
Knowledge Capture and Replay for Continual Learning

Saisubramaniam Gopalakrishnan 1,4, Pranshu Ranjan Singh 1,4, Haytham Fayek 3,
Savitha Ramasamy 1,2,4, ArulMurugan Ambikapathi 1,2,4

1 Institute for Infocomm Research (I2R), A*STAR, Singapore *

2 Artificial Intelligence, Analytics And Informatics (AI3), A*STAR, Singapore
3 RMIT University, Australia

4 CNRS@CREATE LTD, 1 Create Way, 08-01 CREATE Tower, Singapore 138602 †

{g saisubramaniam, pranshurs, ramasamysa, arul}@i2r.a-star.edu.sg, haytham.fayek@ieee.org

Abstract

Deep neural networks model data for a task or a se-
quence of tasks, where the knowledge extracted from the
data is encoded in the parameters and representations of
the network. Extraction and utilization of these representa-
tions is vital when data is no longer available in the future,
especially in a continual learning scenario. We introduce
flashcards, which are visual representations that capture the
encoded knowledge of a network as a recursive function of
some predefined random image patterns. In a continual
learning scenario, flashcards help to prevent catastrophic
forgetting by consolidating the knowledge of all the previ-
ous tasks. Flashcards are required to be constructed only
before learning the subsequent task, hence, they are inde-
pendent of the number of tasks trained before, making them
task agnostic. We demonstrate the efficacy of flashcards
in capturing learned knowledge representation (as an al-
ternative to the original data), and empirically validate on
a variety of continual learning tasks: reconstruction, de-
noising, and task-incremental classification, using several
heterogeneous (varying background and complexity) bench-
mark datasets. Experimental evidence indicates that: (i)
flashcards as a replay strategy is task agnostic, (ii) per-
forms better than generative replay, and (iii) is on par with
episodic replay without additional memory overhead.

1. Introduction

Despite the success of deep neural networks in numer-
ous domains [5, 11, 15], it remains a challenge to extract
and reuse the knowledge embedded in the representations

*This research was partially funded through SC20/19-128310-CORE.
†This research is supported by the National Research Foundation,

Prime Minister’s Office, Singapore under its Campus for Research Excel-
lence and Technological Enterprise (CREATE) programme.

Figure 1. Flashcards for knowledge capture and replay. Step (a):
Trained autoencoder (AE) for Task T1; Step (b): Construct flash-
cards from frozen AE using maze patterns via recursive passes;
Step (c): Replay using flashcards on a new network to remember
Task T1; Step (d) Replay using flashcards Ft (containing consoli-
dated knowledge from task T1 to Tt) while training for Task Tt+1.

of trained models for similar or other downstream scenarios
[2]. Approaches such as transfer learning [25] and knowl-
edge distillation [7] enable representational or functional
translation [9] from one model to the other. However, they
cannot maintain a unified representation that evolves with
the characteristics of data. Knowledge captured from the
past should be consolidated and preserved as some repre-
sentation with low computational and memory expense, es-
pecially, when the past data is no longer available.

In particular, learning new tasks affect retention of pre-
vious knowledge [19]. Continual learning (CL) [21] was

10

proposed as a candidate for such retention, and is gaining
attention [18]. Essentially, CL aims to make deep neu-
ral networks learn continually from a sequence of tasks,
without catastrophically forgetting the past sequences/tasks.
There is a need to develop a reliable method that can ef-
fectively capture and re-purpose knowledge from a learned
model, which can then be exploited in the CL setting. While
CL approaches are predominantly studied on classification
(class/task incremental learning), its potential remains rela-
tively less explored in other scenarios such as task agnostic
unsupervised reconstruction, denoising etc.

In this work, we introduce flashcards for capturing con-
solidated learned knowledge representations of all the pre-
vious tasks. A schematic illustration is shown in Figure 1.
Random image patterns, when passed recursively through
a trained autoencoder (obtained at end of step (a)), capture
its representations with each pass, and are transformed into
flashcards (step (b)). Step (c) uses the obtained flashcards
to train a new network (single task), and step (d) addresses
the multi-task / continual setting. We first evaluate flash-
cards’ potential for capturing representations of the data
(as seen by the network) and later extend their usefulness
for replay while learning continually from several heteroge-
neous datasets, such as MNIST, Fashion MNIST, Cifar10,
SVHN, Omniglot, ImageNet, and UCMerced for a variety
of applications such as reconstruction, denoising, and task-
incremental classification. To the best of our knowledge,
we are the first to report continual reconstruction and de-
noising. In task-incremental classification, we show that
flashcards replay sustains stability in the absence of task
identifier. Our experimental comparisons indicate superi-
ority over standard baselines in terms of performance and
memory efficiency.

