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Abstract

We present a novel architecture for 3D object detec-
tion, M3DETR, which combines different point cloud
representations (raw, voxels, bird-eye view) with differ-
ent feature scales based on multi-scale feature pyramids.
M3DETR is the first approach that unifies multiple point
cloud representations, feature scales, as well as models mu-
tual relationships between point clouds simultaneously us-
ing transformers. We perform extensive ablation experi-
ments that highlight the benefits of fusing representation
and scale, and modeling the relationships. Our method
achieves state-of-the-art performance on the KITTI 3D ob-
ject detection dataset and Waymo Open Dataset. Results
show that M3DETR improves the baseline significantly
by 1.48% mAP for all classes on Waymo Open Dataset.
In particular, our approach ranks 15 on the well-known
KITTI 3D Detection Benchmark for both car and cyclist
classes, and ranks 15¢ on Waymo Open Dataset with sin-
gle frame point cloud input. Our code is available at:
https://github.com/rayguan97/M3DETR.

1. Introduction

3D object detection is a fundamental problem in com-
puter vision and many applications, including autonomous
driving [11, 44], augmented reality [33] and robotics [31].
Moreover, different methods have been proposed for vari-
ous sensors, including monocular cameras, depth cameras,
LiDAR, and radars [35, 36, 34, 56, 57, 55, 39, 58]. 2D
object detection deals with detecting objects from RGB im-
ages and videos, while 3D object detection utilizes point
cloud-based representations obtained from LiDARSs or other
sensors. Moreover, it is known that point cloud data ob-
tained from LiDAR sensors tends to be more accurate than
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Figure 1. M3 Transformers used in our approach: Left: Multi-
representation transformers; Middle: Multi-scale transformers;
Right: Mutual-relation transformers. We use these characteristics
to present a novel 3D object detection architecture.

RGB images and videos [2]. Consequently, point clouds are
being widely used for scene understanding in autonomous
driving and AR.

The previous state-of-the-art methods for 3D object de-
tection base on different networks [58, 39]. However, there
are two key limitations:

Ineffective point cloud representations: The three major
techniques used to process point clouds are based on vox-
els [62, 52], raw point clouds [35, 36, 34, 40, 56, 26, 37],
and bird’s-eye-view [6, 17, 53]. Each representation has
a unique advantage and it has been shown that combining
these representations can result in terms of detection ac-
curacy [34, 39, 7]. However, fusing these representations
is non-trivial. First, the architectures corresponding to the
VoxelNets, the PointNets, and the 2D convolutional neural
networks are different. Moreover, raw point clouds need to
be converted to voxels and pixels before techniques based
on VoxelNets and 2D convolutional neural networks can
be applied. The differences between the inputs of these
three neural models can result in semantic gaps. Previous
works [7, 39] tend to use feature concatenation and attention
modules to fuse multi-representation features. However, the
correlation between features of different representations has
not been addressed.

Insufficient modeling of multi-scale features: Fusing
multi-scale feature maps is a well-known technique used
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for improving the detection performance of 2D object de-
tection. In terms of 3D object detection, current approaches
tend to use multi-scale feature pyramids [35, 36, 55, 18,
19, 57]. However, fusing these multiple feature pyramids
is non-trivial because the higher resolution and the larger
receptive fields are conflicting [23, 36]. Existing meth-
ods [36, 57, 39] fuse the multi-scale features using bi-linear
down-sampling/up-sampling and concatenation. Although
these approaches [36, 57, 39] can improve the accuracy by
a large margin, there are many challenges with respect to
the underlying fusion method in terms of the correlation be-
tween feature maps of different scales.

A key issue in terms of designing a good approach for
object detection is exploiting the correlation between differ-
ent representations and the large size of the receptive fields.
Our approach is motivated by use of transformers [48], a
form of neural network based on attention that has been
used in natural language processing [16, 45, 43, 27].
Specifically, transformers use multi-head attention to nar-
row the semantic gap between different representations by
adapting to informative features and eliminating noise.

Another key aspect of 3D object detection is to model
the mutual relationships between different points in the
point cloud data [35, 36, 18, 47]. Modeling mutual re-
lationships can enhance the ability to recognize the fine-
grained patterns and can generalize to complex scenes.
Prior works in 3D object detection have modeled these re-
lationships using multi-layer perceptrons [35, 36, 34, 39],
farthest point sampling layers [36, 40, 39], max pooling lay-
ers [18, 36, 40, 39], and graph convolutional networks [51].
However, a key challenge is to model these mutual relation-
ships along with fusing different representations and multi-
scale features.

