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Abstract

In this paper, a real-time method called PoP-Net is pro-
posed to predict multi-person 3D poses from a depth image.
PoP-Net learns to predict bottom-up part representations
and top-down global poses in a single shot. Specifically,
a new part-level representation, called Truncated Part Dis-
placement Field (TPDF), is introduced which enables an
explicit fusion process to unify the advantages of bottom-
up part detection and global pose detection. Meanwhile,
an effective mode selection scheme is introduced to auto-
matically resolve the conflicting cases between global pose
and part detections. Finally, due to the lack of high-quality
depth datasets for developing multi-person 3D pose estima-
tion, we introduce Multi-Person 3D Human Pose Dataset
(MP-3DHP) as a new benchmark. MP-3DHP is designed to
enable effective multi-person and background data augmen-
tation in model training, and to evaluate 3D human pose
estimators under uncontrolled multi-person scenarios. We
show that PoP-Net achieves the state-of-the-art results both
on MP-3DHP and on the widely used ITOP dataset, and
has significant advantages in efficiency for multi-person
processing. MP-3DHP Dataset and the evaluation code
have been made available at: https://github.com/
oppo-us-research/PoP-Net.

1. Introduction
Human pose estimation plays an important role in a wide

variety of applications, and there is a rich pool of litera-
ture for human pose estimation methods. Categorizations
of existing methods can be made from different dimen-
sions. There are methods mostly relying on a single im-
age to predict human poses [35, 23, 17] and others based
on multiple cameras [27, 5]. Some methods are capable of
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Figure 1. Our paradigm. Part representations and global
poses predicted from PoP-Net are explicitly fused via utiliz-
ing Truncated-Part-Displacement-Field (TPDF). A part predicted
from the global pose is dragged towards a more precise bottom-
up part position following a displacement vector. More reliable
part position is further estimated via a part-confidence-weighted
average of TPDF within the aggregation mask.

predicting multiple poses [3, 16, 37] while others are fo-
cusing on single person [35, 19, 23]. Some methods esti-
mate 3D poses [30, 13, 22, 36, 28] while others predict 2D
poses [35, 19, 21]. Methods can also be classified by the
input, while most methods use RGB images [3, 21, 17, 2],
some use depth maps [14, 32, 36]. Specifically, this paper
focuses on multi-person 3D pose estimation from a depth
image.

In the era of deep learning, a large pool of Deep Neu-
ral Networks (DNN)-based methods have been developed
for multi-person pose estimation. Ideas from existing liter-
ature can be generally categorized into three prototypical
trends. The simplest idea is to directly extend a single-
shot object detector [12, 24, 25] with additional pose at-
tributes, so that the network can output human poses. Such
single-shot regression can be very efficient, but has low
part accuracy, as shown in Figure 2 (Yolo-Pose+), because
a long-range inference for part locations is involved in a
center-relative pose representation. The second type builds
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Ground-Truth Yolo-Pose+ Open-Pose+ Yolo-A2J PoP-Net
Figure 2. Visual comparison of prototypical methods: methods are compared on two examples from MP-3DHP testing set.

on a two-stage pipeline where the first stage detects object
bounding boxes, and the second stage estimates the pose
within each [21, 7, 36]. Two-stage methods can be very ac-
curate, as shown in Figure 2 (Yolo-A2J), but not as efficient
when more human beings appear in an image. In addition,
more sophisticated design is required to solve the compati-
bility issue between pose estimation and bounding box de-
tection [7, 24]. The third idea is to detect human poses from
part1 detection and association [10, 18, 3, 14, 16]. Although
part detection can be rather efficient, solving the part asso-
ciation problem is usually time consuming. OpenPose [3]
gained its popularity for introducing an efficient solution to
solve the association, resulting in a network benefiting from
both the single-shot pipeline with high efficiency and the
part-based dense representation with high positional preci-
sion. However, a pure bottom-up method does not have a
global sense, so that it is rather sensitive to occlusion, trun-
cation, and ambiguities in symmetric limbs (Figure 2 Open-
Pose+). Moreover, dependency on the bipartite matching in
assembling parts presents the part predictions from differ-
entiable integration with global reasoning, which may sys-
tematically block a solution from end-to-end training [16].