2. Knowledge Capture and Replay
We first introduce the notion of knowledge capture us-

ing flashcards and describe their construction from a trained
autoencoder 1. Consider training an autoencoder for recon-
struction task Tt using dataset Dt containing Nt samples,
where Dt = {X1,X2, . . . ,XNt} ⊂ ℜk×l×c, is the set of
training image samples with k rows, l columns, and c chan-
nels. For the task Tt, the autoencoder is trained to maximize
the likelihood P (X|θt), ∀X ∈ Dt using the conventional
mean absolute error (MAE; Eqn. (1)) between the original
and reconstructed images:

min
θt

1

Nt

Nt∑
n=1

|Xn − X̂n|, (1)

where θt is the autoencoder network parameters (weights,
biases, and batch norm parameters) for task Tt, Xn is a

1Autoencoder is used only to construct flashcards which can be used
for different CL applications, including classification (see Section 4).

sample from the empirical data distribution of P (X), and
X̂n = ft(Xn,θt) is the reconstructed sample. |Xn − X̂n|
denotes the pixel-wise mean absolute error between Xn and
X̂n, and ft(·) is the function approximated by the autoen-
coder to learn (reconstruct) task Tt. In the above conven-
tional learning setup, the parameters θt of an autoencoder
network aim to model the knowledge in the data Dt, such
as shape, texture, color of the images. Let the reconstruc-
tion error of the trained autoencoder be bounded by [ϵ1,ϵ2],
i.e.,

ϵ1 ≤ |Xn − X̂n| ≤ ϵ2, ∀Xn ∈ Dt,Xn ∼ P (X) (2)

Let P (M) be a different, but well-defined distribution
in the same dimensional space as P (X) (i.e., ℜk×l×c), and
Dm =

{
M1,M2, . . .MNf

}
, where Mi ∈ ℜk×l×c, Mi ∼

P (M), i = 1, . . . , Nf . The output of the autoencoder for
any Mi ∈ Dm is

M̂i = ft(Mi,θt). (3)

Since the autoencoder is trained for task Tt and as Mi ∈
Dm is sampled from another distribution, M̂i will be a
meaningless reconstruction of Mi. Alternatively, it can be
said that the activations obtained on passing Mi ∼ P (M)
through the trained ft(·,θt) does not align with Tt. This
can be observed from the increased MAE between Mi and
M̂i, and from the t-SNE representations of the bottleneck
layer (latent space) for several samples drawn from P (M)
(first two iterations of Figure 2).

Let Fri be the output after a series of r recursive it-
erations/passes of Mi through the trained autoencoder
(ft(·,θt)), i.e.,

Fri = fr
t (f

r−1
t (· · · f1

t (Mi,θt) · · ·)). (4)

Such recursive passing (output → input → output) gradu-
ally attunes the input Mi towards Fri to produce activations
that are accustomed to θt. This can be observed in Figure
2 where the MAE reduces over recursive iterations, and the
latent space representations of samples drawn from P (M)
begin to overlap with those from P (X). Let

γ1 ≤ |Fri − F(r−1)i| ≤ γ2, ∀Mi ∈ Dm,Mi ∼ P (M),
(5)

where γ1, and γ2 are the lower and upper bounds of recon-
struction error for any Mi ∈ Dm. The aim now is to have
a collection set Ft = {Fri}

Nf

i=1 for task Tt such that the
following properties are satisfied:

• P1: γ2 < ϵ1 for ∀Mi ∈ Dm,

• P2: Respective latent space distribution of Ft ∼ Dt.

Such a set of constructions (Ft) obtained through recursive
iterations of random inputs (drawn from P (M)) are defined

11

Figure 2. A sample of three Flashcards (Ft) constructions over recursive iterations, with Cifar10 as an example, difference in MAE between
successive iterations with iteration number and t-SNE of latent space in 2D. It can be observed that the initial (raw) input maze patterns
adapt to the texture captured by the model, as the number of recursive iterations increase (Iteration r = 10, 20). Also, the corresponding
latent space clusters get closer. However, on further repeated passes (r ≥ 50), the reconstruction deteriorates / smooth out (as MAE keeps
reducing) and the two clusters drift apart again (P1 is satisfied but P2 is not). Best viewed in color.

Figure 3. Transformation from maze patterns (Dm) into Flash-
cards (Ft) for tasks: MNIST, Fashion MNIST and Cifar10.

as flashcards. These flashcards are expected to capture the
knowledge from the trained network and serve as a potential
alternative to Dt. Figure 3 illustrates a few flashcards con-
structed with same set of random images, from AEs trained
with different datasets. Although these flashcards are in-
tended to capture the knowledge representations in θt as a
function of Mi ∈ Dm, it can be observed from Figure 3
that they do not bear direct shape similarities with their re-
spective datasets. In fact, during the recursive process, the
raw input image patterns are modified/transformed to tex-
tures that are suited to the trained autoencoder model (col-
ored textures in flashcards are observed for Cifar10). This
is in-line with [6] which shows that neural networks learn
predominantly texture than shape by default. Now, since an
autoencoder is trained to maximize logP (X|θt), the fol-
lowing fact holds:

Fact 1: Let DA and DB be two i.i.d. datasets whose ele-
ments are drawn from P (X). If there exists a trained au-
toencoder fA(·,θA), to reconstruct DA with error [β1, β2],
∀X ∈ DA, then the autoencoder fA(·,θA) can reconstruct
DB with the same error range.