We present M3DETR, a novel two-stage architecture
for 3D object detection task. Given raw 3D point cloud
data, our approach can localize static and dynamic ob-
stacles with state-of-the-art accuracy. As illustrated in
Figure 1, the key components of our approach are M3
transformers, which are used to combine different feature
representations. Conceptually, each of the M3 transformers
are used for aggregating point cloud representations,
multi-scale representations and mutual relationships among
a subset of points in the point cloud data.

Summary of contributions:

* M3DETR is the first unified architecture for 3D object
detection with transformers that accounts for multi-
representation, multi-scale, mutual-relation models of
point clouds in an end-to-end manner.

* M3DETR is robust and insensitive with respect to
the hyper-parameters of transformer architectures. We
test multiple variants with different transformer blocks

designs. We demonstrate improved performance of
M3DETR regardless of hyper-parameters.

* Our unified architecture achieves state-of-the-art per-
formance on KITTI 3D Object Detection Dataset [11]
and Waymo Open Dataset [44]. We outperform the
previous state-of-the-art approaches by 2.86% mAP
for car class on the Waymo validation set and 1.48%
mAP for all classes on the Waymo test set.

2. Related Work

Multi-representation modeling. Existing techniques
for modeling 3D point cloud data include bird-eye-view
(BEV), volumetric, and point-wise representations. Gener-
ally, BEV-based approaches [6, 17, 21, 20] first project 3D
point clouds into 2D BEV space and then adopt the standard
2D object detectors to generate 3D object proposals from
projected 2D feature maps. To deal with the irregular format
of input point clouds, voxel-based architectures [62, 52, 19]
use equally spaced 3D voxels to encode the point clouds
such that the volumetric representation can be consumed
by the region proposal network (RPN) [38]. Inspired by
the PointNet/PointNet++ approach [35, 36], which is in-
variant under transformation, [34, 40] extend this method
to the task of 3D object detection and directly process the
raw point clouds to infer 3D bounding boxes. However,
these methods are typically limited due to either informa-
tion loss or high computation cost. Recently, many ap-
proaches [56, 26, 46, 39, 58] have combined the advantages
of speed (of voxel-based representation) and efficiency (of
point-based representation) by fusing point-voxel features
for 3D object prediction.

Multi-scale modeling. Modeling multi-scale features is
an important procedure in deep learning-based computer vi-
sion [23, 3, 25, 60, 22, 64, 36, 15, 50] because it is able to
enlarge the receptive field and increase resolution. In 3D
representation, modeling multi-scale features is also pop-
ular and important. PointNet++ [36] proposes the set ab-
straction module to model local features of a cluster of point
clouds. To model multi-scale patterns of point clouds, they
use 3 different sampling ranges and radii with 3 parallel
PointNets and thus fuse the multi-scale. In 3D object de-
tection, [15, 50, 57] adopt different detection heads with
multi-scale feature maps to handle both large and small ob-
ject classes.

Mutual-relation modeling. 2D Convolutional Neural
Networks [14] are commonly used to process mutual re-
lations in 2D images. As point clouds are scattered and
lacking structure, passing information from one point to
its neighbors is not trivial. PointNets [36] proposes the
set abstraction module to model the local context by us-
ing the subsampling and grouping layers. After this well-
known work, many convolution-like operators [47, 18, 51]
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Figure 2. An overview of our M3DETR architecture: M3DETR is a transformer based framework for object detection in a
coarse-to-fine manner. It consists of three parts. PointNets, VoxelNet, and 2D ConvNets modules enable individual multi-representation
feature learning. M3 Transformers enable inter-intra multi-representation, multi-scale, multi-location feature attention. With the Region
Proposal Network (RPN), the initial box proposals are generated. R-CNN captures and refines region-wise feature representations from

M3 transformer output to improve detection performance.

on point clouds have been proposed to model the local
context and the mutual relation between points. Recently,
transformers [61, 9, 13, 32] have been introduced in Point-
Nets to model mutual relation. However, those previous
works mainly focus on the local and global contexts of point
clouds by applying mutual-relation transformers on points.
Instead, our approach not only models the mutual relation
between points, but it also models multi-scale and multi-
representation features of point clouds.

Transformers in computer vision. Inspired by their
success in machine translation [48], transformer-based ar-
chitectures have recently become effective and popular in
a variety of computer vision tasks. Particularly, the design
of self-attention and cross-attention mechanisms in trans-
formers has been successful in modeling dependencies and
learning richer information. [8] leverages the direct applica-
tion of transformers on the image recognition task without
using convolution. [4, 65] apply transformers to eliminate
the need for many handcrafted components in conventional
object detection and achieve impressive detection results.
[54, 59] explore transformers on image and video synthesis
tasks. [61] investigates the self-attention networks on 3D
point cloud segmentation task.