Developing a depth image-based multi-person 3D pose
estimation from a well-established RGB image-based 2D
method [21, 26, 3] is conceptually simple for two rea-
sons: some schemes to handle multi-person detection can
be shared; 3D information is partially available from the
input [6, 36]. As a result, a depth image-based approach
may not necessarily require as many sophisticated designs
as methods aiming to estimate 3D poses from a single RGB
image [17, 16]. However, RGB-based methods and depth-
based methods usually focus on different challenges. While
some RGB-based methods spend more effort in differenti-
ating people cluttered in a large scene [3, 2], depth-based
methods [14, 36] focus more on recovering highly accurate

1The definitions of ’part’ and ’joint’ are interchangeable in this paper.

3D poses of fewer people presented in a closer range. In
practice, to develop a depth-based method that robustly pre-
dicts 3D poses in a multi-person scenario is very challeng-
ing due to noisy depth inputs and heavy occlusions.

In this paper, we present a method called Pose-over-Parts
Network (PoP-Net) to estimate multiple 3D poses from a
depth image. As illustrated in Figure 1, the main idea of
PoP-Net is to explicitly fuse the predicted bottom-up parts
and top-down global poses2. This fusion process is enabled
by a new intermediate representation, called Truncated-
Part-Displacement-Field (TPDF), which is a vector field
that records the vector pointing to the closest part location
at every 2D position. TPDF is utilized to guide a structural
valid global pose towards more positionally precise part lo-
cation so that the advantages of global pose and local part
detection can be naturally unified.

At the same time, we release a comprehensive depth
dataset, named Multi-Person 3D Human Pose Dataset (MP-
3DHP), to facilitate the development of 3D pose estima-
tion methods generalizable to novel background and un-
observed multi-person configurations in real-world appli-
cations. Although there are a decent amount of RGB
datasets [11, 9, 1, 15, 31, 34] in prior art, there are limited
high-quality depth datasets. The released dataset is con-
structed to cover most of the essential aspects of visual vari-
ance related to 3D human pose estimation, and particularly
to promote the development of multi-person methods.

The contribution of this paper is four fold. First, we
introduce an efficient framework that predicts multiple 3D
poses in a single shot. Second, we propose a new part-level
representation called TPDF, which enables an explicit fu-
sion of global poses and part-level representations. Third,
we introduce a mode selection scheme that automatically
resolves the conflict between local and global predictions.

2Poses predicted from a single-shot network where each pose contains
a full set of body parts
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Figure 3. PoP-Net is composed of a backbone network, three functional branches, and a global pose network. The functional branches
are organized in two stages with split and merge. PoP-Net outputs three part-level maps and a global pose map.

Finally, we release a comprehensive depth image-based
dataset to facilitate the development of multi-person 3D
pose estimation methods to tackle real-world challenges.

2. Pose-over-Parts Network
In this paper, we present a new method, called Pose-over-

Parts Network (PoP-Net), for multi-person 3D pose estima-
tion from a depth image. Our method first uses an efficient
single-shot network to predict part-level representations and
global poses, and then fuses the positionally precise part de-
tection and structurally valid global poses in an explicit way.

The pipeline of PoP-Net is composed of a backbone net-
work, a global pose network, and three functional branches:
heatmap branch, depth branch, and TPDF branch, as illus-
trated in Figure 3. The two-stage split-and-merge design
is inspired by OpenPose [3] and mostly follows the simpli-
fied version applied to depth input [14]. PoP-Net outputs
three sets of part maps from the second stage of functional
branches and an anchor-based global pose map from the
global pose network.

Supposing a human body includes K body parts, the
heatmap branch outputs a set of part confidence maps
{Hj}K+1

j=1 , where each Hj from the first K maps indicates
the confidence of a body part occurring at each discrete lo-
cation, and the last indicates background confidence. The
depth branch outputs a set of maps {Dj}Kj=1, where each
Dj encodes the depth values associated with part j.