The converse is not true because any image dataset DB with
images that have few pixels with non-zero values (other
pixels as zeros), can still yield smaller reconstruction error

and not necessary to be drawn from P (X) (satisfying P1).
Hence, both properties P1 and P2 for Ft need to be satisfied.
As P1 and P2 are dependent on the initial input distribution
P (M), it is important to have a suitable P (M) to get Ft

(P (M) = P (X) is one trivial and uninteresting solution).
As finding a perfect P (M) is an ideal research problem by
itself, in this work, we use random maze pattern images as
a potential candidate Dm to get Ft. The above leads to the
following hypothesis:

Hypothesis 1: Since the autoencoder trained on Dt also
reconstructs elements from Ft (Property P1) and has match-
ing latent space distribution (Property P2), flashcards (Ft)
can be used as a set of pseudo-samples for Dt to learn a
new autoencoder ft(·,θnew), when trained from scratch us-
ing only Ft.

2.1. Flashcard Construction

Algorithm 1 Flashcard construction
Require: ft(·,θt): Autoencoder model for task Tt

Require: Nf : Number of flashcards
Require: r: Number of recursive iterations through ft(·,θt)

1: Let Dm ←
{
M1, . . .MNf

}
, where Mi ∼ P (M),∀i,

P (M) corresponds to the distribution of initial input patterns
2: Ft ← {}, where Ft denotes the set of flashcards
3: for i ∈ {1, . . . , Nf} do
4: Fri = fr

t (f
r−1
t (· · · f1

t (Mi,θt) · · ·))
5: Ft = Ft ∪ {Fri}
6: end for
7: return Ft

Algorithm 1 provides the steps to construct flashcards
using a trained autoencoder model. For flashcards construc-
tion, the following hyperparameters are useful - (i) number
of recursive iterations (r), (ii) number of flashcards to con-
struct (Nf), (iii) choice of initial input distribution (P (M)).
Figure 4 portrays empirical analysis of selecting the optimal

12

Figure 4. Analysis on iterations r for flashcards construction, demonstrated using SVHN and Cifar10. Columns 1 and 3 portray metrics
corresponding to change on passing multiple random maze inputs in iterative fashion through an autoencoder. Orange curve depicts the
trend of Fréchet latent space distance (FLSD) between intermediate input at (t) iteration and original data samples, dark blue curve shows
constant decrease in reconstruction error between (t-1) and (t), across different iterations for each dataset. Light blue line serves as reference
MAE on original data. Property P1 is satisfied when the blue curve goes below ϵ1 (marked by dotted red line) and P2 is satisfied at the first
minima of FLSD, which occurs around 10 ≤ r ≤ 20, irrespective of dataset. Columns 2 and 4 compare autoencoder error (MAE) between
test data and its reconstruction, when trained on flashcards constructed from different iterations. This again confirms the acceptable range
of r and that flashcards construction is not critically sensitive to the choice of r within the range.

iteration, considering two datasets - SVHN and Cifar10.
Figure 4 (columns 1,3) shows Frechet Latent Space Dis-
tance (FLSD is inspired from FID [8] and calculated as the
Frechet distance between latent space activations of flash-
cards versus original samples (smaller the better), from the
eyes of the trained autoencoder) (Orange) and MAE (Blue),
as a function of r. Initially, increase in r leads to decrease in
FLSD, up to certain iterations, this indicates that flashcards
distribution is getting closer to learned distribution. As r in-
creases further, though MAE keeps going down, FLSD in-
creases, because propagation of reconstruction error in au-
toencoder causes drift in the features. Based on the empir-
ical analysis 10 ≤ r ≤ 20 is a sensible choice that worked
well across all of our experiments. Also, reconstruction er-
ror (Figure 4, columns 2,4) is observed to be low in this
iteration range. It further indicates that the flashcards are
not critically sensitive to r. In all experiments r is set to 10.

Finding the optimal P (M) is a research question in it-
self. For our experiments, the choice of P (M) is maze-like
random image patterns since there is resemblance to edges
and shapes. Gaussian random noise was also considered
but there was lack of diversity among the constructed flash-
cards. Using an additional dataset (such as next task im-
ages) did not help at all. A comparative study among the
different choices is provided at the end of Section 4.1.

Generally, performance of a task is dependent on the
number of flashcards constructed with sufficient diversity,
and having more flashcards indicate better performance,
similar to the trend with coreset exemplars. Note from
[17], that memory requirement for experiments is calculated
based on network parameters and is independent of gener-
ated samples.

