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Abstract

Non-blind deblurring (NBD) is a modeling method of the
image deblurring problem in computer vision, where the
blurring kernel is known or can be externally estimated. In
this paper, we attempt to solve a parametric NBD problem,
inspired by the simultaneous acquisition of ptychography
and fluorescent imaging (FI). Ptychography is an imaging
method that favors larger probes, i.e. convolutional kernels,
while FI relies on a small probe for high resolution. Also,
the kernel can be solved during ptychographic reconstruc-
tion. With Ptycho-FI using the same larger kernel, we can
perform NBD on the blurred fluorescent images to achieve
high-resolution FI, and thus speed up the experiments. To
this end, we design a deep latent space deformation net-
work that is directly parameterized by the kernel. The net-
work consists of three components: encoder, deformer, and
decoder, where the deformer is specifically meant to rectify
the latent space representations of blurred images to a stan-
dard latent space, regardless of the kernel. The deformation
network is trained with a two-stage training scheme. We
conduct extensive experiments to confirm that our paramet-
ric model can adapt to drastically different blurring kernels
and perform robust deblurring.

1. Introduction and Motivation

Image deblurring is a classic problem in photography
and imaging science. One of the key elements that defines
different approaches is blind deblurring (BD) vs. non-blind
deblurring (NBD). In a convolutional model, a clean image
(latent image) is corrupted by a convolutional blurring ker-
nel and some noise, which is written as

B = I ∗K +N, (1)

where B is the blurred image, I is the clean image, K is
the kernel, and N is noise. BD refers to recovering both I
and K, given the kernel is unknown; and NBD means re-
covering I with some estimate of K provided. While NBD
relieves the ill-posed nature of deblurring, there is yet no di-
rect inverse due to the presence of noise. Also, having more
diverse kernels opens up more dramatically different blur-
ring effects, presenting new challenges to improve NBD.

We study a multi-modality imaging experiment – simul-
taneous acquisition of ptychography and fluorescent imag-
ing (FI), or Ptycho-FI for short – that can use a robust NBD
method. Here is a brief description of the setup:

• Ptychography captures spatial maps of a sample. It
involves scanning the sample with a local probe, i.e.
convolutional kernel (as in Eqn. 1), offering high-
resolution imaging in X-ray, electron, and optical
regimes [6, 20]. The resolution of ptychography is not
limited by the probe size; the probe can actually be
solved during the reconstruction.

• Fluorescence offers complementary elemental maps,
e.g. the distribution of iron in catalyst particles used in
the petroleum industry [8]. The FI resolution is limited
by the probe size, and a smaller probe has to be used.

• Normally, Ptycho-FI is bottlenecked by the small
probe in FI. If we use a larger probe, solve the probe
from ptychography, and perform high-quality NBD on
FI, this can reduce the acquisition time by a factor of
104, and as a result, increase the sample throughput as
well as enhance the temporal imaging resolution.

A robust NBD is essential for Ptycho-FI reconstruction,
because changing and measuring the kernel K is indeed
commonly done in its experiment imaging setup. Gener-
ative methods that do not explicitly consider K perform
poorly, as we later show in Fig. 2. Unlike existing NBD
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methods that resort to regularization [26] or approxima-
tion [30] to handle kernel uncertainty, we let the generative
model be directly parameterized by K, i.e., we will make it
real parametric NBD.

In this paper, we present a deformable latent space
method to perform parametric NBD. The motivation of de-
blurring in the latent space can be summarized as “shared
latent space” – a clean image, and any corrupted version
of it, can be embedded in the same low-dimensional latent
space. A change in kernel K results in a shift in the latent
space. For NBD, we propose to deform the latent space to
correct it. The deblurring network can be trained in two
stages. First, we establish a standard latent space with one
fixed blurring kernel; second, we learn to deform the latent
features to the standard latent space, parameterized by the
actual blurring kernel. In other words, the deformer param-
eterizes the latent space with K. Our contributions can be
summarized as follows:

• We present a deformable latent space method to per-
form parametric non-blind deblurring and improve the
deblurring quality (Figures 6, 8);

• By operating in the latent space, our NBD method is
efficient in terms of time and cost (Table 2);

• We illustrate a parametric non-blind deblurring prob-
lem where the varying kernel K takes center stage, and
describe the general formulation of shaping a genera-
tive method that is flexible, interpretable, and deter-
mined by the actual parameters of the imaging process;

• We show the possibility of high-throughput multi-
modality imaging for advancing material science with
the help of NBD.