The core of our method is a new part-level representa-
tion called Truncated Part Displacement Field (TPDF). For
each part type j, TPDF records a displacement vector point-
ing to the closest part instance at every 2D position. The
TPDF branch outputs TPDFs represented in a set of x-axis
displacement maps {Xj}Kj=1 and a set of y-axis displace-
ment maps {Yj}Kj=1. The novelty of the proposed TPDF
is two fold: (1) it encodes the displacement field involv-
ing multiple parts of the same type in a single map, and
(2) a truncated effective range is adopted, which is critical
for training CNN models that are able to handle multi-body
scenarios. If truncated range is not applied to the part dis-
placement field involving part instances from multiple bod-

ies, the training of convolutional kernels will be confused
by image patches similar in appearance but associated with
highly different vectors, because a pair of displacement vec-
tors whose origins are close to each other but pointing to
different part instances may have large difference in X,Y

values. The effectiveness of applying the truncated range is
analyzed in detail in Section 4.3.

Compared with previous methods which predict person-
wise part displacements [21, 36], TPDF operates at image
level. In consequence, PoP-Net not only handles multiple
bodies in one pass but also happens to be less sensitive to
proposal error. While compared with the Part Affinity Field
introduced in OpenPose [3], TPDF is free from the heavy
bipartite matching process, and uses a simple fusion process
to take advantage of both global poses and bottom-up part
detections. As a result, PoP-Net shows increased robustness
to handling truncation, occlusion and multi-person conflict
compared with OpenPose.

Finally, a global pose map P is regressed from the global
pose network. The global pose network is a direct extension
from Yolo2 [25], where both bounding box attributes and
additional 3D pose attributes are regressed with respect to
the anchors associated with each grid. A set of predicted
global poses are then extracted via conducting NMS on the
global pose map P .

2.1. Training
PoP-Net is trained end-to-end via minimizing the total

loss £ which is the sum of heatmap loss £h, depth loss £d,
TPDF loss £t, and global pose loss £p. As shown in Fig-
ure 3, losses corresponding to the functional branches are
contributed from multiple stages of the network. Specifi-
cally, the loss function can be written as:

£ = £h +£d +£t +£p (1)
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where s is the stage index, and S indicates the total number
of stages. H

⇤
j , D⇤

j , X⇤
j , Y ⇤

j , and P
⇤ indicate the ground-

truth maps while W
d
j , W t

j , and W
p indicate the point-wise

weight maps in the same dimension as the corresponding
ground-truth maps. Specifically, no weight maps are ap-
plied to heatmap loss so that the foreground and background
samples are treated with equal importance.

The architecture of each network component and the
preparation process of ground-truth maps and weight maps
are illustrated in detail in Appendix A. In summary, the
backbone and the heatmap branch follow the structure pro-
posed in the simplified OpenPose for depth data [14]. The
depth and TPDF branches adopt the same number of layers
as the heatmap branch but with customized feature dimen-
sions to balance the efficiency and robustness. The global
pose network follows a similar architecture as the layers af-
ter the backbone in Yolo2 [25], and uses a similar anchor-
based representation.

2.2. Fusion process
TPDF enables an explicit fusion of part representations

and global poses. As illustrated in Figure 1, a 2D part pre-
dicted from a global pose located at (xj , yj) is updated to
a new position (x̄j , ȳj) following the displacement vector
in the predicted TPDF of part j, such that x̄j = xj +
Xj(xj , yj), ȳj = yj + Yj(xj , yj). To improve accuracy,
weighted aggregation is later applied to estimate the final
2D position {(x̂j , ŷj)}Kj=1 and depth {Ẑj}Kj=1, as illustrated
in Figure 1. Specifically, Xj , Yj , and Dj within a mask M

centered at the updated integer position (bx̄jc, bȳjc) is av-
eraged by using Hj as aggregation weights, which leads to
the following equations:

x̂j = bx̄jc+
P

(u,v)2M Hj(u, v) ·Xj(u, v)P
(u,v)2M Hj(u, v)

