsa(
x− µi(x)

σi(x)
) + βsa) + βi, i = 0, 1. (8)

µi(x) and σi(x) denote the i-th (moving) mean and vari-
ance of input, where i = 0 for adversarial images and i = 1
for clean images. We use independent normalization layer
to decouple the data from two different distributions, i.e.,
the clean and adversarial.

We replace AuxBN with SaAuxBN in AdvProp [61] and
find it can further improve SA of the network with its clean
branch. The experiments are conducted on CIFAR-10 [37]
with ResNet-18 [26]. For a fair comparison, we follow the
settings in [44]. In the adversarial training, we adopt ℓ∞
based 10 steps Projected Gradient Descent (PGD) [44] with
step size α = 2

255 and maximum perturbation magnitude

Table 3. Model performance (SA) using clean branch.
Evaluation BN ModeNorm AuxBN (clean branch) SaAuxBN (clean branch)

Clean (SA) 84.84 83.28 94.47 94.62

Table 4. Performance (SA&RA) using the adversarial branch.
Evaluation BN ModeNorm AuxBN (adv branch) SaAuxBN (adv branch)

Clean (SA) 84.84 83.28 83.42 84.08
PGD-10 (RA) 41.57 43.56 43.05 44.93
PGD-20 (RA) 40.02 41.85 41.60 43.14

Figure 6. The clean loss L(fclean(xclean), y) and adversarial loss
L(fadv(xadv), y) on testing set.

ϵ = 8
255 ; As for assessing RA, PGD-20 with the same con-

figuration is adopted. The results are presented in Tab. 3.
We further conduct an experiment to test the Standard

Testing Accuracy (SA) and Robust Testing Accuracy (RA)
of the network using the adversarial branch of AuxBN and
SaAuxBN. The comparison results are presented in Tab. 4.
We can see that BN still achieves the highest performance
on SA, but falls a lot on RA compared with other meth-
ods. Our proposed SaAuxBN is on par with the vanilla
BN in terms of SA, while has significantly better results on
RA than any other approaches. Compared with SaAuxBN,
AuxBN suffers from both worse SA and RA.

We also visualize the testing clean loss and adversarial
loss of models with AuxBN and SaAuxBN in Fig. 6, show-
ing that the latter achieves lower value on both.

We additionally include ModeNorm [13] as an ablation
in our experiments, which was proposed to deal with multi-
modal distributions inputs, i.e., data heterogeneity. It shares
some similarity with AuxBN as both consider multiple in-
dependent norms. ModeNorm achieves fair performance on
both SA and RA, while still lower than SaAuxBN. The rea-
son might be the output of ModeNorm is a summation of
two features weighted by a set of learned gating functions,
which still mixes the statistics from two domains, leading
to inferior performance.

5.2. Arbitrary Style Transfer with Sandwich Adap-
tive Instance Normalization (SaAdaIN)

Huang & Belongie [28] achieves arbitrary style transfer
by introducing Adaptive Instance Norm (AdaIN), which is
an effective module to encode style information into feature
space. The AdaIN framework is composed of three parts:
Encoder, AdaIN, and Decoder. Firstly, the Encoder will ex-
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tract content features and style features from content and
style images. Then, the AdaIN is leveraged to perform style
transfer on feature space, producing a stylized content fea-
ture. The Decoder is learned to decode the stylized content
feature to stylized images. This framework is trained end-
to-end with two loss terms, a content loss and a style loss.
Concretely, AdaIN firstly performs a normalization on the
content feature, then re-scale the normalized content feature
with style feature’s statistic. It can be formulated as:

h = σ(y)(
x− µ(x)

σ(x)
) + µ(y), (9)

where y is the style input, x is the content input. Note that
µ and σ here are quite different from BN, which are per-
formed along the spatial axes (H,W ) for each sample and
each channel. The goal of style transfer is to extract the style
information from the style input and render it to the content
input. Obviously, style-dependent re-scale may be too loose
and might further amplify the intrinsic data heterogeneity
brought by the variety of the input content images, under-
mining the network’s ability of maintaining the content in-
formation in the output. In order to reduce the data hetero-
geneity, we propose to insert a shared sandwich affine layer
after the normalization, which introduce homogeneity for
the style-dependent re-scaling transformation. Hereby, we
present SaAdaIN:

h = σ(y)(γsa(
x− µ(x)

σ(x)
) + βsa) + µ(y), (10)

Besides AdaIN, we also include Instance-Level Meta Nor-
malization with Instance Norm (ILM+IN) proposed by
[31] as a task-specific comparison baseline. Its style-
independent affine is not only conditioned on style infor-
mation but also controlled by the input feature.

Our training settings for all models are kept identical
with [28]. The network is trained with style loss and content
loss. We use the training set of MS-COCO [42] and WikiArt
[49] as the training content and style images dataset, and the
validation set of MS-COCO and testing set of WikiArt are
used as our validation set.

We depict the loss curves of the training phase in Fig. 7
(a). We can notice that both the content loss and style loss
of the proposed SaAdaIN are lower than that of AdaIN and
ILM+IN. This observation implies that the inserted sand-
wich affine layer makes the optimization easier. In Fig. 7
(b), we show the content and style loss on validation set. In
contrast with the AdaIN model, the network with SaAdaIN
achieves lower validation content and style loss, indicating
the inserted sandwich affine layer also benefits the model’s
generalizability. The visual results of style transfer are
shown in Fig. 8. Compared with AdaIN and ILM-IN, SaBN
generates more visual-appealing images.

Figure 7. The content loss and the style loss of using AdaIN,
ILM+IN and SaAdaIN on training and validation set. In the
first row, the noisy shallow-color curves are the original data, and
the foreground smoothed curves are obtained via applying expo-
nential moving average on the original data.

SaAdaIN (ours)AdaINContent ILM+IN

Figure 8. The visual results of style transfer. The images on the
top-left corner of each row are the reference style image. An ide-
ally stylized output should be semantically similar to the content
image, while naturally incorporate the style information from the
referenced style image.

6. Conclusion

We present SaBN and its variants as plug-and-play nor-
malization modules, which are motivated by addressing
model & data heterogeneity issues. We demonstrate their
effectiveness on several tasks, including neural architecture
search, adversarial robustness, conditional image genera-
tion, and arbitrary style transfer. Our future work plans to
investigate the performance of SaBN on more applications,
such as semi-supervised learning [69].
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