2. Related Work
Non-Blind Deblurring. Classic NBD methods such as

Wiener deconvolution [33] and Richardson-Lucy deconvo-
lution [19] are prone to degradation because of noise. To
combat noise, researchers have proposed global, model-
driven style priors such as Laplacian, hyper-Laplacian [11],
TV regularization [21] and extreme channels prior [35],
as well as patch-based, learning-based priors such as
BM3D [2], EPLL [41], and pyramid priors [28]. Some
learning approaches modify the iteration for faster descent
based on learning, such as discriminative NBD [25], shrink-
age fields [24], and learned data terms [4]. Generative
CNNs are widely used to act as priors and computation
blocks in many deblurring methods [34, 38, 37, 12, 30, 18].
Aside from the iterative scheme, there are other methods
that address the noise [4], saturated pixels [1], kernel inac-
curacies [9, 17], etc.. However, not many works prioritize
adapting the deblurring model to the changing K.

Latent Space Representation. Latent space is dis-
cussed in many works such as denoising autoencoder

(DAE) [31] and word2vec [13] for modeling low-
dimensional data representations. In image restoration, la-
tent space learned from incomplete data is used in denois-
ing, super-resolution [3] and inpainting [16]. Latent space
is also effective for modeling multi-modal data, e.g. via
multimodal encoder-decoder [15], and canonical correla-
tion analysis (CCA) [7]. We intend to extend latent space
models with the parameterization of K.

Deconvolution and Imagery in Science. Extensive de-
velopments have been done over past decades to enhance
spatial resolution through deconvolution in optical, electron
microscopy, and X-ray microscopy [27, 23, 32, 5]. The abil-
ity in achieving enhanced imaging resolution often resides
in the accurate determination of the kernel for the specific
imaging setup and modelling or removing noise in the col-
lected data. In laboratory multi-modality experiments, pty-
chography allows the accurate determination of the imaging
probe, i.e. the kernel, and thus presenting the NBD method
suitable and advantageous to produce high-resolution fluo-
rescence images from the simultaneously acquired fluores-
cence data.

3. Deformable Latent Space

In this section, we introduce the formulation of latent
space deformation for parametric non-blind deblurring. The
network consists of three parts: encoder, deformer and de-
coder, shown in Fig. 1. Please refer to the supplementary
material for the complete technical details of the network.

3.1. Notations

From Ptycho-FI, we obtain low-resolution fluorescent
images along with the corresponding blurring kernels mea-
sured from ptychography, and then perform NBD. We have
a set of clean images {Ii} and a set of blurring kernels
{kj}. From the images and kernels generate a set of blurred
images {Bj

i}, where Bj
i is from image Ii and kernel kj

(Eqn. 1), and we try to recover Ii. We use subscripts to rep-
resent image indices, and superscripts to represent kernel
indices.

In Ptycho-FI, not only the kernel kj is measurable, but
we also consider it fully customizable with a set of parame-
ters θj , such as defocal distance and pixel density. Thus, kj

can be modeled as k(θj), where θj is experiment specific.
The deblurring problem is: Recover Ii, given Bj

i and kernel
parameter θj .

3.2. Latent Space Shift and Deformation

The notion of latent space is illustrated with a denoising
autoencoder (DAE). A DAE consists of downsizing and up-
sizing layers, which forms a “bottleneck” low-dimensional
layer in the middle. The bottleneck forces a compact rep-
resentation that extracts structure and resists noise. In other
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Figure 1. Architecture of the latent space deformation network. For brevity, nonlinear activations, batch normalizations, and hidden layers
to encode the parameter w are not shown. conv, convt and dconv stand for convolution layer, convolution transpose layer, and dynamic
convolution, respectively. k3s1d2 means kernel size 3, stride 1, dilation 2. All convolutions are 1-dilated unless otherwise noted.

Original

d = 0.1μm 3μm 5μm 7μm 10μm 15μm

Fixed 
Kernel
Deblur
(3μm)

Figure 2. An example set of NBDs with varying kernels. Top: six
kernels with different defocal distances. All kernels are scalar real-
valued intensity maps, colorized with false color for visualization
purposes. Center: the original clean image and the blurred images
from the kernels above. Bottom: an encoder-decoder deblurring
network trained with the 3µm kernel fails to deblur images from
other kernels.