(6)

ŷj = bȳjc+
P

(u,v)2M Hj(u, v) · Yj(u, v)P
(u,v)2M Hj(u, v)

(7)

Ẑj =

P
(u,v)2M Hj(u, v) ·Dj(u, v)P

(u,v)2M Hj(u, v)
. (8)

Predicted {(x̂j , ŷj)}Kj=1 and {Ẑj}Kj=1 are transformed to 3D
positions given known camera intrinsic parameters. Com-
pared with [20] which fuses multi-range offset maps in ad-
ditional networks to recover instance segmentation, our so-
lution relies on concise representations and an explicit fu-
sion to recover 3D human poses.

2.3. Resolving conflicting cases
There are conflicting cases when multiple human bodies

occlude each other or a global pose falls out of the effec-
tive range of a TPDF. To resolve them, a mode selection
scheme is carefully designed. The scheme utilizes the part
confidence maps {Hj}K+1

j=1 from the heatmap branch and
the part visibility attributes from the global pose network.

Figure 4. Conflicting cases to resolve in fusion. Part confidence
maps for the marked regions are visualized to illustrate three con-
flicting cases to resolve. A: The confidence of left knee is low.
B: The confidence of right foot is high without ambiguity. C: The
confidence of occluded right hand is high but hallucinated by the
same part from another person.

As illustrated in Figure 4, there are in total three cases
to consider respectively: (A) when the part confidence Hj

is low at a global part position, the global detection is used
directly, which is usually observed when the position of a
part is not accessible due to truncation or occlusion; (B)
when the part confidence is high and no occlusion from an-
other instance of the same part is involved, the presented
fusion process is applied; and (C) a challenging case may
occur when the part confidence is high but is impacted by
occlusion from another instance of the same part type. For-
tunately, since the part depth map is prepared following
a z-buffer rule, a significant difference between the global
part depth and the part depth map will be observed in this
case. Therefore, part visibility attributes {vj}Kj=1 can be
used as indicators of case (C), which can be integrated into
the global pose representation. At last, the visual results
of PoP-Net are shown in Figure 5 on a set of multi-person
testing samples.

3. MP-3DHP: Multi-Person 3D Human Pose
Dataset

Due to the lack of high-quality depth datasets for 3D
pose estimation, we constructed Multi-Person 3D Human
Pose Dataset (MP-3DHP) to facilitate the development of
3D pose estimation targeting real-world multi-person chal-
lenges. There are a few existing depth datasets for human
pose estimation, but the data quality and diversity is rather
limited. DIH [14] and K2HPD [32] include a decent amount
of data but are limited to 2D poses. ITOP [6] is a widely
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Figure 5. PoP-Net visual results. Predictions in 2D, 3D, and the ground-truth are visualized on six examples from MP-3DHP.

tested depth dataset for 3D pose estimation. However, data
from ITOP is strictly limited to single person, clean back-
ground, and low diversity in object scales, camera angles,
and pose types.

MP-3DHP is designed to effectively cover the essential
variations in human poses, object scales, camera angles,
truncation scenarios, background scenes, and dynamic oc-
clusion. Because collecting sufficient data to fully represent
multi-person configurations combined with different back-
ground scenes is intractable due to combinatorial explosion,
real data is only collected to cover the variations not achiev-
able from data composition or data augmentation. Specifi-
cally, our training data collection focuses on single-person
data involving varying poses, different object scales, vary-
ing camera ray angles, and additional background-only data
covering different types of scenes. The remaining types of
data variation are covered via data composition and data
augmentation utilizing collected human segments. The test-
ing set focuses on multi-person data under uncontrolled
real-world scenarios. Figure 6 shows examples from the
training set, the background scenes and the multi-person
testing set respectively.