2.2. Flashcards for Capturing Representations

We first verify Hypothesis 1 by demonstrating the effi-
cacy of flashcards to capture representations for single-task.
Alternative to Original Dataset: Consider three different
datasets: MNIST, Fashion MNIST, and Cifar10. Let 3 dif-

ferent autoencoders (Network1), all with same architecture,
be trained for each of these 3 datasets separately using Eqn.
(1) as loss function. Flashcards (Ft) constructed from each
of these (Network1) autoencoders, for the same set of ran-
dom input maze pattern images (Dm) (few samples shown
in Figure 3) are used respectively to train new autoencoder
(Network2) models from scratch (with the same architec-
ture). Results in Table 1 show reconstructions are very close
to the autoencoders trained on originals.

Flashcards also work for large-scale resolution, as seen
from Figure 5. An autoencoder is trained on ImageNet
256x256px resolution (1M images) and has a reconstruction
error of 0.10. A separate autoencoder is trained using flash-
cards only of varying percentages. The error when the net-
work is randomly initialized without any data is high (0.42),
but with increase in number of flashcards, it drops between
0.17 to 0.13, matching closely with the original benchmark.

Results from Table 1 and Figure 5 confirm the hypoth-
esis that flashcards indeed capture network parameters as
a function of Dm, therefore be used as pseudo-samples /
training data for both small and large-scale resolutions (as
network parameters involved in flashcard construction are
initially learned by training with the original dataset Dt).
Data-Free Knowledge Distillation: Consider training an
autoencoder teacher network AE1 with data DT1

. Once

Dataset Network
1’s
MAE

Network
2’s
MAE

Alpha
Origi-
nal

Alpha
Flash-
cards

Alpha
Un-
trained

MNIST 0.0184 0.0491 1.9185 2.0531 1.4343
Fashion 0.0259 0.0440 2.0044 2.1158 1.4343
Cifar10 0.0564 0.0686 2.0266 2.1531 1.4343

Table 1. Reconstructions from two separate autoencoders, one
trained on original data (Network1), and the other trained on flash-
cards (Network2).The metrics indicate that flashcards are suffi-
cient alternatives towards learning the original data. Weighted Al-
pha [16] is based on HT-SR Theory. Alpha values are closer for
the trained networks which indicates similarity between the two
network weights. Reported values are averaged over 5 runs.

13

Figure 5. Reconstruction error of two networks, one trained on
original ImageNet 256x256 resolution 1M images (grey), and the
second trained only on flashcards 256x256 resolution (orange). X-
axis denotes the % of samples added, and as more flashcards are
introduced, error of the second network approaches closer to first.

Train Arch. Type Params Test Original Test AE2
AE1 - Variant I 94, 243 0.0640 −

AE2 - Smaller arch. 24, 083 0.0787 0.0963
AE2 - Larger arch. 372, 803 0.0512 0.0570

AE1 - Variant II 298, 947 0.0437 −
AE2 - Smaller arch. 24, 083 0.0358 0.0389
AE2 - Larger arch. 372, 803 0.0512 0.0570

Table 2. Building autoencoder AE2 (smaller and larger arch.) us-
ing flashcards obtained from AE1 (Variant I and II, each with dif-
ferent parameters) trained on Cifar10 dataset. Column Test Orig-
inal shows test MAE when these architectures are trained using
original Cifar 10 dataset. Column Test AE2 refers to test MAE on
Cifar10 when flashcards obtained from AE1 are used to train AE2
for reconstruction. Better performance on both AE2-Smaller and
AE2-Larger architectures showcase transfer using flashcards.

trained, DT1 may become unavailable due to confidential-
ity/privacy, storage requirements, etc. Regular Knowledge
Distillation [7] is no longer possible because of the absence
of original data while distilling to the student network. If
in the future, there is a newer and better architecture AE2,
migration is possible by training on flashcards constructed
from AE1 to AE2 (Data-Free Knowledge Distillation). We
show feasibility by distilling knowledge from teacher AE1
to student AE2, using two different architecture variants.
Under each variant, the student AE2 is selected as one
smaller and one larger modified architecture to the teacher.
From Table 2 we observe, (i) distillation and transfer is still
achievable without original data, (ii) improvement in per-
formance when selecting larger architectures indicate that
flashcards enable migration to better models in future.

2.3. Flashcards for Replay in Continual Learning

Consider a sequence of T tasks {T1, . . . , Tt, . . . , TT }. In
the Continual Learning (CL) scenario, the network for task
Tt+1 is required to be trained on top of previous learned
tasks T1, . . . , Tt. In other words, θt+1 is adapted from the

Algorithm 2 Flashcard for Replay in Continual Learning
Require: ft(·,θt): Autoencoder model trained till task Tt

Require: Nf : Number of flashcards
Require: r: Number of iterations through ft(·,θt)
Require: Dt+1: Data for task Tt+1