Recently, there have been several joint representation fu-
sion research attempts. PointPainting [49] proposes a novel
method that accepts both images and point clouds as inputs
to do 3D object detection by appending 2D semantic seg-
mentation labels to LiDAR points. In the visual question
answering task, [16] jointly fuses and reasons over three
different modality representations. [29] combines mul-
timodal information to solve robust emotion recognition

problems. Building on a multi-representation and multi-
scale transformer, our proposed model addresses the voxel-
wise, point-wise, and BEV-wise feature representation gap
and enables effective cross-representation interactions with
different levels of semantic features. Coupled with a point-
wise mutual-relation transformer, our framework learns to
capture deeper local-global structures and richer geometric
relationships among point clouds.

3. Our Approach

M3DETR takes point cloud data as input and generates
3D boxes for different object categories with state-of-the-art
accuracy as shown in Figure 2. Our goal is to perform multi-
representation, multi-scale, and mutual-relation fusion with
transformers over a joint embedding space. Our method
consists of three main steps:

* Generate feature embeddings for different point cloud
representations using VoxelNet, PointNet, and 2D
ConvNet.

* Fuse these embeddings using M3 transformer that
leverages multi-representation and multi-scale feature
embedding and models mutual relationships between
points.

e Perform 3D detection using detection heads network,
including RPN and R-CNN stages.

3.1. Multi-Representation Feature Embeddings

Our network processes the raw input point clouds P =
{p1,p2, .-.pn} and encodes them into three different em-
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bedding spaces, namely, voxel-, point-, and BEV-based fea-
ture representations. We discuss the embedding process for
each representation in detail.

Voxels: Voxel-wise feature extraction is divided into two
steps: (1) the voxelization layer, which is used by Vox-
elNet [62], takes the raw input point clouds P and con-
verts them into equally spaced 3D voxels v € REXWxH;
(2) voxel-wise features fvo%¢ at different scales are ex-
tracted with 3D sparse convolutions, which is visual-
ized in Figure 2. Unlike [62, 52], all four different
scales of obtained 3D voxel CNN features, f“’"l
{f’uo:vel 1><’ fvo:rel 2><’ fvoa:el 4><’ fvoxel 8><} are passed
to the transformer stage as shown in Figure 2. More details
will be introduced in the supplementary materials.
Bird’s-eye-view: 2D ConvNets takes the 8 x downsampled
voxel-based feature map £V°%¢ 8% from the 3D Voxel CNN
branch and generates a corresponding BEV-representation
embedding. To directly apply 2D convolution, we start by
combining the z-dimension and the channel dimension of
the input voxel features into a single dimension. The struc-
ture of 2D ConvNets includes two encoder-decoder blocks,
where each block consists of 2D down-sampling convolu-
tional layers to produce top-down features, as well as de-
convolutional layers to upsample to the input feature size.
Specifically, both encoder and decoder paths are composed
of a number of 2D convolutional layers with the kernel size
of 3 x 3 followed by a BatchNorm layer and a ReLU layer.
The output BEV-based feature from 2D ConvNets, denoted
as fbe” € RLvevxWievxChev  wag further converted into
keypoint feature F*** € R"™*¢ev through bi-linear inter-
polation.

Points: Typically, there are more than 10K raw points in-
side an entire point cloud scene. In order to cover the en-
tire point set effectively without large memory consump-
tion, we apply Furthest-Point-Sampling (FPS) algorithm to
sample n keypoints, denoted as Pc P Adopted from
PointNet++ [36] and PV-RCNN [39], Set Abstraction and
Voxel Set Abstraction (VSA) module take raw point co-
ordinates P and the 3D voxel-based features fv°%¢, re-
spectively, to generate keypoint features for P. In partic-
ular, the corresponding keypoint features from raw points
P is Froint ¢ Rn*¢point and the corresponding keypoint
features from voxels fvorel are {Fvovel 1x = fvowel 2x
Fvomel4><’ Fvozel 8% }, where F7. c RnXci,

3.2. Multi-representation, Multi-scale, and Mutual-
relation Transformer

Once the three feature embedding sequences, Froowel
Froint and Fv are generated, they are able to dynami-
cally and intelligently attend to each other, generating fi-
nal cross-representations, cross-scales, and cross-points de-
scriptive feature representations as shown in Figure 2. In the
remainder of this section, we will briefly review transform-

ers basics followed by discussing the multi-representation,
multi-scale, and mutual-relation transformer layers.
Transformer basics. A transformer is a stacked encoder-
decoder architecture relying on a self-attention mechanism
to compute representations of its input and output [48].
Consider two input matrices X; € R!*%n» and X, €
R#*din where [ and s are the lengths of the input sequence
of dimension d;,. The attention layer output is defined as:

QK"
Vi

where Q = X;W,, K = XiW,and V = X;W,,.