Set Img Sbj Loc Ori Act Sn L+
train 176828 13 4+ 4 10+ 1 seg
val 32719 2 4+ 4 10+ 1 seg
bg 8680 0 0 0 0 8 no
test 4484 5 0 0 free 4 mp

Table 1. MP-3DHP summary. The total number of images (Img),
human subjects (Sbj), recording locations (Loc), self-orientations
(Ori), action types (Act), scenes (Sn) are summarized. Additional
label type (L+) indicates whether a set has segmentation (seg) or
multi-person (mp) labels.

3.1. Construction procedure
We utilized Azure Kinect to record human depth videos

and automatically extracted 3D human poses associated
with each depth image. Overall, 20 human candidates
were involved in the recording procedure; 15 of them were
recorded individually to construct the training set, while
the remaining five were recorded in multi-person sessions

to produce the multi-person testing set. For the training
set, each candidate was recorded with a clean background
in four trials at four different locations within the camera
frustum. In each trial, a candidate was asked to perform
10 predetermined actions while facing four different ori-
entations spanning 360� and an additional short sequence
of free-style movements towards the end. A classic graph-
cut based method was applied to produce human segments
for the training set. In addition, background images were
recorded separately with moderate camera movements from
eight different scenes. For the testing set, the remaining
five people were recorded while performing random actions
with different combinations in four different scenes. Table 1
shows the statistics of our MP-3DHP dataset.

To collect reliable 3D pose ground-truth, human annota-
tions are integrated into our pseudo-automatic data collect-
ing system to sift out those unqualified samples. Specif-
ically, we used two calibrated and synchronized cameras
mounted on a solid bar in data capture, one is from Azure
Kinect and the other is from a commercial cellphone. A 3D
pose output from Azure Kinect is only selected as ground-
truth when its projections to both views are visually correct.

4. Experiments
We experimentally substantiate the superiority of PoP-

Net in depth image-based multi-person 3D pose estimation
on two datasets, under two evaluation metrics, compared to
prior state-of-the-art methods.

4.1. Experimental setup
Datasets: A depth-based 3D pose estimation method is
evaluated on two benchmarks: the MP-3DHP and ITOP [6]
datasets. MP-3DHP includes highly diverse 3D human
data and provides reliable human segments to enable
background augmentation and multi-person augmentation.
The evaluation on MP-3DHP aims to determine a method’s
capability in handling real-world challenges in multi-person
3D pose estimation. Meanwhile, ITOP is a widely tested
dataset for single-person 3D pose under highly controlled
environment. We report results on ITOP to compare with
prior state-of-the-arts on a simplified task.
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Figure 6. MP-3DHP examples. (Top) Five single-person examples recorded from different locations from the training set. (Bottom) Two
examples of background scenes, and three examples from multi-person testing set.

Evaluation metric: A method is evaluated in PCK and
mAP with different focuses. First, PCK is a measurement
that focuses on pose estimation without considering re-
dundant detections. In our experiments, PCK is calculated
as the average percentage of accurate key points on the
best-matched predictions to the ground-truth poses, where
the best match is based on the IOU between 2D bounding
boxes. Second, the mAP metric introduced in MPII [1]
dataset is applied, which integrates both the object detec-
tion and pose estimation accuracy in an overall score. For
both PCK and mAP, 0.5-head size rule is applied for 2D
while 10-cm rule is applied for 3D.

Competing methods: A few prototypical methods have
been compared with our method: (a) Yolo-Pose+ repre-
sents a typical top-down method, which is a pose estima-
tion network extended from yolo-v2 [25] and implemented
by us; (b) Open-Pose+ is a pure bottom-up method that is
an extension from RPM [14], a simplified version of Open-
Pose [3]) that we extended with a depth branch to predict
3D poses; (c) A2J [36] represents the state-of-the-art two-
stage pose estimation from a depth image. To conduct a
fair comparison, Yolo-Pose+, Open-Pose+, and PoP-Net are
implemented using as many identical modules as possible.
Specifically, Yolo-Pose+ is composed of the backbone net-
work, the global pose network used for PoP-Net, and five
additional intermediate 3⇥3 convolutional layers with 256d
features in between. Open-Pose+ integrates the same back-
bone network, heatmap branch, depth branch as PoP-Net,
and an additional Part Affinity Field (PAF) branch proposed
in [3]. The post process of Open-Pose+ follows the origi-
nal work to use bipartite matching upon PAF to assemble
detected parts into human bodies, and in addition reads the
depth branch output to produce 3D poses. For A2J [36],
we use the identical network presented in the original pa-
per to reproduce the results. Because A2J needs to work