Require: λ: Scaling parameter, by default set to 1 (in all Exp.)
1: Ft ← Algorithm 1 (ft(·,θt), Nf , r), where Ft is the set of

flashcards for task Tt

2: Train the autoencoder model ft+1(.,θt+1) on flashcards Ft

and data Dt+1

3: Initialize θt+1 ← θt

4: Optimize θt+1 using given loss

θ∗
t+1 ← argmin

θt+1

(1

|Dt+1|

|Dt+1|∑
n=1

|D(n)
t+1 − ft+1(D

(n)
t+1,θt+1)|

+
λ

Nf

Nf∑
n=1

|F (n)
t − ft+1(F

(n)
t ,θt+1)|

)
where D

(n)
t+1 and F

(n)
t are the nth data sample and flashcard

sample, respectively
5: return ft+1(.,θ

∗
t+1)

previously trained network parameters θt. Training for task
Tt+1 may result in the network forgetting the representa-
tions learned till the previous task Tt. Unlike other CL
based approaches which aims to preserve θt through reg-
ularization, data replay (either episodic or using external
generative networks), architectural strategies, or their com-
binations, we use the flashcards constructed on θt along
with data for task Tt+1, while training for task Tt+1. Flash-
cards are required to be constructed only at the end of task
Tt irrespective of the number of preceding tasks, so that
knowledge representations for tasks {T1, . . . , Tt} can be
captured and trained with the next task Tt+1. Thus, the pro-
posed method avoids storing of flashcards for each succes-
sive task, thereby significantly reducing the memory over-
head, while ensuring robust performance (experiments in
Section 4). Algorithm 2 provides the steps for using flash-
cards as a replay strategy for CL. Flashcards are constructed
on-the-fly before training a new task (irrespective of number
of previous tasks).

3. Related Works
In general, continual learning algorithms are based on

architectural strategies, regularization, memory replay, and
their combinations [18]. By the intrinsic nature of flash-
cards (as discussed in Sections 2.2 and 2.3), they implicitly
exhibit the characteristics of both regularization (refer Al-
gorithm 2 point 4) and replay, and will therefore be com-
pared with the respective strategies. Regularization strate-
gies such as [10, 24] learn new tasks while imposing con-
straints on the network parameters to avoid deviating too

14

Trait Flashcards for Replay Episodic Memory Replay Generative (Data) Replay

Examples
Single-Task Scenario

Alternative to original data? Yes No, subset of original Yes
Distinction Postprocess knowledge capture

from trained network
Stores a subset of the original data
in memory

Network is trained to generate sam-
ples per task

Visually similar to dataset? No Yes Depends on data complexity
Performance on task Close to original network Very close to original network Close to original network

Continual Learning Scenario
Store sample across tasks? No Yes, need to store per task Depends on nw. complexity
Nw. used to obtain alt. data Simple autoencoder N/A VAE / GAN etc.
Store between tasks? No, just in time creation Yes, either memory or disk Depends on support for CL
Independent of no. of tasks? Yes, need current snapshot only No, need to store per task Depends on support for CL
Scaling up tasks (complexity) Results shows feasibility Straightforward - linear storage Challenging with more tasks

Table 3. Comparison between different continual learning replay strategies.

much from those learned from the previous tasks. [13]
uses current task samples to regularize the soft labels of
past tasks, thus avoiding explicit data storage. However,
it is important to note that these regularization methods per-
form well in homogeneous (sharing similar characteristics)
task environments, where it is possible to find mutually sub-
optimal points in the solution space. However, such meth-
ods suffer when subsequent tasks are from different do-
mains / heterogeneous datasets [13].

In a rehearsal mechanism, subset of samples from previ-
ous tasks, referred to as coreset samples / exemplars, serve
as memory replay [3, 4, 14]. However, they suffer from
excessive storage requirements that grows with the number
of tasks. On the other hand, generative replay approaches
[1, 12, 22, 20] face challenges in scalability to complex
datasets with many tasks, since they involve heavy train-
ing and computation associated with an auxiliary network
to generate visually meaningful images for each task.

Approaches discussed above are either suitable only for
homogeneous data, or are memory intensive as they involve
preserving samples, or computationally intensive in “gen-
erating” samples, or require task identifiers. The proposed
flashcards are constructed on the fly, requires only simple
autoencoder, independent of the number of tasks, and help-
ful both as regularization and replay mechanism. Flash-
cards can be used as pseudo samples constructed with low
computational and memory expense. Furthermore, flash-
cards can scale across tasks without considerable drop in
performance. Table 3 lists overall comparison on various
traits between flashcards, episodic, and generative replay.