The matrices @, K and V represent query, key and
value respectively, obtained through projection matrices
W,, W, € Réinxdn and W, € Rin*dout | where dj, is
the hidden dimension, and d,,; is the output dimension.
When two input matrices X; and X represent the same
feature maps, the attention module is usually referred to as
self-attention. Each transformer layer consists of one Multi-
head Self-attention (MHSA) module and a few linear layers,
as well as normalization and activation layers. More details
will be introduced in the supplementary materials.

Now, we present the proposed transformers used to cap-

ture the inter- and intra- interactions among input features.
Specifically, we propose two stacked transformer encoder
layers named M3 Transformers, as shown in Figure 3: (1)
the multi-representation and multi-scale transformer, and
(2) the mutual-relation transformer.
Multi-representation and multi-scale transformer layer.
First, we focus on the intra-point representation fusion.
For each individual point, the input sequence to this trans-
former layer is its several different corresponding point
cloud features, including various scales and distinctive rep-
resentations. The input sequence to the transformer is
F = [Fvorel 1><’ Fvazel 2><’ Fvo:vel 4><’ F'Uo:vel 8><’ Fpoint’
F’¢v], where each F' € R"*%. After explicitly modeling
all element-wise interactions among those features for each
point separately, the output from the block is the updated
feature vectors after aggregating the information from all
the input sequence F'.

The multi-representation and multi-scale transformer
layer takes 6 different inputs: F'Point, froozellx & pruozel2x
Fooweldx | proozeldx - pbev - Ag different inputs may have
different feature dimensions, we use the single-layer per-
ceptron to apply feature reduction on the input features
to align the feature dimensions of each feature embed-

dings. The outputs of the feature reduction layer are
F — [Fvoa:el 1x F‘Ivowel 2% Fvo;cel 4x Fvo;cel 8% Fpoint

Attention(Q, Vv, K) = Softmax( )V c Rleou,t’

13‘5‘”’], where the output dimension of each feature is equiv-
alent to ¢.

After the feature reduction layer, the multi-
representation and multi-scale transformer layer takes
Fas inputs and generates self-attention features T°v°%¢! 1%
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Figure 3. M3 Transformers consist of two parts: a multi-
representation and multi-scale transformer, and a mutual-relation
transformer. Multi-representation and multi-scale transformer
takes the different feature embedding and generates enriched
cross-representations and cross-scales embedding. On top of it,
the mutual-relation transformer further models point-wise feature
relationship to extract the refined features.

Tvoacel 2% ’Tvozel 4x 7Tvomel 8X , Tpoint, Tbev’ which

Corresponds to ﬁwozel 1x , ﬁ!voa:el 2% ’lfwoxel 4% ’ijozel 8% ,
ﬁ‘pomt, Fbev. We visualize the multi-representation and
multi-scale transformer in Figure 3.

Mutual-relation transformer layer. Inspired by [35, 36,
32], inter-points feature fusion within a spatial neighboring
space is leveraged in the mutual-relation layer of the trans-
former. Our goal is to attend to and aggregate the neighbor-
ing information in an attention manner for each point with
an enriched feature.

From the first transformer block output, we obtain aggre-
gated features T of different scales and representations after
the first transformer block. We concatenate channels along
the point dimension and rearrange those points into a se-
quence as the input of the mutual-relation transformer. Let
the learned concatenated feature T' = concat {T“O‘“l Ix
Tvomel 2><’ F?)o.’xel 4x , T’z)omel 8><7 Cz'vpoim‘,7 Tbev} c Rnch’
where cr is the sum of all channel size in T'. Note that, the
first dimension of 7" is the number of keypoints n. To model
the mutual-relation between keypoints, we need to split T°
into n point-wise feature T' = {T;}, where T; € R°”. The

concatenation and split module is showed in Figure 3.