with given bounding-boxes for the multi-person case, we
provide the predicted bounding boxes from Yolo-Pose+ to
A2J so that the bounding-box quality is comparable to the
other methods.

It is worth mentioning that Asure Kinect is not con-
sidered in comparison because it is impossible to retrain
the algorithm for a fair comparison. It is also worth
noting that recent methods integrated with the attention
scheme [4, 29, 33] are not considered in comparison
because they lack core designs tailored to the depth-image
problem toward high 3D precision.

Implementation details: The input depth images are re-
sized to 224 ⇥ 224 for Yolo-Pose+, Open-Pose+, and PoP-
Net. The images are cropped and resized to 288 ⇥ 288
for A2J. Yolo-Pose+, Open-Pose+, PoP-Net are trained
via standard SGD optimizer for 100 epochs, while A2J is
trained via Adam optimizer following the original paper.
Yolo-Pose+, Open-Pose+, and PoP-Net use two anchors
with size 6 ⇥ 12 and 3 ⇥ 6, respectively. Following the
study provided in [3], all the functional branches both in
PoP-Net and Open-Pose+ use S = 2 stages for an optimal
balance in efficiency and accuracy. PoP-Net uses the TPDF
truncated range r = 2 in training, an optimal setting found
in ablation study. At inference, the aggregation mask M

used in fusion is practically defined as a 5 ⇥ 5 square. An
identical data augmentation process is applied to the train-
ing of each method. The basic data augmentation process
is applied to both MP-3DHP and ITOP, which includes ran-
dom rotation, flipping, cropping, and a specific depth aug-
mentation described in Appendix B. While the multi-person
augmentation is only applied on MP-3DHP.

4.2. MP-3DHP dataset
On MP-3DHP dataset, each method is trained on the

training set with multi-person augmentation on top of basic
data augmentation. Given the provided human segments,
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background augmentation can be applied by superimpos-
ing the human mask region from a training image onto a
randomly selected background image. Meanwhile, multi-
person augmentation can also been applied by superimpos-
ing multiple human segments onto a random background
scene following z-buffer rule, which is described in more
detail in Appendix C. In testing, a method is evaluated on
four different datasets representing different levels of chal-
lenges: (1) the validation set (Simple), (2) the background
augmented (BG Aug) set constructed from validation set ,
(3) the multi-person augmented (MP Aug) set constructed
from validation set, and (4) the real multi-person (MP Real)
testing set including challenging real-world recordings.

Evaluation results on MP-3DHP are shown in Table 2.
As observed that all the methods’ performance drop signifi-
cantly from BG Aug to MP Aug, which indicates the multi-
person occlusion is a major challenge. Meanwhile, PoP-
Net achieves the state-of-the-art almost on every testing set,
and significantly surpasses other methods under the most
challenging metric: 3D mAP on the MP Real test. Open-
Pose+ shows marginal advantages in 2D mAP in certain
cases because it could benefit from higher recall by recov-
ering isolated parts without seeing a whole body. However
Open-Pose+ is more erroneous in depth prediction under
occlusion due to its pure bottom-up pipeline, hence its 3D
mAP drops significantly. A2J, on the other hand, shows
marginal advantage in 3D PCK in certain tests, which can
be interpreted as that the global weighted aggregation could
leverage the full context within ROI to infer the depth of an
occluded part. However, A2J appears to be rather sensitive
to the quality of predicted ROIs; therefore its mAP perfor-
mance is not optimal.

Visual results of PoP-Net are shown in Figure 5 for the
real testing set, while additional qualitative comparisons on
the most challenging cases are provided in Appendix G.