Clean Image
Space

Blurred Space k

Blurred Space k1

Learned
Latent Space

Latent Transform f Latent Space
Shift

Figure 3. Shift in latent space when encoding a blurred image from
another kernel.

words, we establish a shared latent space, where both noisy
and clean images reside, and the denoising transform.

While many deblurring and super-resolution methods
verified that this shared latent space can be found with par-
tial (corrupted) observations, many of them assume that the
underlying corruption is fairly similar, e.g. simple downsiz-
ing. When blurred images are generated with different blur-
ring kernels, as in Fig. 2, a simple encoder-decoder trained
on one kernel cannot adapt to all different cases.

The reason for this degradation is that blurred images
under different kernels do not lie in the same manifold, as
Fig. 3 illustrates. From the training, the shared latent space
of clean images and blurred images from the kernel k is
established, but it is not shared with a new kernel k1; using
the learned transform on a blurred image from k1 would
result in a shifted point in a deformed latent space. Now

consider the latent space with k as a standard, or reference
latent space. The deformation from the reference space can
be modeled as a parametric vector field, parameterized by
k1. Thus, our objective is to learn the deformation with a
range of {kj} so that the deblurring model works with more
different kernels.

3.3. Network Design

We propose to train this deformable latent space in two
stages. At the first stage, we establish the reference latent
space. With a “standard” blurring kernel k = k0, we draw
clean-blurred image pairs {Ii,Bi} to train a deblurring au-
toencoder

hi = f(Bi), Oi = g(hi), (2)

where f is the encoder, g is the decoder, Bi is the blurred
input, Oi is the output, and hi is the latent encoded vector.
The training objective is to fit the decoder output Oi to the
clean image Ii

argmin
f,g

N∑
i=1

L((g ◦ f)(Bi), Ii), (3)

where N is the number of training images, (g ◦ f)(·) means
g(f(·)), and L is a loss function, e.g. mean squared error
(MSE).

Once {f, g} are trained, we move onto the second stage.
We may encode blurred images generated from new kernels
using Eqn. 2, but the encoded vectors will shift in the refer-
ence space. With a new blurred image Bj

i from kernel kj ,
we freeze {f, g} and compute a deformer D in the middle
of the encoder-decoder:

hj
i = f(Bj

i ), hi = D(hj
i , θ

j), Oi = g(hi). (4)

Kernel parameter θj directly governs D to rectify the shift
in latent space. We will explain the parameterization in Sec-
tion 3.4. For training, we draw both the “standard” blurred
image Bi and new blurred images Bj

i based on the same
clean image Ii to compute latent space deformation. The
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Figure 4. Structure of a dynamic convolution. The middle tensor
in brackets [· · · ] has nbC channels as a result of the convolution,
which are spread out as nb groups to take the dot product as de-
scribed in Eqn. 8.

training objective is to deform the non-standard latent fea-
ture vectors to fit in the reference space

argmin
D

N∑
i=1

M∑
j=0

L(f(Bi), (D ◦ f)(Bj
i , θ

j
i )), (5)

where N is the number of training images, M is the num-
ber of new kernels, excluding k0. The complete network
consists of the encoder, decoder and deformer {f, g,D}.

3.4. Parameterization with Dynamic Convolution

The latent space deformer D is parameterized by θj . As
we intend to learn an additive “shift” to rectify the latent
space vector, we model D as a residual subnet as follows

D(hj
i , θ

j) = hj
i +R(hj

i , θ
j). (6)

As illustrated in Fig. 1, the residual subnet consists of four
residual blocks of two convolutional layers, but the latter
two blocks each have a preceding 2-dilated convolution to
expand the receptive field.