The mutual-relation transformer takes point-wise fea-

tures of n keypoints as inputs and uses the multi-head self-
attention head to model the mutual relationship between
keypoints. The outputs of the mutual-relation transformer
are T'.
Comparison with previous point-based transformers
Prior work has explored the transformer application on the
task of point cloud processing. First, [13, 9, 61] leverage the
inherent permutation invariance of transformers to capture
local context within the point cloud on the shape classifi-
cation and segmentation tasks, while our M3DETR mainly
investigates the strong attention ability of transformers be-
tween input embeddings for the 3D object detection task.
Pointformer [32] is the approach most related to our method
because we both address the 3D object detection task by
capturing the dependencies among points’ features. How-
ever, Pointformer adopts a single PointNet branch to extract
points feature, while M3DETR considers all three differ-
ent representations and also applies the transformer to learn
aggregated representation-based features.

3.3. Detection Heads Network

After we obtain the enriched embedding 7' from the
M3 transformer, the detection network is composed of two
stages that predict 3D bounding box class, localization, and
orientation in a coarse-to-fine manner, including RPN and
R-CNN. Please refer to PV-RCNN [39] for more details.
RPN: Region Proposal Networks take the deep semantic
features f°¢* produced by the 2D ConvNets as inputs and
generate high-quality 3D object proposals B, as shown
in Figure 2. A 3D object box B; is parameterized as
(x,y,2,1,h,w,0), where (z,y, z) is the center of the box,
(I, h,w) is the dimension of the box, and 6 is the orienta-
tion in bird’s-eye-view. Similar to the conventional RPN in
2D object detection [38] each position on the deep feature
map is placed by predefined bounding box anchors denoted
as (%, y%, 2%, 1%, h®, w*, 6%). Then initial proposals are
generated by predicting the relative offset of an object’s 3D
ground truth bounding box (z9¢, y9¢, 29¢, 19¢, h9t, wIt, 99%).
R-CNN: R-CNN serves as the second stage and it takes the
initial region proposals B from RPN as input to conduct
further proposal refinement. For each input proposal box,
the Rol-grid pooling module [39] is adopted to extract the
corresponding proposal-specific grid points’ features from
the transformer-based embeddings T. Compared with pre-
vious works, M3DETR leverages the richer embedding in-
formation from the learned transformers for the fine-grained
proposal refinement. As the main component to extract re-
fined features, the Rol-grid pooling module uniformly sam-
ples N x N x N grid points per 3D proposal. For each
grid point, the output feature is generated by applying a
PointNet-block [35] on a small number of surrounding key-
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points, M, within its spatial surrounding region with a ra-
dius of r. Specifically, keypoints are the subset of input
points that are sampled using the Furthest-point-sampling
algorithm to cover the entire point set.

Finally, the refined representations of each proposal are
first passed to two fully connected layers and then gener-
ate the box 3D Intersection-over-Union (IoU) guided con-
fidence scoring of class prediction and location refine-
ment of regression targets, B. Compared with the tra-
ditional classification-guided box scoring, 3D IoU guided
confidence scoring considers the IoU between the proposal
box and its corresponding ground truth box. Empirically,
[41, 39] show that it achieves better results compared with
the traditional classification confidence based techniques.

3.4. Loss Functions

In this section, we define the loss function. The bounding
box regression target for both RPN and R-CNN stages is
calculated as the relative offsefts between the fanchors and
the ground truth as: Az = Ig;;x Ay = & ;;y , Nz =
2222 Ah = log(B0), Aw = log(“r), A0 = 9° — 69,

ha wae
where d* = /(w?®)? 4 (1#)2. Similar to [39, 41], the focal
loss is applied [24] for the classification loss, L.;s. Smooth
L1 loss [12] is adopted for the box localization regression
target’s losses, L,cq and L,c¢. In addition, 3D IoU loss
[39, 41] is used for L;,,,.

Similar to PV-RCNN [39], we formally define a multi-
task loss for both the RPN and R-CNN stages,

Ecls = 70[11(1 - pa)’y logpaa

Lrog = > Ly (Ab),
be(z,y,z,w,l,h,0)

L= Ecls + 5Teg£reg + Biouﬁiou + 5ref£ref7

D

where p® is the model’s estimated class probability for
an anchor box, and f3,¢4, Bion and 3,y are chosen to bal-
ance the weights between classification loss, IoU loss and
regression loss for RPN stage and R-CNN stage. We adopt
the default « = 0.25, and v = 2.0 from the parameters of
focal loss [24].

4. Experiments

In this section, we evaluate M3DETR both qualitatively
and quantitatively on the Waymo Open Dataset [44] and the
KITTI Dataset [11] in the task of LiDAR-based 3D object
detection. Our main results include achieving a state-of-
the-art accuracy on these datasets and robustness to hyper-
parameter tuning.