4.3. Ablation study

An ablation study has been conducted on MP-3DHP
to analyze the effectiveness of PoP-Net components and
the specific data augmentation methods. Because our
motivation is to solve multi-person 3D pose estimation, we
only conduct the ablation study on MP-3DHP, which to our
knowledge is the only dataset providing multi-person 3D
pose labels. In this section, we analyze the effectiveness
of fusing pose and parts, the effectiveness of PoP-Net
components. Additional analysis on the data augmentation
can be found in Appendix D.

Effectiveness of fusing pose and parts: The effectiveness
of fusing part representations and global poses has been
studied. As shown in Table 3, evaluation has been done on
four different testing sets from MP-3DHP, and separately
on: (1) the 2D global poses predicted from the global pose

Test Method 2D PCK 3D PCK 2D mAP 3D mAP

Simple

Yolo-Pose+ 0.957 0.910 0.926 0.847
Open-Pose+ 0.967 0.915 0.967 0.893
Yolo-A2J 0.959 0.924 0.936 0.868
PoP-Net 0.978 0.947 0.974 0.926

BG Aug

Yolo-Pose+ 0.956 0.904 0.923 0.834
Open-Pose+ 0.911 0.916 0.969 0.885
Yolo-A2J 0.964 0.927 0.941 0.871
PoP-Net 0.982 0.947 0.977 0.924

MP Aug

Yolo-Pose+ 0.872 0.777 0.799 0.651
Open-Pose+ 0.887 0.765 0.870 0.667
Yolo-A2J 0.876 0.819 0.803 0.707
PoP-Net 0.906 0.808 0.863 0.708

MP Real

Yolo-Pose+ 0.734 0.607 0.616 0.449
Open-Pose+ 0.805 0.641 0.802 0.558
Yolo-A2J 0.837 0.724 0.744 0.574
PoP-Net 0.839 0.708 0.799 0.606

Table 2. Evaluation on MP-3DHP. Competing methods are eval-
uated on four testing sets. The best method is marked in bold black
while the second best is marked in blue.

network (2D Glb), (2) the final 2D poses after fusion (2D
Fuse), (3) the 3D global poses predicted from the global
pose network (3D Glb), and (4) the 3D poses computed
from 2D fused poses and predicted depth of parts (3D
Fuse). In addition, the upper bound of 3D poses computed
from ground-truth 2D poses and predicated depth (3D UB)
has been reported to illustrate the importance of depth
prediction. As observed, 2D and 3D poses after fusion
constantly improve upon the direct predictions from the
global pose network, and the margin increases on more
challenging sets. Meanwhile, the accuracy of 3D pose
prediction drops more significantly compared with 2D
pose prediction on more challenging sets, where the upper
bound is far from ideal. Improving depth prediction under
multi-person occlusion is expected a main task in the future.

Metric Test 2D Glb 2D Fuse 3D Glb 3D Fuse 3D UB

PCK

Simple 0.968 0.978 0.939 0.947 0.956
BG Aug 0.970 0.982 0.938 0.947 0.953
MP Aug 0.898 0.906 0.794 0.808 0.846
MP Real 0.798 0.839 0.681 0.708 0.756

mAP

Simple 0.963 0.974 0.917 0.926 0.931
BG Aug 0.965 0.977 0.915 0.924 0.927
MP Aug 0.849 0.863 0.701 0.708 0.735
MP Real 0.755 0.799 0.582 0.606 0.622

Table 3. Ablation study on fusing pose and parts.