4. Experiments in Continual Learning

We provide experimental validation of using flashcards
in CL scenario for different applications such as: (i) con-
tinual reconstruction (Section 4.1), (ii) continual denoising
(Section 4.2), and new task incremental classification (Sec-
tion 4.3). For all experiments, we compare with upperbound
(Joint Training, JT), lowerbound (Sequential Fine-tuning,

SFT), and standard methods for regularization, generative
and episodic replay as baseline. To the best of our knowl-
edge, we are the first to report continual reconstruction and
denoising. Our results indicate that using flashcards in-
deed helps under heterogeneous conditions spanning differ-
ent domains, and where the task identifier is not available.
Datasets: For the continual reconstruction and denoising,
5 heterogeneous public datasets, referred as Sequence5 was
employed. The datasets used in Sequence5 are in the or-
der - MNIST, Fashion MNIST, Cifar10, SVHN, and Om-
niglot. Each dataset was considered as a task, with class la-
bels omitted. MNIST, Fashion MNIST and Omniglot were
resized to 32x32x3 (bilinear rescale and channel copied
twice) to maintain the same scale as the other two datasets.
Continual reconstruction is also compared on UC Merced
Land Use [23], a real-world large-scale remote sensing
dataset with 256x256 resolution and 21 classes. For task
incremental classification, Sequence3 comprising of the or-
der - Cifar10, MNIST and Fashion MNIST was employed.
Architecture and Training Details: For reconstruction
and denoising, flashcards are constructed using an autoen-
coder architecture with 4 layers of down/upsampling and
64 convolutional filters per layer. The bottleneck dimen-
sion 256 offers 12x reduction from image space, serving to
demonstrate the effectiveness of forgetting. The architec-
ture is a simplified variant of the VGG , adapted with fewer
layers and filters for proper reconstruction. All hidden lay-
ers employ tanh activation.

For task incremental classification, the architecture of
classifier is based on specifications from [22]. For the
architecture of autoencoder, the encoder weights are pre-
initialized with classifier encoder weights, decoder is at-
tached after latent space, and the autoencoder is trained by
passing current task samples along with flashcards upto cur-
rent task. For the next task, classifier uses new task samples
along with constructed flashcards of previous task. Soft la-
bels for flashcards are obtained by passing them through the
classifier, before the start of next task.

Training details: For reconstruction and denoising, the

15

Method Type N/w Mem Recon MAE ↓ Recon BWT ↑ Denoise MAE ↓ Denoise BWT ↑
JT - 1.5 798.7 0.0348± 0.000 - 0.0552± 0.000 -

SFT - 1.5 - 0.5518± 0.001 −0.6385± 0.002 0.5477± 0.002 −0.6275± 0.002
Coreset 500 ER 1.5 1.5 0.0580± 0.005 −0.0246± 0.006 0.0748± 0.004 −0.0219± 0.005

Coreset 5000 ER 1.5 15.3 0.0495± 0.002 −0.0185± 0.002 0.0595± 0.002 −0.0172± 0.002
LwF Reg+R 1.5 - 0.5495± 0.002 −0.5241± 0.002 0.4370± 0.002 −0.3338± 0.002

VAE 5000 + AE GR 2.9 - 0.0751± 0.004 −0.0575± 0.006 0.0711± 0.005 −0.0438± 0.005
CL VAE 5000 GR 1.4 - 0.3524± 0.041 −0.1658± 0.038 0.5460± 0.042 −0.2839± 0.033

Flashcards 5000 FR 1.5 - 0.0536 ± 0.002 −0.0277 ± 0.002 0.0588 ± 0.002 −0.0262 ± 0.002
Table 4. Continual learning for Sequence5 reconstruction and denoising. We provide a comparison with different methods in terms of
error observed MAE and BWT on test set. Additionally, we compare the Network Capacity (N/w (MB)) and External Memory (Mem
(MB)) required by each method. Our method performs better than generative method based replay, and is on-par with the error on using
episodic memory based coreset replay. Further, our memory requirement is very less, and an external memory buffer to store past tasks is
not required. Lower Avg MAE (↓) and higher BWT (↑) are better. Reg=Regularization, Reg+R=Regularization and Replay, ER=Episodic
Replay, GR=Generative Replay, FR=Flashcard Replay. Reported scores are averaged over 3 independent runs.

network is trained for 100 epochs per task, and optimized
using Adam and learning rate of 0.001. Each minibatch
update is based on equal number of flashcards and the cur-
rent task samples. 10% of the training data is allocated for
validation. Early stopping is employed if there is no im-
provement for over 20 epochs. For task incremental clas-
sification, mini-batch size of 256 and Adam optimizer with
learning rate=0.0001 is used. Both classifier and autoen-
coder models are trained for 5K iterations. 5K flashcards
with λ = 1 (refer Algorithm 2) was employed for replay.

4.1. Heterogeneous Continual Reconstruction

Continual reconstruction is an experiment to study the
ability of different continual learning methods to effectively
remember the characteristics of data learned thus far to re-
construct samples of both past and present. A single net-
work is trained on multiple heterogeneous datasets incre-
mentally, and during inference, it is expected to remem-
ber the task of reconstruction without an explicit task iden-
tifier. We measure individual task MAE (averaged) and
BWT, customized for reconstruction. Results for recon-
struction using Sequence5 (details in Section 4) are avail-
able under columns 5 and 6 in Table 4. Since continual re-
construction for homogeneous cases is trivial and does not
require extra effort (as observed from Table 5), we focus
on the more challenging heterogeneous scenario where for-
getting is inevitable. Comparison with baseline methods is
summarized in the captions of Table 4. We compare flash-
cards against different continual learning based regulariza-
tion and replay techniques and observe that it outperforms
most baselines user fewer network capacity. It performs on-
par with episodic replay methods without occupying exter-
nal memory for past samples.