4.1. Datasets and Evaluation Metric

Waymo Open Dataset: The Waymo Open Dataset [44] is
a large-scale autonomous driving dataset containing 1000

scenes of 20s duration each, with 798 scenes for training
and 202 scenes for validation. Each scene is sampled at a
frequency of 10Hz. Overall, the dataset includes 12M la-
beled objects and thus we only use one fifth of the train-
ing scenes for the following experiment. We consider Li-
DAR data as the input to our approach. The evaluation
protocol on the Waymo dataset consists of the mean aver-
age precision (mAP) and mean average precision weighted
by heading (mAPH). For each object category, the detec-
tion outcomes are evaluated based on two difficulty levels:
LEVEL_1 denotes the annotated bounding box with more
than 5 points and LEVEL_2 represents the annotated bound-
ing box with more than 1 point.

KITTI dataset The KITTI 3D object detection bench-
mark [11] is another popular dataset for autonomous driv-
ing. It contains 7,481 training and 7,518 testing LiDAR
scans. We follow the standard split on the training (3,712
samples) and validation sets (3, 769 samples). For each ob-
ject category, the detection outcomes are evaluated based
on three difficulty levels based on the object size, occlusion
state, and truncation level.

4.2. Implementation Details

Closely following the codebase', we use PyTorch to im-
plement our M3 transformer modules and integrate them
into the PV-RCNN network [39]. More details about back-
bone and detection heads network will be introduced in the
supplementary materials.

M3 Transformer We project the embeddings obtained
from the backbone network with different scales and rep-
resentations to 256 channels, as the input of the multi-
representation and multi-scale transformer requires, and
project the output features back to their original dimensions
before passing into the mutual-relation transformer. Due to
the GPU memory constraint, we experiment with two types
of MHSA module designs: 2 encoder layers with 4 attention
heads and 1 encoder layer with 8 attention heads.

Training Parameters Models are trained from scratch on
4 NVIDIA P6000 GPUs. We use the Adam optimizer with
a fixed weight decay of 0.01 and use a one-cycle scheduler
proposed in [42]. For the Waymo Open Dataset, we train
our models for 45 epochs with a batch size of 8 scenes and
a learning rate 0.01, which takes around 50 hours. For the
KITTI dataset, we train our models for 80 epochs with a
batch size of 8 scenes per and a learning rate 0.01, which
takes around 15 hours.

4.3. Results

Waymo Open Dataset: We first present our object detec-
tion results for the vehicle, pedestrian, and cyclist classes
on the test set of Waymo Open Dataset in Table 1 com-
pared with PV-RCNN [39]. We evaluate our method at both

Uhttps://github.com/open-mmlab/OpenPCDet.
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Vehicle Pedestrian Cyclist All
Method L1 mAP L1 mAPH L2 mAP L2 mAPH|L1 mAP L1 mAPH L2 mAP L2 mAPH|L1 mAP L1 mAPH L2 mAP L2 mAPH|L1 mAP L1 mAPH L2 mAP L2 mAPH
PV-RCNN* [39]| 76.89 76.30 67.99 67.46 65.43 55.85 59.56 50.74 66.38 64.68 63.42 61.81 69.57 65.61 63.65 60.00
M3DETR 77.66 77.09 70.54 69.98 68.20 58.50 60.64 52.03 67.28 65.69 65.31 63.75 71.05 67.09 65.50 61.92
Improvement +0.77 +0.79 +2.55 +2.52 +2.77 +2.65 +1.08 +1.29 +0.90 +1.01 +1.89 +1.94 +1.48 +1.48 +1.85 +1.92

Table 1. M3DETR outperforms in the Vehicle, Pedestrian and Cyclist classes for both LEVEL_1 and LEVEL_2 difficulty levels on Waymo

Open Dataset test set. Note that PV-RCNN* is our reproduced results with single point cloud frame input.