Dynamic Convolution. To parameterize the network,
we compute dynamic convolutions [40] in place of all the
convolutions in the deformer D. Simply put, a conventional
2D convolution

Conv2d(h) = K ∗ h (7)

has a filter K of shape din × dout × dh × dw, where din is
the number of input channels, dout is the number of output
channels and dh, dw are the filter height and width. Dy-
namic convolution expands it to a group of nb such fil-
ters {Kb}, like an nb-dimensional basis. Taking an in-
put feature h and a nb-dimensional basis coefficient w =
(w1, w2, . . . , wnb

), dynamic convolution computes the dot
product of the nb convolutions (Fig. 4)

DConv2d(h,w) =

nb∑
b=1

wb · (Kb ∗ h). (8)

Basis Coefficient Estimator. The basis coefficient wj

is an embedding of kernel parameter θj . We use multi-layer
perceptrons (MLPs) to encode θj and normalize it to unit
L2 norm

wj
raw = MLP(θj), wj = wj

raw/∥wj
raw∥2. (9)

Alternatively softmax can be used too:

wj = softmax(wj
raw). (10)

Note that each dynamic convolution is associated with a
basis coefficient MLP. These MLPs can be separate or
share weights. We share weights among each convolutional
block, i.e. layer groups {1, 2}, {3, 4}, {5, 6, 7}, {8, 9, 10} in
D each use one shared MLP.

Alternate Training. The learnable parameters of the dy-
namic convolutions can be divided into two components:
the filter group {Kb}, which is a feature “basis”, and the
“basis coefficient” estimator MLP(·). To facilitate the train-
ing, we alternate the parameter updates. For each epoch, we
go through half of the training batches only to optimize the
basis {Kb}, and keep the coefficients MLP(·) unchanged;
and use the other half to only update MLP(·), while freez-
ing {Kb}.

4. Experiments and Evaluations
In this section, we report our main evaluation results. See

supplementary material for the fully executable kernel for-
mulations and additional output samples.

4.1. Dataset Preparation

First we describe the kernel selections for different
blurred images in our learning dataset. Based on sim-
ulated probes of zone plates used in ptychography, we
first generate six 64 × 64 probes with defocal distances
d = {0.1, 3, 5, 7, 10, 15}µm respectively, then multiply
them with a band-limited filter to restrict the range of the
probes to 0.35 of the radius. Since the defocal distance d is
the sole factor that controls the variations of probes in our
experiment, we set it as the kernel parameter θj = d that
we are going to feed in the deformation network.

We use both natural image data and real fluorescence
data in our experiments, because natural images offer more
variety and larger amounts of images for deep CNN train-
ing. For natural images, We use the validation images from
ILSVRC 2012 [22] to generate the NBD learning dataset.
We randomly take 10,000 images to make the training set,
and 100 images to make the testing set. All images are re-
sized to 256 × 256 and normalized to [0, 1]. The images
are convolved with each one of these different kernels, and
added with Gaussian noise with a variance of 0.02, to gen-
erate all different blurred versions. The kernels and blurred
images are shown in Fig. 2. We can see the kernels have
different ranges as well as unique patterns within range.

For fluorescence images, we take the clean images from
the FMD dataset [39] to generate our NBD data. We ran-
domly take 2,000 images to make the training set, and 40
images to make the testing set. We use the same blurring
kernels and processing as in natural image data to generate
the full dataset.
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Close-Ups (Shown from left to right: NODEFORM – SIMPLEDEFORM – Complete Network in red box)
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Figure 5. Comparison of NODEFORM, SIMPLEDEFORM and the complete deformation network.

4.2. Comparisons of Deformers

We verify the effect of the parametric deformer. First,
we test the reconstruction without latent space deformation.
We only use the encoder-decoder {f, g} to deblur images
from all kernels – we call this NODEFORM.

To further demonstrate the benefit of fully parameteriz-
ing every deformer layer, we compare it with a contrived
setup with less interaction with the parameters – we call this
SIMPLEDEFORM. Based on our deformer in Section 3.4,
we replace all the dynamic convolutions with regular con-
volutions. After the final 256-channel feature is acquired,
we reweight it by multiplying a 256-dimensional vector w,
which is computed using a 1-16-256 MLP with defocal dis-
tance d

w = MLP(d), (11)

and finally an additional BatchNorm-ReLU-Conv is per-
formed. This gives a one-time engagement with the param-
eters. In stark contrast to this artificial example, the param-
eter θj is deeply involved in every layer in our model. Also,
for the parameter embedding wj , we make it different at

each convolutional block to fully tailor the deformer.