Continual reconstruction results over 21 tasks on UC
Merced land use remote sensing dataset (256px) is illus-
trated in Figure 6. Comparison is made per task (on x-
axis) against SFT, Coreset (max 100 samples in buffer), and
VAE+AE, with JT as reference line. All autoencoders re-
quire only 2.9MB (for 256x256 dim) in terms of network

Method Cifar10 Caltech101
T1 T5 T10 T1 T50 T101

JT — — 0.0596 — — 0.0831
SFT 0.0872 0.0748 0.0719 0.1088 0.1002 0.0906

Table 5. Continual reconstruction for homogeneous tasks (each
task Tk specifies upto k classes from the same dataset have been
observed) shows minimal / no forgetting, examples showcasing
reconstruction error for Cifar10 and Caltech101. On the contrary
there is strong indication that knowledge from past improves learn-
ing newer tasks (forward transfer).

Figure 6. Continual reconstruction on UC Merced land use 256px
dataset. Line plot shows reconstruction error averaged from first
till current task, as new tasks are introduced. SFT and Coreset
oscillate occasionally as new tasks are encountered. E.g. beach
(blue texture) after agriculture and baseball ground (green), forest
after series of buildings (grey), golfcourse after freeway, overpass
after park etc. Despite minimal capacity among other methods,
Flashcards has relatively stable transition (dotted horizontal line
shows peak error) and low error for all tasks.

parameters. Coreset requires extra 75MB for storing 100
images. VAE occupies an extra 4.7MB. Both Flashcards
and VAE+AE generate 100 samples towards next task and
have similar performance. VAE+AE is slightly better than
Flashcards at the expense of more storage. Other methods
experience spike in transition to next task, whereas the per-
formance is stable when using flashcards.

16

Method Type With Task Identifier Without Task Identifier
T1 T1→T2 T1→T2→T3 T1 T1→T2 T1→T2→T3

SFT - 61.55± 0.8 60.20± 0.1 43.55± 0.4 61.55± 0.8 49.41± 0.1 30.21± 0.2
Coreset 100% ER 61.55± 0.8 79.26± 0.6 83.13± 0.8 61.55± 0.8 81.15± 1.1 84.38± 1.0

EWC Reg 61.55± 0.8 66.50± 2.9 72.75± 1.9 61.55± 0.8 50.27± 3.2 28.18± 2.2
SI Reg 61.55± 0.8 63.42± 1.0 67.22± 1.1 61.55± 0.8 50.60± 1.0 30.08± 1.3

LwF Reg+R 61.55± 0.8 72.76± 2.9 74.90 ± 2.9 61.55± 0.8 31.77± 3.4 31.52± 3.2
CL VAE 5000 GR 61.55± 0.8 73.12 ± 2.5 66.86± 3.2 61.55± 0.8 67.97± 2.7 50.61± 3.1

BI-R GR 61.55± 0.8 52.09± 2.4 52.70± 2.6 61.55± 0.8 22.65± 2.7 26.47± 2.4
Flashcards 5000 FR 61.55± 0.8 70.75± 1.0 72.13± 0.9 61.55± 0.8 67.64 ± 1.0 63.71 ± 0.8

Table 6. Comparison of different methods for task incremental learning using Sequence3 tasks (Cifar10-MNIST-Fashion MNIST). Reported
values are accuracy computed at the end of task T. When task identifier is provided, flashcards performance matches other baseline methods.
However, in the absence of task identifier, baselines fail while flashcards helps to retain accuracy. Flashcards is robust to degradation across
different domain tasks and outperforms other methods. Reg=Regularization, Reg+R=Regularization and Replay, ER=Episodic Replay,
GR=Generative Replay, FR=Flashcard Replay. Reported scores are averaged over 3 independent runs.

Maze Pattern Gaussian Noise Next Task data
0.0536± 0.002 0.0945± 0.003 0.3713± 0.275

Table 7. Maze patterns provide best reconstruction MAE among
different initializations used for construction of flashcards. Exper-
iments run on Sequence5 continual reconstruction.

Flashcards initialization: A study on the choice of initial-
ization is presented in Table 7 and Figure 7 using Sequence5
for continual reconstruction. Among the three choices -
Maze, Gaussian Noise and next task data, only Maze based
flashcards had diversity in terms of shape and texture, and
performed best due to its ability to capture activations at
edges. Using Gaussian noise as initialization resulted in
repetition of same patterns. Flashcards from new task ini-
tialization being dependent on the random subset images’
coverage of old tasks’ activations led to inconsistent results.

Figure 7. Visual comparison of different initializations used for
construction of flashcards - Maze, Gaussian Noise and next task.