3D mAP LEVEL_1 3D mAPH LEVEL_1 3D mAP LEVEL_2 3D mAPH LEVEL_2

Method Overall 0-30m 30-50m 50m-Inf|Overall 0-30m 30-50m 50m-Inf|Overall 0-30m 30-50m 50m-Inf|Overall 0-30m 30-50m 50m-Inf
RCD [1] 69.59 872 67.8 46.1 - - - - - - - - - - - -
StarNet [30] 61.50 82.20 56.60 32.20 | 61.00 81.70 56.00 31.80 | 549 81.3 495 23.0 | 54.50 80.80 49.00 22.70
PointPillars [19] | 68.62 87.20 65.50 40.92 | 68.08 86.71 64.87 40.19 | 6521 8793 6380 3820 | 64.29 8730 6236 36.87
Det3D [63] 7329 90.31 70.54 49.10 | 72.27 89.65 6896 4745 | 6521 8793 63.80 3820 | 6429 87.30 62.36 36.87
RangeDet [10] | 75.83 88.41 73.83 5531 | 75.38 87.95 73.38 54.84 | 67.12 87.53 67.99 4440 | 66.73 87.08 67.58 44.01
PV-RCNN* [39]| 76.89 9227 75.51 55.35 | 76.30 91.82 7479 54.27 | 67.99 89.18 69.39 42.80 | 67.46 88.75 68.70 41.95
M3DETR 77.66 92.54 76.27 5712 | 77.09 92.09 75.61 56.02 | 70.54 89.43 70.19 45.57 | 69.98 89.01 69.54 44.62
Improvement +0.77 +0.27 +0.76 +1.77 | +0.79 +0.27 +0.82 +1.18 | +2.55 +0.25 +0.80 +1.17 | +2.52 +0.26 +0.84 +0.61

Table 2. M3DETR outperforms in the Vehicle class with different size range on Waymo Open Dataset test set.

Note that PV-RCNN* is

our reproduced results with single point cloud frame input. We underscore the second best method in each column for comparison.

LEVEL_1 and LEVEL 2 difficulty levels. Note that we re-
produce the baseline PV-RCNN with a single frame input
since they recently adopt two-frames input on test set. As
we can see, PV-RCNN achieves 69.57% and 63.65% on av-
erage in LEVEL_1 mAP and LEVEL_2 mAP, respectively,
while M3DETR improves them by 1.48% and 1.85%, re-
spectively. Without bells and whistles, our approach works
better than PV-RCNN [39]. Furthermore, we compare our
framework on the vehicle class for different distances with
state-of-the-art methods, including StarNet [30], PointPil-
lars [19], RCD [1], Det3D [63], RangeDet [10] and PV-
RCNN [39]. In Table 2, M3DETR outperforms PV-RCNN
significantly in both LEVEL_1 and LEVEL_2 difficulty lev-
els across all distances, demonstrating the effectiveness of
newly proposed framework. Moreover, we visualize the de-
tection results of M3DETR in Figure 4.

Compared with the PV-RCNN shown in Figure 5,
M3DETR successfully captures the inter- and intra- in-
teractions among input features and effectively helps the
model generate high-quality box proposals. To the best of
our knowledge, M3DETR achieves the state-of-the-art in
the Vehicle class in both LEVEL_1 and LEVEL 2 difficulty
levels among all the published papers with a single frame
LiDAR input.

We also evaluate the overall object detection perfor-
mance with an IoU of 0.7 for Vehicle class on the full
Waymo Open Dataset validation set as in Table 3, further
proving that our architecture is more efficient for jointly
modeling the input features.

KITTI dataset: We compare our approach with the state-
of-the-art methods on the KITTI test set [39, 5]. We com-
pute the mAP on three difficult types of both car and cy-
clist classes in 3D detection metric. Table 4 shows that
M3DETR achieves state-of-the-art performance and out-

performs the previous work by a large margin especially
on the cyclist class. In particular, HotSpotNet [5] achieves
82.59% in the “easy” categories of 3D detection met-
ric, while M3DETR improves these results by significant
1.24%.

4.4. Ablation Studies

To demonstrate the individual benefits of the multi-
representation, multi-scale, and mutual-relation layers of
the M3 transformer, we perform ablation experiments and
tabulate the results in Table 5. All experiments are con-
ducted on the validation set of KITTI dataset.

With the single multi-representation and multi-scale
transformer layer, we can achieve 4.07% and 1.71% on the
moderate difficulty in car class with 11 and 40 recall posi-
tions, respectively compared with the PV-RCNN baseline.
On the other side, with the single mutual-relation trans-
former layer, the performance gain are 4.47% and 1.99%
compared with the PV-RCNN baseline. Without hyper-
parameter tuning, M3DETR benefits from unifying multi-
ple point cloud representations, feature scales, and model
mutual-relations simultaneously which results in the best
performance.