To train the deformer networks, we use the 3µm kernel
to train the reference latent space. We use the ADAM opti-
mizer [10] with learning rate 0.0002, and train them on nat-
ural image dataset. We train the first stage ({f, g}) for 20
epochs, and the second stage (D) for 30 epochs, 50 epochs
in total.

The results of all these methods are shown in Fig. 5
and Table 1. We can see that SIMPLEDEFORM and the
complete deformer method both show visible improvements
over NODEFORM. From the close-up details, the complete
deformer is more expressive than SIMPLEDEFORM.

ND SD Comp.
Mean PSNR (dB) 20.1426 21.0724 21.2795

Table 1. Mean PSNR of NODEFORM (ND), SIMPLEDEFORM

(SD) and the complete deformation network (Comp.).
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Orig. 0.1 3 5 7 10 15 0.1 3 5 7 10 15

HL

MLP MFCN

GLRA Ours

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

20.22 19.82 19.31 18.73 17.96 17.16
0.7348 0.7017 0.6657 0.6257 0.5729 0.5297

20.15 19.72 18.79 17.49 16.60 15.24
0.6408 0.6340 0.6213 0.6033 0.5868 0.5537

24.22 23.34 22.53 21.81 20.68 19.84
0.8176 0.7812 0.7460 0.7140 0.6670 0.6323

22.20 21.91 21.39 20.59 20.17 19.49
0.7987 0.7718 0.7328 0.6952 0.6581 0.6308

22.08 22.07 21.77 21.31 20.73 20.22
0.7622 0.7607 0.7386 0.7114 0.6816 0.6664

Figure 6. Comparisons of different NBD methods. Here we report the mean PSNR and mean SSIM per kernel on the testing set.

4.3. Comparisons with Existing NBD Methods

We compare our method with existing NBD methods:
Hyper-Laplacian (HL) [11], MLP [26], multi-input fully
convolutional network (MFCN) [30], and generalized low-
rank approximation (GLRA) [18]. We use the natural image
dataset to train all these networks. The corresponding ker-
nels are given to all the algorithms. HL is evaluated with
the parameters α = 2/3, λ = 2×103, and MFCN takes HL
results with α = 2/3, λ = {2 × 102, 2 × 103, 2 × 104} as
input. We train MLP, MFCN and GLRA all for 50 epochs.
The results are shown in Fig. 6.

We can see from the comparisons that our method pro-
duces less artifacts than all these methods visually, and out-
performs HL, MLP and GLRA in terms of mean PSNR and
SSIM in most of the kernel settings. While MFCN has
higher mean PSNR and SSIM for some kernels, it has visi-
bly more rippling artifacts.

From these results, we argue that our deformer in the
low-dimensional latent space has two advantages. First,
there is less artifact from approximation. In contrast, e.g.
MFCN is fully convolutional. It deblurs the images with a
few different optimization parameter settings – all of which
are suboptimal and contain artifact – and then fuses them
all with a deep network. Despite the intensive training, the
remnants of artifact from the base deblurred images are not
very well eliminated. Second, our method is lighter and
faster to compute. We will show this later in Section 4.5.

4.4. Comparisons with Deep BD Methods

We compare our method with a few deep BD methods:
Nah et al.’s Deep Multi-scale CNN (DeepDeblur) [14], Tao
et al.’s Scale-recurrent Network (SRN) [29], and Ye et al.’s
Scale-Iterative Upscaling Network (SIUN) [36]. We use the
natural image dataset to train these networks. The results
are shown in Figure 7. We can see that SRN and SIUN
do not learn effectively from this diversely blurred dataset,
which demonstrates that the NBD problem needs to be ad-
dressed specifically, and general deep deblurring methods
are likely not suitable. DeepDeblur has better mean PSNR
and SSIM than our method, but note that all these deep BD
methods are multi-scale networks that are much deeper and
take much longer to train one epoch.

4.5. Comparison of Running Times

Our deformation network computes feature transforms
in the low dimensional feature space, which is much faster
to run compared to fully convolutional networks that com-
pute full size tensors. Below are the running times of train-
ing the following network on the natural image dataset, for
one epoch, on an NVIDIA GeForce RTX 2080 Ti (See Ta-
ble 2).