4.2. Heterogeneous Continual Denoising

A more challenging extension to reconstruction is de-
noising in continual learning scenario. Here the objective
of the network is to learn, remember and denoise the sam-
ples simultaneously. For our experiments, we impose noise
sampled from a standard normal distribution factored by a
small parameter to the Sequence5 datasets. Results reported
for Denoise MAE and BWT under columns 7 and 8 in Table

4 are obtained by adding noise factor of 0.1 to original im-
ages. Our approach (Flashcards) performs better than base-
line approaches, with lower error compared to regulariza-
tion and generative replay methods, and even outperforms
episodic replay method - Coreset 5000 in terms of MAE.

4.3. Task (Agnostic) Incremental Classification

Task Incremental Learning (Task-IL) is a continual
learning setting where new tasks, each comprising of mul-
tiple classes (≥ 2) are learned in incremental fashion.
The network encoder is shared whereas there exists task-
exclusive multihead output. Generally, classification is per-
formed using the specific multihead, with the help of task
identifier. We compare performance of flashcards for both
cases, with and without task identifier. We follow the same
setup as provided in [22] (details in Section 4). Results for
Sequence3 (details in Section 4) from Table 6, show that
baseline methods designed to make decisions only on see-
ing the task identifier during inference perform poorly in its
absence. Our approach, on the other hand, is designed as
task agnostic, relying only on the most recent checkpoint.
It is competitive in the presence of task identifier, and in the
absence, it outperforms baseline methods by a big margin.

5. Conclusion
We introduced flashcards that can capture knowledge

representations of a trained autoencoder through recursive
passing of random image patterns, and showed that it can
be used as alternative to original data. We further demon-
strated its efficacy as a task agnostic replay mechanism for
various continual learning scenarios, such as reconstruc-
tion, denoising, and task incremental learning, with hetero-
geneous datasets. Flashcard replay outperforms generative
replay and regularization methods, without additional mem-
ory and training, and also performs on par with episodic
replay, without storing exemplars. The intrinsic nature of
flashcards allows for data abstraction that can be exploited
for potential data privacy applications. Generalization of
flashcards to other domains will foster further research.

17

References
[1] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, and

L. Charlin. Online continual learning with maximally in-
terfered retrieval. Proceedings of the Advances in Neural
Information Processing Systems 32, 2019.

[2] Liu Bing. Learning on the job: Online lifelong and continual
learning. In Proceedings of the AAAI, 2020.

[3] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incre-
mental learning. In Proceedings of the European conference
on computer vision (ECCV), pages 233–248, 2018.

[4] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with A-
GEM. In ICLR, 2019.

[5] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In NAACL-HLT, 2019.

[6] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. In ICLR, 2019.

[7] Jianping Gou, Baosheng Yu, Stephen John Maybank, and
Dacheng Tao. Knowledge distillation: A survey, 2020.

[8] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in neural information processing systems,
pages 6626–6637, 2017.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[10] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-
jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, and
Grabska-Barwinska. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of
sciences, 114, 2017.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, 2012.

[12] H. Li, W. dong, and B. G. Hu. Incremental concept learning
via online generative memory recall. IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[13] Z. Li and D. Hoiem. Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2018.

[14] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient
episodic memory for continual learning. In Advances in Neu-
ral Information Processing Systems 30, 2017.

[15] M. Längkvist, L. Karlsson, and A. Loutfi. A review of un-
supervised feature learning and deep learning for time-series
modeling. Pattern Recognition Letters, 2014.

[16] Charles H Martin and Michael W Mahoney. Heavy-tailed
universality predicts trends in test accuracies for very large
pre-trained deep neural networks. In Proceedings of the 2020
SIAM International Conference on Data Mining, 2020.

[17] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jah-
nichen, and Moin Nabi. Learning to remember: A synaptic

plasticity driven framework for continual learning. In Pro-
ceedings of the CVPR, 2019.

[18] German I. Parisi, Ronald Kemker, Jose L.Part, Christopher
Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 2019.

[19] Anthony Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123–146, 1995.

[20] M. Rostami, S. Kolouri, J. McClelland, and P. Pilly. Gen-
erative continual concept learning. Proceedings of the 34th
AAAI, 2020.

[21] Sebastian Thrun. Is learning the n-th thing any easier than
learning the first? In Advances in neural information pro-
cessing systems, pages 640–646, 1996.

[22] G. M. van de Ven, H. T. Siegelmann, and A. S. Tolias. Brain-
inspired replay for continual learning with artificial neural
networks. Nature Communications, 11, 2020.

[23] Yi Yang and Shawn Newsam. Bag-of-visual-words and spa-
tial extensions for land-use classification. In Proceedings of
the 18th SIGSPATIAL international conference on advances
in geographic information systems, pages 270–279, 2010.

[24] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In Proceedings of
the 34th ICML - Volume 70, 2017.

[25] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong,
and Q. He. A comprehensive survey on transfer learning.
Proceedings of the IEEE, 109(1):43–76, 2021.

18