Effectiveness of PoP-Net components: To find an optimal
configuration of the pipeline, we analyzed the effects of the
truncated range r on TPDF, the effectiveness of depth pre-
diction (D Pred) and the conflict resolving scheme (Sol C),
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Sol C D Pred TPDF 2D PCK 3D PCK 2D mAP 3D mAP
w w\o r = 2 0.839 0.418 0.799 0.293
w\o w r = 2 0.833 0.696 0.797 0.598
w w r = 1 0.827 0.678 0.782 0.560
w w r = 2 0.839 0.708 0.799 0.606
w w r = 3 0.825 0.681 0.777 0.567
w w r = 5 0.821 0.670 0.780 0.557
w w r = 10 0.797 0.654 0.755 0.543
w w r = inf 0.647 0.549 0.581 0.443

Table 4. Ablation study on PoP-Net components.

as reported in Table 4. A few important conclusions can
be drawn from the results. First, depth prediction plays an
important role in recovering reliable 3D poses, which leads
to about 30% improvements in 3D metrics compared with
using the raw depth directly. Second, the introduced con-
flict resolving scheme leads to about 1% improvement in 3D
metrics. Third, applying an appropriate truncated range is
critical in learning reliable models to predict part displace-
ment vectors in multi-person scenarios. On the one hand,
if the range is too limited, a global pose may not fall in
the effective range of TPDF so that the positional accuracy
can not be improved. On the other hand, a displacement
field without truncation (r=inf) or with large truncated range
would confuse the learning. As illustrated in Figure 7, near
those sharp boundaries, similar image patches could be as-
sociated with drastically different flow vectors. This leads
to a degenerate regression problem.

Figure 7. PDF vs. TPDF. Full-range PDF examples (top) are
compared with the TPDF (bottom) with truncated range r = 2 at
h
8 ⇥ w

8 feature resolution. Fields associated with the right ankle
and right waist channels are visualized in columns.

4.4. ITOP dataset
PoP-Net is compared with competing methods on ITOP

dataset. Because ITOP dataset is limited to single-person
and clean background, PCK and mAP measurements are
mostly identical. Therefore, we only report PCK metrics
on ITOP dataset. To conduct a fair comparison, a method is
trained and tested under two setups separately. One is based

on provided ground-truth bounding boxes and the other di-
rectly uses the full image, as shown in Table 5. It can
be observed that PoP-Net consistently outperforms Open-
Pose+ and Yolo-Pose+ by a significant margin. Compared
with A2J, PoP-Net is slightly worse in 3D and better in 2D,
which is consistent with the PCK results reported on MP-
3DHP.

Exp Setup Method 2D PCK 3D PCK

GT Bbox A2J 0.905 0.891
PoP-Net 0.914 0.882

Full Image

Yolo-Pose+ 0.833 0.787
Open-Pose+ 0.876 0.778
Yolo-A2J 0.873 0.854
PoP-Net 0.890 0.843

Table 5. Evaluation on ITOP dataset (front-view). Methods are
evaluated on ITOP dataset with and without GT bounding boxes.

4.5. Running speed analysis
The efficiency of each method is measured in FPS on

multi-person test (2-3 people). The calculation of the run-
ning speed considers necessary post-processing to achieve
the final set of multiple 3D poses and the bounding box pre-
diction time for a two-stage method. As shown in Table 6,
the running speed of PoP-Net almost triples A2J and dou-
bles Open-Pose+ on a single RTX 2080Ti GPU. The obser-
vation is as expected because OpenPose+ involves heavier
post process and A2J’s cost scales up with the number of
humans. More detailed efficiency analysis is provided in
Appendix E.

Yolo-Pose+ Open-Pose+ A2J PoP-Net
FPS 223 48 32 91

Table 6. Running speed on multi-person data.

5. Conclusion
In this paper, we introduce PoP-Net for multi-person

3D pose estimation from a depth image. PoP-Net predicts
part maps and global poses in a single pass and explicitly
fuses them via utilizing the proposed Truncated Part Dis-
placement Field (TPDF). Conflicting cases are effortlessly
resolved in a rule-based process given part visibility and
confidence out of the network. Meanwhile, a comprehen-
sive 3D human depth dataset called MP-3DHP is released
to facilitate the development of methods for real-world
multi-person challenges. In experiments, PoP-Net achieves
state-of-the-art results on MP-3DHP and ITOP datasets
with significant advantage in 3D mAP and running speed
in processing multi-person data.
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