4.6. Results on Fluorescence Data

We also use real fluorescence data to compare the NBD
methods reported in Section 4.3: HL, MLP, MFCN and
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0.1 3 5 7 10 15 0.1 3 5 7 10 15

Ours

PSNR
SSIM

PSNR
SSIM

19.23 19.86 19.72 19.30 18.76 17.99
0.6313 0.6611 0.6546 0.6314 0.6032 0.5748

22.08 22.07 21.77 21.31 20.73 20.22
0.7622 0.7607 0.7386 0.7114 0.6816 0.6664

Deep
Deblur

SRN

SIUN

PSNR
SSIM

23.78 22.95 22.24 21.66 21.12 20.54
0.8335 0.7945 0.7581 0.7274 0.6941 0.6737

PSNR
SSIM

19.45 19.41 19.26 18.97 18.57 17.97
0.6342 0.6233 0.6047 0.5844 0.5654 0.5493

Figure 7. Comparisons with deep BD methods. Here we report the mean PSNR and mean SSIM per kernel on the testing set. Ground truth
and blurred input are the same as shown in Figure 6.

Orig. 0.1 3 5 7 10 15 0.1 3 5 7 10 15

HL

MLP MFCN

GLRA Ours

PSNR
SSIM

PSNR
SSIM

20.22 19.82 19.31 18.73 17.96 17.16
0.7348 0.7017 0.6657 0.6257 0.5729 0.5297

20.15 19.72 18.79 17.49 16.60 15.24
0.6408 0.6340 0.6213 0.6033 0.5868 0.5537

24.22 23.34 22.53 21.81 20.68 19.84
0.8176 0.7812 0.7460 0.7140 0.6670 0.6323

23.13 23.12 23.11 22.89 21.72 21.09
0.6814 0.6862 0.6849 0.6777 0.6528 0.6021

23.87 23.70 23.66 23.49 23.04 22.58
0.6926 0.6840 0.6871 0.6811 0.6635 0.6532

PSNR
SSIM

19.42 18.81 18.10 17.37 16.37 15.20
0.6953 0.6695 0.6411 0.6104 0.5633 0.5020

PSNR
SSIM

22.92 22.46 21.70 21.48 20.81 20.27
0.6768 0.6335 0.5883 0.5881 0.5746 0.5597

PSNR
SSIM

24.13 24.25 24.12 23.94 23.40 22.70
0.7469 0.7429 0.7288 0.7173 0.6849 0.6567

Original Blurred, d = 15μm HL MLP MFCN GLRA Ours

Figure 8. Comparisons of different NBD methods on real fluorescence data. Close-ups of deblurring results of the first image, with kernel
d = 15µm, shown on the bottom. Here we report the mean PSNR and mean SSIM per kernel on the testing set.
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Architecture Time
Ours, Stage 1, Encoder-Decoder 0:00:27
Ours, Stage 2, Deformer 0:07:51
MFCN 3:18:33
GLRA 0:42:18
DeepDeblur 3:04:18
SRN 0:44:19
SIUN 1:04:28

Table 2. Time to train for one epoch for different neural networks.

GLRA. For this dataset, our latent space deformation is
trained 80 epochs for the first stage ({f, g}), and 120 epochs
for the second stage (D). The other methods are all trained
for 200 epochs. The results are shown in Fig. 8. Our de-
formation method produces fewer artifacts in more severely
blurred cases.

5. Conclusions and Future Work

In this paper, we proposed a latent space deformation
approach to solve parametric image non-blind deblurring.
The deformer network we developed is empirically effective
in manipulating the compact latent feature representation,
and operating in a relatively low-dimensional latent space
is fast and light-weight compared to full-size convolutional
networks.

We designed our method with emphasis specifically on
modeling the varying blurring kernel K, because it is cru-
cial for the adaptability of the method, which is illustrated
by experiment performance with a drastically different set
of kernels. With reliable NBD parameterized by K, we
will be able to perform simultaneous ptychography and flu-
orescent imaging acquisition with high-resolution and high-
throughput to advance scientific discoveries in energy ma-
terials, bio-materials, and beyond.

For future work, we are going to build a stronger de-
former with techniques such as attention mechanism and
adversarial learning to warp latent features closer to the ref-
erence space. On the other hand, we plan to extend the
idea of parametric latent space to bivariate and multivari-
able parametric spaces to model more variety of the blur-
ring kernels. We also plan to use deep neural networks
to extract semantic parameters from the kernel itself, and
generalize this parameterized generative approach to other
imaging problems.
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