4.5. Robustness of M3DETR

To demonstrate the robustness of M3DETR to hyper-
parameter tuning, we perform a series of tests by varying
the sampling size, number of detection heads, and number
of transformer encoder layers. We present the results of
these tests in Figure 6, where we observe that M3DETR
performs consistently well for the “car” category with IoU
threshold of 0.7 for both 11 and 40 recall positions on the
KITTI validation set.
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3D mAP LEVEL_1 3D mAPH LEVEL_1 3D mAP LEVEL 2 3D mAPH LEVEL 2

Method Overall 0-30m 30-50m 50m-Inf|Overall 0-30m 30-50m 50m-Inf|Overall 0-30m 30-50m 50m-Inf|Overall 0-30m 30-50m 50m-Inf
LaserNet [28] 52.11 7090 5290 29.60 | 50.05 68.70 51.40 28.60 - - - - - - - -
PointPillars [19]| 56.62 81.00 51.80 27.90 - - - - - - - - - - - -
RCD [1] 69.59 87.20 67.80 46.10 | 69.16 86.80 67.40 45.50 - - - - - - - -
RangeDet [10] | 72.85 87.96 69.03 48.88 - - - - - - - - - - - -
PV-RCNN [39] | 70.30 91.90 69.20 42.20 | 69.69 91.34 68.53 4131 | 65.36 91.58 65.13 36.46 | 6479 91.00 6449 35.70
M3DETR 7571 92.69 73.65 5296 | 75.08 92.22 7294 51.80 | 66.58 91.92 65.73 40.44 | 66.02 91.45 65.10 39.52
Improvement +2.86 +0.79 +4.45 +398 | +539 +0.88 +4.41 +63 | +1.22 +0.34 +0.6 +3.94 | +1.23 +0.45 +0.61 +3.82

Table 3. M3DETR outperforms in the Vehicle class with IoU threshold of 0.7 on the full 202 Waymo Validation Set, especially on the far
range (50m to Inf). We underscore the second best method in each column for comparison.

Figure 4. We highlight the 3D detection results of M3DETR on the Waymo Open Dataset. The 3D ground truth bounding boxes are in

green, while the detection bounding box are shown in blue.

Table 4. M3DETR outperforms in both Car and Cyclist classes
for 3D detection benchmark on KITTI Test Set. We underscore
the second best method in each column for comparison.

Recall_11 Recall 40

Rel. Trans. Rep. and Scal. Trans.

Easy Mod Hard

Easy Mod Hard

X X 88.66 79.07 78.49|91.17 82.61 82.06
v X 88.82 83.23 78.64| 91.37 84.40 82.34
X v 88.93 83.63 78.59|91.72 84.68 82.39
v v 89.28 84.16 79.05|92.29 85.41 82.85

Table 5. Ablation studies of transformers in Car class with IoU
threshold of 0.7 on KITTI Validation dataset. “Rel. Trans.” and
”Rep. and Scal. Trans.” refer to mutual-relation trans-former of
2 MHSA layer with 4 heads, and multi-representation and multi-
scale transformer of 1 MHSA layers with 8 heads, respectively.

5. Conclusions

In this paper, we present M3DETR, a novel transformer-
based framework for object detection with LiDAR point
clouds. M3DETR is designed to simultaneously model
multi-representation, multi-scale, mutual-relation features

PV-RCNN M3DeTR

Figure 5. We visualize the 3D detection results for the same in-

Car Cyclist

Method Easy Mod Hard | Easy Mod Hard

F-PointNet [34] |72.27 56.12 49.01|82.19 69.79 60.59

VoxelNet [62] |77.47 65.11 57.73|61.22 48.36 44.37

SECOND [52] |83.34 72.55 65.82|75.83 60.82 53.67

PointPillars [19] | 82.58 74.31 68.99|77.10 58.65 51.92

PointRCNN [40]|86.96 75.64 70.70|74.96 58.82 52.53 put point cloud between PV-RCNN (left) and M3DETR (right)
STD [56] 87.95 79.71 75.09|78.69 61.59 55.30
HotSpotNet [5] |87.60 78.31 73.34|82.59 65.95 59.00
PVRCNN [39] |90.25 81.43 76.82|78.60 63.71 57.65 865
M3DETR 90.28 81.73 76.96 |83.83 66.74 59.03
Improvement +0.03 +0.3 +0.14|+1.24 +0.79 +0.03

on Waymo Open Dataset. We highlight the false negative boxes
from PV-RCNN in red.
88
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Figure 6. Performance comparison of different M3 Transform-
ers variants in Car class on KITTI validation set. We show the
mAP results with IoU threshold of 0.7 for both 11 and 40 recall
positions. Note that ”’I” and "h” represent layer number and head
dimension of M3 Transformers, respectively. “Top” denotes the
number of proposals used for keypoint sampling from RPN stage.

through the proposed M3 Transformers. Overall, the first
transformer integrates features with different scales and rep-
resentations, and the second transformer aggregates infor-
mation from all keypoints. Experimental results show that
M3DETR outperforms previous work by a large margin on
the Waymo Open Dataset and the KITTI dataset. Without
bells and whistles, M3DETR is demonstrated to be invari-
ant to the hyper-parameters of transformer.
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